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中文摘要 

本研究旨於探究自由傳播波浪下之流場、波狀面上之空氣紊流場邊界層內之

渦漩結構。我們採用四種建立於速度應變率特徵之旋渦結構辨識方法，並與傳統與

渦度向量有關之方法比較。此外，條件平均法也被運用於擷取馬蹄形渦旋結構。在

兩種流場中，四種渦漩結構辨識方法皆可得到相近之結果。在自由傳播波浪下之流

場，可以觀察到沿流向伸展、成對反向旋轉之渦漩結構。藉由比較渦漩結構辨識方

法和與渦度向量有關之方法，可以得知以渦漩結構辨識方法來研究流場較為直覺。

在波浪上之空氣紊流場中，可以觀察到馬蹄型渦漩結構及類沿流向渦漩結構，我們

也觀察到了馬蹄型渦漩結構的演化並發現其紊流場存在大尺度之旋轉運動。此外，

條件平均的結果顯示象限分析取樣法較 VISA 取樣法佳。 

 

 

關鍵字: 邊界層、渦旋結構、波浪表面、漩渦結構辨識方法、條件平均法 
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Abstract 

In this thesis we study the coherent vortical structures within the boundary-layer 

flow next to a wavy surface. Both aqueous flow beneath a free-propagating surface wave 

and turbulent air flow above a prescribed propagating wavy boundary are considered. 

Four vortex identification schemes based on the characteristics of velocity-strain rate are 

adopted to extract the vortical structures. These schemes are also compared with 

traditional methods based on vorticity vector. Conditional averaging technique of the flow 

field is also applied to extract the horseshoe vortices. In both aqueous and air flow, four 

vortex identification schemes derive similar results. For the aqueous flow underneath a 

free-propagating surface wave, counter-rotating vortex pairs that elongate along 

streamwise direction are observed. By comparing vortex identification schemes with 

methods based on vorticity vector, it is found that observing vortical structures is a more 

intuitive way to study the flow field. For the air flow above a prescribed propagating wavy 

boundary, horseshoe vortices and quasi-streamwise vortices are found, the regeneration 

of forward horseshoe vortices are observed, and the larger scale vortical motions in the 

flow field above wavy surface are discovered. In addition, the conditional averaging 

results shows that out of the two sampling criterions, the quadrant analysis sampling 

technique is more feasible than the VISA sampling technique. 

 

 

Keyword: boundary layer, vortical structures, wavy surface, vortex identification method, 

conditional averaging method 

  



doi:10.6342/NTU201704258

 

iii 

Contents 

中文摘要  ................................................................................................................. i 

Abstract  ................................................................................................................ ii 

Contents  ............................................................................................................... iii 

List of figures  ................................................................................................................ v 

List of tables  .............................................................................................................. xii 

Chapter 1. Introduction ............................................................................................ 1 

 Research background and objectives ...................................................... 1 

 Outline of this thesis ............................................................................... 3 

Chapter 2. Conditional averaging method................................................................ 5 

 Quadrant analysis ................................................................................... 6 

 VISA sampling technique ....................................................................... 8 

Chapter 3. Vortex identification methods ................................................................. 9 

 𝑄 Criterion ........................................................................................... 10 

 ∆ Criterion ........................................................................................... 12 

 𝜆2 Criterion .......................................................................................... 14 

 𝜆𝑐𝑖 Criterion ......................................................................................... 17 

 Relation between 𝑄, ∆, 𝜆2 and 𝜆𝑐𝑖 .................................................... 18 

Chapter 4. Coherent vortical structures beneath free-propagating wavy surface .. 21 

 Numerical simulation ........................................................................... 21 

 Results of vortical structure identification............................................ 23 

 Equivalent thresholds .................................................................. 23 

 Vortical structures ........................................................................ 27 

 Relation between vorticity inclination angle and vortical structures

  ..................................................................................................... 29 

Chapter 5. Coherent vortical structures above wavy surface ................................. 35 

 Numerical simulation ........................................................................... 35 

 Results of structure identification ......................................................... 38 

 Equivalent thresholds .................................................................. 41 

 Vortical structures ........................................................................ 45 

 Regeneration of the forward horseshoe vortices ......................... 54 



doi:10.6342/NTU201704258

 

iv 

 Larger scale vortical motions ...................................................... 58 

 Conditional averaging analysis ............................................................. 61 

 Conditional averaging procedures............................................... 61 

 Subjective conditional average ................................................... 65 

 Autonomous conditional average ................................................ 71 

Chapter 6. Conclusion ............................................................................................ 83 

References  .............................................................................................................. 85 

 Phase plane method and critical point theory ....................................... 87 

 Properties of the Hessian matrix ........................................................... 89 

  



doi:10.6342/NTU201704258

 

v 

List of figures 

Figure 2-1: Quadrant of instantaneous 𝑢′, 𝑤′-plane, 𝑢′  and w′ is the streamwise 

and spanwise turbulent velocity, respectively. ............................................ 7 

Figure 4-1: Vortical structures beneath free-propagating wavy surface. The vortical 

structures are represented by the isosurface of (a) 𝑄 = 0.001, (b) Δ =

3.7 × 10−11 , (c) 𝜆2 = −0.001, (d) 𝜆𝑐𝑖
2 = 0.001. The structures with 

𝜔𝑥
′ > 0 are marked in red color; the structures with 𝜔𝑥

′ < 0 are marked 

in blue color. .............................................................................................. 24 

Figure 4-2: Vortical structures beneath free-propagating wavy surface. The vortical 

structures are represented by the isosurface of (a) 𝑄 = 0.003, (b) Δ =

10−9, (c) 𝜆2 = −0.003, (d) 𝜆𝑐𝑖
2 = 0.003. The structures with 𝜔𝑥

′ > 0 

are marked in red color; the structures with 𝜔𝑥
′ < 0 are marked in blue 

color. .......................................................................................................... 25 

Figure 4-3: Vortical structures beneath free-propagating wavy surface. The vortical 

structures are represented by isosurface of (a) 𝜆𝑐𝑖
2 = 0.003, (b) 𝜆𝑐𝑖

2 =

0.002 (c) 𝜆𝑐𝑖
2 = 0.001, (d) 𝜆𝑐𝑖

2 = 0.0005. The structures with 𝜔𝑥
′ > 0 

are marked in red color; the structures with 𝜔𝑥
′ < 0 are marked in blue 

color. .......................................................................................................... 27 

Figure 4-4: (a) The vortical structures beneath free-propagating wavy surface. (b) 

Temperature contour on the water surface. (c) Combination of (a) and (b). 

The wave propagates from left to right and the vortical structures are 

represented by isosurface of 𝜆𝑐𝑖
2 = 0.003. Examples of cool streaks and 

warm bands are marked by circular dots and cross signs, respectively. 

The structures with 𝜔𝑥
′ > 0 are marked in red color; the structures with 

𝜔𝑥
′ < 0 are marked in blue color. ............................................................. 28 

Figure 4-5: Sign convention for vorticity inclination angles 𝜃 and 𝜙. ..................... 30 

Figure 4-6: Distribution of the inclination angle of the projection of the vorticity 

vectors in (𝑥, 𝑦) -planes; data weighted with the magnitude of the 



doi:10.6342/NTU201704258

 

vi 

projected vorticity. (a) z =  −0.0474; (b) −0.1032; (c) −0.8642; (d) 

−0.9851. (e) Presumptions of the structures. ........................................... 31 

Figure 4-7: (a) Vortex lines among structures. (b) Vortex lines among structures and 

contour distribution of temperature on the water surface. The vortex lines 

are drawn with velocities fluctuation. The vortical structures are 

represented by isosurface of 𝜆𝑐𝑖
2 = 0.003. ............................................... 32 

Figure 4-8: Distribution of the inclination angle of the projection of the vorticity 

vectors in (𝑥, 𝑦) -planes; data weighted with the magnitude of the 

projected vorticity and filtered by 𝜆2 < 0 . (a) z =  −0.0474 ; (b) 

−0.1032; (c) −0.8642; (d) −0.9851. (e) Presumptions of the structures.

  .............................................................................................................. 33 

Figure 5-1: An illustration of physical domain (left) and computational domain (right) 

above wavy surface. .................................................................................. 36 

Figure 5-2: Wave shape of (a) artificial ripples with 𝑎𝑘 = 0.2; and (b) simulated 

ripples with 𝑎𝑘 = 0.3. .............................................................................. 37 

Figure 5-3: (Top view) Vortical structures above wavy surface of artificial ripples 

with 𝑎𝑘 = 0.2. The wave propagates from left to right and the vortical 

structures are represented by isosurface of (a) 𝜆𝑐𝑖
2 = 2, (b) 𝜆𝑐𝑖

2 = 3(c) 

𝜆𝑐𝑖
2 = 4, (d) 𝜆𝑐𝑖

2 = 5. The structures with 𝜔𝑥
′ > 0 are marked in red 

color; the structures with 𝜔𝑥
′ < 0 are marked in blue color. ................... 39 

Figure 5-4: (Top view) Vortical structures above wavy surface of simulated ripples 

with 𝑎𝑘 = 0.3, time sequence = 05. The wave propagates from left to 

right and the vortical structures are represented by isosurface of (a) 𝜆𝑐𝑖
2 =

3.5, (b) 𝜆𝑐𝑖
2 = 4, (c) 𝜆𝑐𝑖

2 = 4.5, (d) 𝜆𝑐𝑖
2 = 5. The structures with 𝜔𝑥

′ >

0 are marked in red color; the structures with 𝜔𝑥
′ < 0 are marked in 

blue color. .................................................................................................. 40 

Figure 5-5: (Top view) Vortical structures above wavy surface of artificial ripples 

with 𝑎𝑘 = 0.2. The wave propagates from left to right and the vortical 

structures are represented by the isosurface of (a) 𝑄 = 4, (b) Δ = 4, (c) 



doi:10.6342/NTU201704258

 

vii 

𝜆2 = −4, (d) 𝜆𝑐𝑖
2 = 4. The structures with 𝜔𝑥

′ > 0 are marked in red 

color; the structures with 𝜔𝑥
′ < 0 are marked in blue color. ................... 42 

Figure 5-6: (Top view) Vortical structures above wavy surface of simulated ripples 

with 𝑎𝑘 = 0.3, time sequence = 05. The wave propagates from left to 

right and the vortical structures are represented by the isosurface of (a) 

𝑄 = 4, (b) Δ = 2.37, (c) 𝜆2 = −4, (d) 𝜆𝑐𝑖
2 = 4. The structures with 

𝜔𝑥
′ > 0 are marked in red color; the structures with 𝜔𝑥

′ < 0 are marked 

in blue color. .............................................................................................. 43 

Figure 5-7: (Top view) Vortical structures above wavy surface of simulated ripples 

with 𝑎𝑘 = 0.3, time sequence = 05. The wave propagates from left to 

right and the vortical structures are represented by the isosurface of (a) 

𝑄 = 4, (b) Δ = 6, (c) 𝜆2 = −4, (d) 𝜆𝑐𝑖
2 = 4. The structures with 𝜔𝑥

′ >

0 are marked in red color; the structures with 𝜔𝑥
′ < 0 are marked in 

blue color. .................................................................................................. 44 

Figure 5-8: Vortical structures above wavy surface of artificial ripples with 𝑎𝑘 = 0.2: 

(a) oblique view; (b) top view. The wave propagates from left to right and 

the vortical structures are represented by the isosurface of 𝜆𝑐𝑖
2 = 4. The 

structures with 𝜔𝑥
′ > 0  are marked in red color; the structures with 

𝜔𝑥
′ < 0 are marked in blue color. ............................................................. 46 

Figure 5-9: Forward and reversed horseshoe vortices above wavy surface of artificial 

ripples with 𝑎𝑘 = 0.2. The wave propagates from left to right and the 

vortical structures are represented by the isosurface of 𝜆𝑐𝑖
2 = 4 . The 

structures with 𝜔𝑥
′ > 0  are marked in red color; the structures with 

𝜔𝑥
′ < 0 are marked in blue color. ............................................................. 47 

Figure 5-10: Time evolution of vortical structures above wavy surface of artificial 

ripples with 𝑎𝑘 = 0.3 (oblique and top view): (a, b) time sequence = 01; 

(c, d) 02; (e, f) 03; (g, h) 04; (i, j) 05. The wave propagates from left to 

right and the vortical structures are represented by the isosurface of 

𝜆𝑐𝑖
2 = 4 . The structures with 𝜔𝑥

′ > 0  are marked in red color; the 

structures with 𝜔𝑥
′ < 0 are marked in blue color. ................................... 52 



doi:10.6342/NTU201704258

 

viii 

Figure 5-11: Forward and reversed horseshoe vortices above wavy surface of 

simulated ripples with 𝑎𝑘 = 0.3 , time sequence = 05. The wave 

propagates from left to right and the vortical structures are represented 

by the isosurface of 𝜆𝑐𝑖
2 = 4. The structures with 𝜔𝑥

′ > 0 are marked in 

red color; the structures with 𝜔𝑥
′ < 0 are marked in blue color. ............. 53 

Figure 5-12: Enlarged view of the forward horseshoe vortex marked by the green box 

above wavy surface of simulated ripples with 𝑎𝑘 = 0.3 . The wave 

propagates from left to right and the vortical structures are represented 

by the isosurface of 𝜆𝑐𝑖
2 = 4. The structures with 𝜔𝑥

′ > 0 are marked in 

red color; the structures with 𝜔𝑥
′ < 0 are marked in blue color. ............. 55 

Figure 5-13: Time evolution of the forward horseshoe vortex above wavy surface 

(oblique and top view): (a, b) time sequence = 01; (c, d) 02; (e, f) 03; (g, 

h) 04; (i, j) 05. The wave propagates from left to right and the vortical 

structures are represented by the isosurface of 𝜆𝑐𝑖
2 = 4. .......................... 57 

Figure 5-14: (a) Vortical structures above wavy surface of simulated ripples with 

𝑎𝑘 = 0.3, time sequence = 05. (b) Vortical structures and streamwise 

turbulent velocity contour above these structures. The wave propagates 

from left to right and the vortical structures are represented by the 

isosurface of 𝜆𝑐𝑖
2 = 4. The structures with 𝜔𝑥

′ > 0 are marked in red 

color; the structures with 𝜔𝑥
′ < 0 are marked in blue color. ................... 59 

Figure 5-15: Distribution of streamwise-averaged (a) streamwise, (b) spanwise and (c) 

vertical turbulent velocity above wavy surface of simulated ripples with 

𝑎𝑘 = 0.3, time sequence = 05. The green and yellow arrows indicate 

flow directions. The dotted lines mark the interface of fast and slow-

moving fluids. ............................................................................................ 60 

Figure 5-16: An illustration of conditional averaging in the computational domain. .... 63 

Figure 5-17: An illustration of conditional averaging in the physical domain. ............. 64 

Figure 5-18: Above wavy surface of artificial ripples with 𝑎𝑘 = 0.2: educed reversed 

horseshoe vortex by conditional averaging subjectively. The structures 

are represented by the isosurface of (a) 𝑄 = 4, (b) Δ = 30, (c) 𝜆2 =



doi:10.6342/NTU201704258

 

ix 

−4,  (d) 𝜆𝑐𝑖
2 = 4. The structures with 𝜔𝑥

′ > 0 are marked in red color; 

the structures with 𝜔𝑥
′ < 0 are marked in blue color. ............................. 67 

Figure 5-19: Above wavy surface of artificial ripples with 𝑎𝑘 = 0.2: (a) the position 

of the contour slice; side view of the educed reversed horseshoe vortex 

by conditional averaging subjectively and contours of (b) streamwise, (c) 

vertical turbulent velocity, (d) partial derivative of the streamwise 

turbulent velocity with respect to x. The structures are represented by the 

isosurface of 𝜆𝑐𝑖
2 = 4. The structures with 𝜔𝑥

′ > 0 are marked in red 

color; the structures with 𝜔𝑥
′ < 0 are marked in blue color. The green 

arrows indicate flow directions. ................................................................ 68 

Figure 5-20: Above wavy surface of simulated ripples with 𝑎𝑘 = 0.3, time squence 

= 05: educed reversed horseshoe vortex by conditional averaging 

subjectively. The structures are represented by the isosurface of (a) 𝑄 =

8, (b) Δ = 100, (c) 𝜆2 = −8,  (d) 𝜆𝑐𝑖
2 = 2. The structures with 𝜔𝑥

′ >

0 are marked in red color; the structures with 𝜔𝑥
′ < 0 are marked in 

blue color. .................................................................................................. 69 

Figure 5-21: Above wavy surface of simulated ripples with 𝑎𝑘 = 0.3, time sequence 

= 05: educed forward horseshoe vortex by conditional averaging 

subjectively. The structures are represented by the isosurface of (a) 𝑄 =

2, (b) Δ = 20, (c) 𝜆2 = −2,  (d) 𝜆𝑐𝑖
2 = 1.2. The structures with 𝜔𝑥

′ >

0 are marked in red color; the structures with 𝜔𝑥
′ < 0 are marked in 

blue color. .................................................................................................. 70 

Figure 5-22: Above wavy surface of artificial ripples with 𝑎𝑘 = 0.2: contours of 

Reynolds stress. (a) High intensity regions of 〈−𝑢′𝑤′〉2 are denoted by 

the 0.0008 and 0.001 contour with solid and dotted lines, respectively; 

the purple arrow indicate the detection position for the QD-2 method. (b) 

High intensity regions of 〈−𝑢′𝑤′〉4 are denoted by the 0.0008 and 0.001 

contour with solid and dotted lines, respectively; the green arrow indicate 

the detection position for the QD-4 method. ............................................. 74 

Figure 5-23: Above wavy surface of artificial ripples with 𝑎𝑘 = 0.2: (a) oblique view , 

(b) side view and (c) top view of the conditionally averaged reversed 



doi:10.6342/NTU201704258

 

x 

horseshoe vortex by QD-4 sampling method. The detection threshold is 

chosen to be 5 and the structures are represented by the isosurface of 

𝜆𝑐𝑖
2 = 2.625. The structures with 𝜔𝑥

′ > 0 are marked in red color; the 

structures with 𝜔𝑥
′ < 0 are marked in blue color. ................................... 75 

Figure 5-24: Above wavy surface of artificial ripples with 𝑎𝑘 = 0.2: (a) oblique view , 

(b) side view and (c) top view of the conditionally averaged 

quasistreamwise vortex by QD-2 sampling method. The detection 

threshold is chosen to be 3 and the structures are represented by the 

isosurface of 𝜆𝑐𝑖
2 = 1.76. The structures with 𝜔𝑥

′ > 0 are marked in red 

color; the structures with 𝜔𝑥
′ < 0 are marked in blue color. ................... 76 

Figure 5-25: Above wavy surface of artificial ripples with 𝑎𝑘 = 0.2: (a) oblique view , 

(b) side view and (c) top view of the conditionally averaged reversed 

horseshoe vortex by VISA sampling method. The detection threshold is 

chosen to be 1.5 and the structures are represented by the isosurface of 

𝜆𝑐𝑖
2 = 0.5 . The structures with 𝜔𝑥

′ > 0  are marked in red color; the 

structures with 𝜔𝑥
′ < 0 are marked in blue color. ................................... 77 

Figure 5-26: Above wavy surface of simulated ripples with 𝑎𝑘 = 0.2, time sequence 

= 05: contours of Reynolds stress. (a) High intensity regions of 

〈−𝑢′𝑤′〉2 are denoted by the 0.0008 and 0.001 contour with solid and 

dotted lines, respectively; the purple arrow indicate the detection position 

for the QD-2 method. (b) High intensity regions of 〈−𝑢′𝑤′〉4  are 

denoted by the 0.0008 and 0.001 contour with solid and dotted lines, 

respectively; the green arrow indicate the detection position for the QD-

4 method. ................................................................................................... 78 

Figure 5-27: Above wavy surface of simulated ripples with 𝑎𝑘 = 0.3, time sequence 

= 05: (a) oblique view , (b) side view and (c) top view of the conditionally 

averaged reversed horseshoe vortex by QD-4 sampling method. The 

detection threshold is chosen to be 10 and the structures are represented 

by the isosurface of 𝜆𝑐𝑖
2 = 5. The structures with 𝜔𝑥

′ > 0 are marked in 

red color; the structures with 𝜔𝑥
′ < 0 are marked in blue color. ............. 79 



doi:10.6342/NTU201704258

 

xi 

Figure 5-28: Above wavy surface of simulated ripples with 𝑎𝑘 = 0.3, time sequence 

= 05: (a) oblique view , (b) side view and (c) top view of the conditionally 

averaged quasistreamwise vortex by QD-2 sampling method. The 

detection threshold is chosen to be 2 and the structures are represented 

by the isosurface of 𝜆𝑐𝑖
2 = 1. The structures with 𝜔𝑥

′ > 0 are marked in 

red color; the structures with 𝜔𝑥
′ < 0 are marked in blue color. ............. 80 

Figure 5-29: Above wavy surface of simulated ripples with 𝑎𝑘 = 0.3, time sequence 

= 05: (a) oblique view , (b) side view and (c) top view of the conditionally 

averaged reversed horseshoe vortex by VISA sampling method. The 

detection threshold is chosen to be 6 and the structures are represented 

by the isosurface of 𝜆𝑐𝑖
2 = 0.45 . The structures with 𝜔𝑥

′ > 0  are 

marked in red color; the structures with 𝜔𝑥
′ < 0 are marked in blue color.

  .................................................................................................................. 81 

  



doi:10.6342/NTU201704258

 

xii 

List of tables 

Table 2-1: Vortex identification methods. .............................................................. 9 

Table 2-2: Physical meaning of Q, ∆, λ2 and λ𝑐𝑖 criterions. .......................... 19 

  



doi:10.6342/NTU201704258

 

1 

Chapter 1.  

Introduction  

 

 Research background and objectives 

During the past decades, coherent vortical structures in the wall-bounded turbulent 

flow have been the subject of considerable interest among researchers. In the experiments 

of wall-bounded turbulent flow, researchers attributed the streaks to the swirling motions 

of vortical structures, which bring the slow-moving fluids away from the wall and the 

fast-moving fluids towards the wall. There was no concrete definition for a vortical 

structure (vortex) until Robinson (1991) proposed the following definition: A vortex exists 

when instantaneous streamlines mapped onto a plane normal to the vortex core exhibit a 

roughly circular or spiral pattern, when viewed from a reference frame moving with the 

center of the vortex core.  

Robinson also proposed two conceptual models of vortical structures in wall-

bounded turbulent flow. Therefore, many methods and techniques were developed to 

study vortical structures in wall-bounded turbulent flow. Conditional averaging method 

was used to reduce noise and educe the specific vortical structures (e.g. Willmarth & Lu 

1972; Wallace et.al. 1972; Blackwelder & Kaplan 1976; Kim 1983). Moin and Kim (1985) 

took statistics of vorticity inclination angle in different depth in order to realize the 

dominant vorticity direction in the turbulent flow. To visualize the vortical structures, 

some researchers observed the vorticity isosurface and vortex lines; nevertheless, such 

methods are inadequate and can be misleading, vortex identification methods (e.g. Hunt 

et.al. 1988; Chong, Perry & Cantwell 1990; Jeong & Hussain 1995; Zhou et.al. 1999) 
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were then proposed. Identification of vortical structures can be seen as a tool for 

understanding complex flow phenomena, for example, being able to follow individual 

vortical structure in a turbulent flow throughout their lifetimes.  

The aim of this thesis is to investigate and compare existing methods for the vortical 

structure identification methods, as well as applying to our numerical simulation. 

Moreover, the relations between these identification methods and previous methods such 

as vorticity inclination angle and vortex lines are of interest. To educe the specific vortical 

structures, conditional averaging method is also investigated and applied. The methods 

implemented for this Master’s thesis have been programmed in FORTRAN. 
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 Outline of this thesis 

This thesis is structured in the following sequence. Conditional averaging method 

and the vortex identification methods are introduced in Chapter 2 and Chapter 3, 

respectively. In Chapter 4, we present the coherent vortical structures beneath free-

propagating wavy surface, as well as investigate the relation between vorticity inclination 

angle and vortical structures. In Chapter 5, the coherent vortical structures, the 

regeneration of horseshoe vortices, as well as the discovery of the larger scale vortical 

motions above wavy surface are presented; in addition, the coherent vortical structures 

are also investigated through conditional averaging technique. Eventually, conclusions 

are drawn in Chapter 6. 
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Chapter 2.  

Conditional averaging method 

 

The basic concepts of the conditional averaging method are conditional sampling 

technique and ensemble average. To single out the coherent vortical structures associated 

with the bursting events from the near-wall chaotic turbulent flow, several conditional 

sampling methods were developed. Willmarth and Lu (1972) and Wallace et al. (1972) 

introduced the quadrant analysis. Based on the well-developed variable-interval time-

averaging (VITA) sampling technique of Blackwelder and Kaplan (1976), Kim (1983) 

proposed the variable-interval space-averaging (VISA) sampling technique. The detail of 

ensemble averaging procedure is introduced in section 5.3.1. 

Kim and Moin (1986) used VISA sampling technique and quadrant analysis as 

conditions to obtain ensemble-averaged vorticity lines in a large eddy simulation (LES) 

of a low-Reynolds number turbulent channel flow. In our study, we also use both of the 

sampling methods as conditions. In section 2.1 and 2.2 the quadrant analysis and the VISA 

sampling technique are described, respectively. 
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 Quadrant analysis 

Previous research of wall-bounded turbulence indicated that the near-wall coherent 

structures are often associated with the turbulence motion of “sweeps” and “ejections”. 

Ejection and sweep events are defined as second (𝑢′ < 0,𝑤′ > 0)  and fourth 

(𝑢′ > 0,𝑤′ < 0) quadrant motions, as Figure 2-1 shows. To detect the ejection and 

sweeping events, Willmarth and Lu (1972) and Wallace et al. (1972) applied the quadrant 

analysis. The original method was designed for velocity signals measured by experiments; 

to apply it to the numerical simulation, as Kim and Moin (1986), the detection criterion 

of the second quadrant analysis can be written as 

 
𝐷(𝑥, 𝑦, z, 𝑡0) = 1, if  𝑢′ < 0,𝑤′ > 0  and 

𝑢′𝑤′

〈𝑢′𝑤′〉𝑥𝑦
> 𝑘

= 0, otherwise

, (2-1) 

and the fourth quadrant analysis can be written as 

 
𝐷(𝑥, 𝑦, z, 𝑡0) = 1, if  𝑢′ > 0,𝑤′ < 0  and 

𝑢′𝑤′

〈𝑢′𝑤′〉𝑥𝑦
> 𝑘

= 0, otherwise

, (2-2) 

where 𝑘 is the threshold level and 〈 〉𝑥𝑦 is the average over the (𝑥, 𝑦)-plane. With 

quadrant analysis, vortical structures related to the ejection and sweep events can be 

separated. In the remainder of this paper, the second and fourth quadrant analysis will be 

referred to as QD-2 and QD-4 respectively. 
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Figure 2-1: Quadrant of instantaneous (𝑢′, 𝑤′)-plane, 𝑢′ and 𝑤′ is the streamwise 

and spanwise turbulent velocity, respectively.  
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 VISA sampling technique 

For numerical simulation, the variable-interval space-averaging (VISA) by Kim 

(1983) is defined as, 

 �̂�(𝑥, 𝑦, 𝑧, 𝑡0, 𝐿) =
1

𝐿
∫ 𝑢(𝜉, 𝑦, 𝑧, 𝑡0)𝑑𝜉

𝑥+
1
2
𝐿

𝑥−
1
2
𝐿

, (2-3) 

where 𝑢 is the streamwise velocity, 𝐿 is the width of the spatial averaging and (𝑥, 𝑦, 𝑧) 

is the position and 𝑡0 is the time step at which sampling occurred. If averaged in two 

directions, the function can be express as, 

 �̂�(𝑥, 𝑦, 𝑧, 𝑡0, 𝐿𝑥, 𝐿𝑦) =
1

𝐿𝑥𝐿𝑦
∫ ∫ 𝑢(𝜉, 𝜁, 𝑧, 𝑡0)𝑑𝜉𝑑𝜁

𝑦+
1
2
𝐿𝑦

𝑦−
1
2
𝐿𝑦

𝑥+
1
2
𝐿𝑥

𝑥−
1
2
𝐿𝑥

, (2-4) 

where 𝐿𝑥 and 𝐿𝑦 are the widths of the averaging window along the streamwise and 

spanwise directions respectively. The value of 𝐿𝑥  and 𝐿𝑦  should be determined by 

scale of the event. In this paper, we use 𝐿𝑥 = 15Δ𝑥 and 𝐿𝑦 = 15Δ𝑦. To identify strong 

events, a localized variance is introduced with 

 𝑣𝑎𝑟 = 𝑢2 − �̂�2. (2-5) 

Strong sweeping events are detected using the following criterion, 

 𝐷(𝑥, 𝑦, z, 𝑡0) = 1, if  𝑣𝑎𝑟 > 𝑘 ∙ 𝑢𝑟.𝑚.𝑠.
2   and  

𝜕𝑢

𝜕𝑥
< 0

= 0, otherwise
. (2-6) 

The detection function 𝐷 = 1  if the event exists. 𝑢𝑟.𝑚.𝑠.  is the root-mean-square 

variation of  𝑢 at the horizontal plane and 𝑘 is the threshold level. 
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Chapter 3.  

Vortex identification methods 

 

Vortical structures have been investigated by numerous researchers, using different 

techniques and methods. In the following sections, we provide an overview of four 

popular schemes for vortex identification, shown in Table 3-1. All of the four criterions 

are based on the local analysis of the velocity gradient tensor, thereby making them 

Galilean invariant. The results of the four methods are shown in the following chapters. 

 

 

Year Criterion Proposer 

1988 𝑄 Criterion Hunt et al. 

1990 ∆ Criterion Chong & Perry 

1995 𝜆2 Criterion Jeong & Hussain 

1999 𝜆𝑐𝑖 Criterion Zhou et al. 

Table 3-1: Vortex identification methods.  
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 𝑸 Criterion 

Hunt et al. (1988) defined an eddy zone as the region characterized by positive 

second invariant 𝑄 of the velocity gradient, i.e. 𝑄 > 0. Additionally, the pressure in the 

eddy zone should be lower than the ambient pressure. Jeong and Hussain (1995) shown 

that the additional low pressure condition is subsumed by 𝑄 > 0. 

The velocity gradient is given by 

 𝛻𝒖 = 𝑢𝑖,𝑗 =

[
 
 
 
 
 
 
𝜕𝑢1

𝜕𝑥1

𝜕𝑢1

𝜕𝑥2

𝜕𝑢1

𝜕𝑥3

𝜕𝑢2

𝜕𝑥1

𝜕𝑢2

𝜕𝑥2

𝜕𝑢2

𝜕𝑥3

𝜕𝑢3

𝜕𝑥1

𝜕𝑢3

𝜕𝑥2

𝜕𝑢3

𝜕𝑥3]
 
 
 
 
 
 

, (3-1) 

and the characteristic equation of 𝛻𝒖 

 𝑑𝑒𝑡(𝑢𝑖,𝑗 − 𝜎𝑰) = 0, (3-2) 

 𝜎3 + 𝑃𝜎2 + 𝑄𝜎 + 𝑅 = 0, (3-3) 

where 𝜎 is the eigenvalue and 

 𝑃 = −𝑢𝑖,𝑖, (3-4) 

 
𝑄 =

1

2
(𝑢𝑖,𝑖

2 − 𝑢𝑖,𝑗𝑢𝑗,𝑖), 
(3-5) 

 𝑅 = −𝑑𝑒𝑡(𝑢𝑖,𝑗), (3-6) 

are the invariants of the velocity gradient tensor.  

In the case of incompressible flow, 

 𝑃 = −𝑢𝑖,𝑖 = 0, (3-7) 

and decompose the velocity gradient tensor into strain rate tensor and rotation tensor, i.e. 

𝑢𝑖,𝑗 = 𝑆𝑖𝑗 + 𝛺𝑖𝑗 , where 𝑆𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)  and 𝛺𝑖𝑗 =

1

2
(𝑢𝑖,𝑗 − 𝑢𝑗,𝑖) , the second 

invariant becomes 
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 𝑄 =
1

2
(𝑢𝑖,𝑖

2 − 𝑢𝑖,𝑗𝑢𝑗,𝑖) = −
1

2
𝑢𝑖,𝑗𝑢𝑗,𝑖 =

1

2
(‖𝛺‖2 − ‖𝑆‖2), (3-8) 

where ‖𝛺‖ = √∑ ∑ 𝛺𝑖𝑗
2

𝑗𝑖  is the Frobenius norm. Thus, 𝑄 represents the local balance 

between vorticity magnitude and shear strain rate. That is to say, when 𝑄 is positive, the 

term of vorticity magnitude dominates.  
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 ∆ Criterion 

Using critical point theory, Chong and Perry (1990) defined a vortex core to be the 

region where velocity gradient has complex eigenvalues. In local coordinate, the 

reference frame is moving with the fluid particle, hence the velocities at original point are 

zero. The velocities at a local coordinate system can be represented as a set of differential 

equations 

 
𝑑

𝑑𝑡
{
𝑥1

𝑥2

𝑥3

} = {
𝑢1

𝑢2

𝑢3

} =

[
 
 
 
 
 
 
𝜕𝑢1

𝜕𝑥1

𝜕𝑢1

𝜕𝑥2

𝜕𝑢1

𝜕𝑥3

𝜕𝑢2

𝜕𝑥1

𝜕𝑢2

𝜕𝑥2

𝜕𝑢2

𝜕𝑥3

𝜕𝑢3

𝜕𝑥1

𝜕𝑢3

𝜕𝑥2

𝜕𝑢3

𝜕𝑥3]
 
 
 
 
 
 

{
𝑥1

𝑥2

𝑥3

}. 

 . 

(3-9) 

The general solution is 

 𝒙 = 𝑐1𝑽1𝑒
𝜆1𝑡 + 𝑐2𝑽2𝑒

𝜆2𝑡 + 𝑐3𝑽3𝑒
𝜆3𝑡, (3-10) 

where 𝑐1, 𝑐2 and 𝑐3 are constant, 𝑽1, 𝑽2 and 𝑽3 are eigenvectors of 𝛻𝒖, 𝜆1, 𝜆2 

and 𝜆3  are eigenvalues of 𝛻𝒖. By the phase plane method and critical point theory 

(Appendix A.), the local streamline pattern demonstrates a spiral or center phase portrait 

when the linear system of differential equations has complex eigenvalues. Then the 

characteristic equation of 𝛻𝒖 is same as (3-3) and (3-4)-(3-6) are the invariants of the 

velocity gradient tensor. To determine the solution type, use the discriminant of the 

characteristic equation 

 ∆= (−
𝑃3

27
−

𝑅

2
+

𝑃𝑄

6
)

2

+ (
𝑄

3
−

𝑃2

9
)

3

. (3-11) 

The condition ∆> 0 implies that 𝛻𝒖 has complex eigenvalues.  

Chakraborty et al. (2005) analyzed that for incompressible flow, the first invariant 

becomes zero, as (3-7). Then, the discriminant can be written as 
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 ∆= (
1

2
𝑅)

2

+ (
1

3
𝑄)

3

. (3-12) 

It can be seen that when 𝑄 > 0, ∆ must be positive. However, ∆> 0 does not satisfy 

the condition of 𝑄 > 0. Thus, the 𝑄 criterion is more restrictive than the ∆ criterion.  



doi:10.6342/NTU201704258

 

14 

 𝝀𝟐 Criterion 

Jeong and Hussain (1995) discussed the inadequacies of intuitive indicators of 

vortices: local pressure minimum, pathline and streamline, and vorticity magnitude. The 

existence of a pressure minimum and a vortex core are inconsistent due to unsteady 

straining and viscous effects. Unsteady straining can create a pressure minimum without 

vortical or swirling motion. Viscous effects can reduce the pressure minimum in a flow 

with vortical motion. 

To improve the inadequate concept of pressure minimum, Jeong and Hussain 

proposed a new detection criterion for a vortex core. Pressure minimum can be obtained 

from the Hessian of pressure (𝑝,𝑖𝑗) 

 𝑝,𝑖𝑗 =

[
 
 
 
 
 
 
𝜕2𝑝

𝜕𝑥𝜕𝑥

𝜕2𝑝

𝜕𝑥𝜕𝑦

𝜕2𝑝

𝜕𝑥𝜕𝑧

𝜕2𝑝

𝜕𝑦𝜕𝑥

𝜕2𝑝

𝜕𝑦𝜕𝑦

𝜕2𝑝

𝜕𝑦𝜕𝑧

𝜕2𝑝

𝜕𝑧𝜕𝑥

𝜕2𝑝

𝜕𝑧𝜕𝑦

𝜕2𝑝

𝜕𝑧𝜕𝑧]
 
 
 
 
 
 

, (3-13) 

which is derived from the gradient of the Navier-Stokes equation. The Navier-Stokes 

equation can be written in tensor form as 

 
𝜕𝑢𝑖

𝜕𝑡
+ 𝑢𝑘𝑢𝑖,𝑘 = −

1

𝜌
𝑝,𝑖 + 𝜈𝑢𝑖,𝑘𝑘. (3-14) 

Taking the gradient of the Navier-Stokes equation, 

 
𝜕𝑢𝑖,𝑗

𝜕𝑡
+ 𝑢𝑘,𝑗𝑢𝑖,𝑘 + 𝑢𝑘𝑢𝑖,𝑗𝑘 = −

1

𝜌
𝑝,𝑖𝑗 + 𝜈𝑢𝑖,𝑗𝑘𝑘, (3-15) 

the first two terms can be substituted by material derivative as 

 
𝐷𝑢𝑖,𝑗

𝐷𝑡
+ 𝑢𝑘,𝑗𝑢𝑖,𝑘 = −

1

𝜌
𝑝,𝑖𝑗 + 𝜈𝑢𝑖,𝑗𝑘𝑘, (3-16) 

where 𝑝,𝑖𝑗  is a Hessian matrix, which is always symmetric. Then, (3-16) can be 

decomposed into symmetric and antisymmetric part by 
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 𝑢𝑖,𝑗 = 𝑆𝑖𝑗 + 𝛺𝑖𝑗 , (3-17) 

where 𝑆𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)  is the strain rate tensor and 𝛺𝑖𝑗 =

1

2
(𝑢𝑖,𝑗 − 𝑢𝑗,𝑖)  is the 

rotation tensor. Hence, the left-hand side of (3-16) can be expressed as follows: 

𝐷𝑢𝑖,𝑗

𝐷𝑡
+ 𝑢𝑘,𝑗𝑢𝑖,𝑘 =

𝐷(𝑆𝑖,𝑗 + 𝛺𝑖,𝑗)

𝐷𝑡
+ (𝑆𝑗𝑘 − 𝛺𝑗𝑘)(𝑆𝑖𝑘 + 𝛺𝑖𝑘) 

                               =
𝐷(𝑆𝑖,𝑗 + 𝛺𝑖,𝑗)

𝐷𝑡
+ 𝑆𝑖𝑘𝑆𝑗𝑘 + 𝑆𝑗𝑘𝛺𝑖𝑘 − 𝑆𝑖𝑘𝛺𝑗𝑘 − 𝛺𝑖𝑘𝛺𝑗𝑘  

                              = [
𝐷𝑆𝑖,𝑗

𝐷𝑡
+ 𝛺𝑖𝑘𝛺𝑘𝑗 + 𝑆𝑖𝑘𝑆𝑘𝑗] + [

𝐷𝛺𝑖,𝑗

𝐷𝑡
+ 𝛺𝑖𝑘𝑆𝑘𝑗 + 𝑆𝑖𝑘𝛺𝑘𝑗]. 

(3-18) 

The right-hand side of (3-16) can be expressed as follows: 

 −
1

𝜌
𝑝,𝑖𝑗 + 𝜈𝑢𝑖,𝑗𝑘𝑘 = [−

1

𝜌
𝑝,𝑖𝑗 + 𝜈𝑆𝑖𝑗,𝑘𝑘] + 𝜈[𝛺𝑖𝑗,𝑘𝑘]. (3-19) 

Both in (3-18) and (3-19), the first square brackets include symmetric parts and the second 

square brackets include antisymmetric parts. Since the pressure Hessian is symmetric, 

consider the symmetric part of (3-16) 

 
𝐷𝑆𝑖,𝑗

𝐷𝑡
+ 𝛺𝑖𝑘𝛺𝑘𝑗 + 𝑆𝑖𝑘𝑆𝑘𝑗 − 𝜈𝑆𝑖𝑗,𝑘𝑘 = −

1

𝜌
𝑝,𝑖𝑗. (3-20) 

The term 
𝐷𝑆𝑖,𝑗

𝐷𝑡
 represents the unsteady irrotational straining and 𝜈𝑆𝑖𝑗,𝑘𝑘  represents 

viscous effect. By neglecting these two terms as discussed above, (3-20) becomes  

 𝑺𝟐 + 𝜴𝟐 = −
1

𝜌
𝑝,𝑖𝑗, (3-21) 

where 𝑺𝟐 + 𝜴𝟐 = 𝛺𝑖𝑘𝛺𝑘𝑗 + 𝑆𝑖𝑘𝑆𝑘𝑗. Note that 𝑺𝟐 + 𝜴𝟐 is symmetric, all its eigenvalues 

are real. 

The condition of local pressure minimum in a plane can be satisfied by a saddle point 

which includes a local maximum along an axial direction and two local minimums along 

the crossing axes. By the properties of the Hessian matrix (Appendix B.), the condition 

occurs when the tensor 𝑝,𝑖𝑗 has two positive eigenvalues, which corresponds to a saddle 
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point. In two dimension, a saddle point will always occur at a relative minimum along 

one axial direction and at a relative maximum along the crossing axis. In three dimension, 

we want to find a point which is a local minimum in a plane, that is, a saddle point with 

two local minimum. Take a simple function with two local minimum for example:  

 𝑓 = 𝑥2 + 𝑦2 − 𝑧2. (3-22) 

Its Hessian matrix at a point (𝑋, 𝑌, 𝑍) 

 𝐻 = [
2 0 0
0 2 0
0 0 −2

], (3-23) 

and its eigenvalues 

 𝜆 = 2,  2,  − 2. (3-24) 

In this case, it has a local minimum in (𝑥, 𝑦)-plane. Therefore, we get two positive 

eigenvalues to satisfy the condition.  

In conclusion, two negative eigenvalues of 𝑺𝟐 + 𝜴𝟐  are required, which 

equivalents to 𝜆2 < 0. (Assume 𝜆2 is the second largest eigenvalue of 𝑺𝟐 + 𝜴𝟐) 
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 𝝀𝒄𝒊 Criterion 

Based on the ∆ criterion, Zhou et al. (1999) proposed ‘swirling strength’ criterion, 

using the imaginary part of complex conjugate eigenvalue of velocity gradient tensor to 

identify vortices. In Cartesian coordinates, the velocity gradient ∇𝒖 can be decomposed 

by diagonalization 

 ∇𝒖 = [𝒗𝑟 𝒗𝑐𝑟 𝒗𝑐𝑖] [

𝜆𝑟 0 0
0 𝜆𝑐𝑟 𝜆𝑐𝑖

0 −𝜆𝑐𝑖 𝜆𝑐𝑟

] [𝒗𝑟 𝒗𝑐𝑟 𝒗𝑐𝑖]−𝟏, (3-25) 

where 𝜆𝑟 is the real eigenvalue corresponding with a real eigenvector 𝑉𝑟, and 𝜆𝑐𝑟 ±

𝑖𝜆𝑐𝑖  are the conjugate pairs of the complex eigenvalues corresponding with complex 

eigenvectors 𝑉𝑐𝑟 ± 𝑖𝑉𝑐𝑖. 

In a locally curvilinear coordinate system (𝑥1, 𝑥2, 𝑥3)  spanned by eigenvectors 

(𝑣𝑟 , 𝑣𝑐𝑟 , 𝑣𝑐𝑖), the local streamline can be expressed as 

 𝑥1(𝑡) = 𝑐𝑟𝑒
𝜆𝑟𝑡, (3-26) 

 𝑥2(𝑡) = 𝑒𝜆𝑐𝑟𝑡[𝑐𝑐
(1)

cos(𝜆𝑐𝑖𝑡) + 𝑐𝑐
(2)

sin (𝜆𝑐𝑖𝑡)], (3-27) 

 𝑥3(𝑡) = 𝑒𝜆𝑐𝑟𝑡[𝑐𝑐
(2)

cos(𝜆𝑐𝑖𝑡) − 𝑐𝑐
(1)

sin(𝜆𝑐𝑖𝑡)], (3-28) 

where 𝑐𝑟, 𝑐𝑐
(1)

 and 𝑐𝑐
(2)

 are constants. 

Equation (3-26) represents stretching or compressing of the local flow along the 𝑣𝑟 

axis, while (3-27) and (3-28) shows that on the plane spanned by 𝑣𝑐𝑟  and 𝑣𝑐𝑖, the flow 

is swirling. Hence, the swirling strength, determined by 𝜆𝑐𝑖, is a measure of the local 

swirling rate inside the vortex, and the strength of stretching or compression is given by 

𝜆𝑟. In particular, the vortical structures are extracted by plotting isosurfaces of 𝜆𝑐𝑖
2 , since 

the term 𝜆𝑐𝑖
2  is similar to enstrophy, and it is also dimensionally consistent with other 

quantities such as 𝑄 used previously in the vortices identification.  
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 Relation between 𝑸, ∆, 𝝀𝟐 and 𝝀𝒄𝒊 

The physical meanings of 𝑄, ∆, 𝜆2 and 𝜆𝑐𝑖 magnitude are listed in Table 3-2. It 

is observed that all criterions represent strength of the vortex except the ∆ criterion. 

Hereinafter, we arrange some results proposed by former researchers. 

Jeong and Hussain (1995) discussed the relation between 𝜆2  criterion and 𝑄 

criterion, “In summary, the 𝑄- and 𝜆2-definitions tend to be similar but often differ from 

the ∆-definitions.” As we elaborated in Chapter 2.1.2, Chakraborty et al. (2005) and 

Jeong and Hussain are on the same page. On the other hand, Zhou et al. (1999) 

commented that “The term 𝜆𝑐𝑖
2  is dimensionally consistent with other quantities such as 

𝑄  used previously in the identification of vortices.” In conclusion, 𝑄 , ∆ , and 𝜆2 

criterion tend to be similar. 

In 2005, Chakraborty et al. observed that inside the intense vortical structure, four 

methods have equivalent thresholds, such as 

 𝜆𝑐𝑖 ≥ (𝜆𝑐𝑖)𝑡ℎ = 𝜀, (3-29) 

 𝑄 ≥ 𝑄𝑡ℎ = 𝜀2, (3-30) 

 Δ ≥ Δ𝑡ℎ =
1

27
𝜀6, (3-31) 

 𝜆2 ≤ (𝜆2)𝑡ℎ = −𝜀2, (3-32) 

where ( )𝑡ℎ is the threshold of the criterion and 𝜀 is the threshold value of λ𝑐𝑖 

criterion. Note that these equivalent equations are non-optimal and can be modified in 

different flow cases. The results of applying the equivalent thresholds to our numerical 

simulation are presented in section 4.2.1 and 5.2.1. 
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Criterions Physical meaning 

𝑄 > 0 Balance between vorticity magnitude and shear strain rate. 

∆ > 0 Positive determinant represents spiral trajectory. 

𝜆2 < 0 
Decreasing negative 𝜆2 values correspond to increasing 

vortex strength. 

𝜆𝑐𝑖 > 0 Swirling strength of the vortex. 

Table 3-2: Physical meaning of 𝑄, ∆, 𝜆2 and 𝜆𝑐𝑖 criterions. 
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Chapter 4.  

Coherent vortical structures beneath free-propagating 

wavy surface 

 

 Numerical simulation 

The details of the numerical model studied in this chapter are reported in Tsai (2015). 

Direct numerical simulation (DNS) is performed in a fixed coordinate system for the 

region encountering the passage of non-breaking surface waves without surface tension. 

We consider a gravity wave with a wavelength of 𝜆 = 7.5cm as well as initial wave 

steepness 𝑎𝑘 = 0.25, where 𝑎  is the gravity wave amplitude and 𝑘 = 2𝜋/𝜆  is the 

wave number. The length, width and depth of the computational domain are 4𝜆, 2𝜆 and 

0.8𝜆, respectively, discretized by 512, 256 and 129 grids. In addition, the computational 

domain is closed in the horizontal directions by periodic conditions, and in the vertical 

direction by free surface boundary at the top and the free-slip boundary on the bottom. 

The spatial-differential operators with respect to horizontal direction are approximated by 

the pseudo-spectral method, and the operators with respect to vertical direction are 

approximated by the second-order finite-difference scheme.  

In the present study, since the flow is dominated by the motions of surfaces wave, 

the flow variable 𝑓 can be decomposed as 

 𝑓(𝑥, 𝑦, 𝑧, 𝑡) = 𝑓(̅𝑧, 𝑡) + 𝑓(𝑥, 𝑧, 𝑡) + 𝑓′(𝑥, 𝑦, 𝑧, 𝑡), (4-1) 

 𝑓(𝑥, 𝑧, 𝑡) = 〈𝑓(𝑥, 𝑧, 𝑡)〉𝑦 − 𝑓(̅𝑧, 𝑡), (4-2) 
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where 𝑓(̅𝑧, 𝑡) is the average over the (𝑥, 𝑦)-plane and 𝑓(𝑥, 𝑧, 𝑡) is the wave-correlated 

component, 〈𝑓(𝑥, 𝑧, 𝑡)〉𝑦 is the phase average over spanwise 𝑦, and 𝑓′(𝑥, 𝑦, 𝑧, 𝑡) is the 

turbulent component. Hence the turbulent component can be written as 

 𝑓′(𝑥, 𝑦, 𝑧, 𝑡) = 𝑓(𝑥, 𝑦, 𝑧, 𝑡) − 〈𝑓(𝑥, 𝑧, 𝑡)〉𝑦. (4-3) 
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 Results of vortical structure identification 

 Equivalent thresholds 

In section 3.5, we introduced the equivalent thresholds for intense vortical structures 

proposed by Chakraborty et al. Hereinafter, we apply the equivalent thresholds to the 

numerical simulation.  

After the application of the vortex identification methods, a flow field full of 

turbulent structures appears. To test the influence of different 𝜀, two value 𝜀2 = 0.001 

and 𝜀2 = 0.003  are given experimentally and the results are respectively shown in 

Figure 4-1 and Figure 4-2. Note that the value of 𝜀 represents the isosurface of vortical 

structures. The isosurface is a surface that represents points of a constant value within a 

volume of space. Both figures obviously show that four methods give similar results, 

demonstrating the equivalent equations proposed by Chakraborty et al. 
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(a) (b) 

  

(c) (d) 

  

Figure 4-1: Vortical structures beneath free-propagating wavy surface. The vortical 

structures are represented by the isosurface of (a) 𝑄 = 0.001, (b) Δ = 3.7 × 10−11, (c) 

𝜆2 = −0.001, (d) 𝜆𝑐𝑖
2 = 0.001. The structures with ωx

′ > 0 are marked in red color; the 

structures with 𝜔𝑥
′ < 0 are marked in blue color. 
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(a) (b) 

  

(c) (d) 

  

Figure 4-2: Vortical structures beneath free-propagating wavy surface. The vortical 

structures are represented by the isosurface of (a) 𝑄 = 0.003, (b) Δ = 10−9, (c) 𝜆2 =

−0.003, (d) 𝜆𝑐𝑖
2 = 0.003. The structures with 𝜔𝑥

′ > 0 are marked in red color; the 

structures with ωx
′ < 0 are marked in blue color. 
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 Vortical structures 

To reveal the vortical structures in the turbulent flow, we adjust value of the 

isosurface and observe the variation of structures. Larger value of the isosurface 

representing stronger vortical structure. In Figure 4-3(a), intense vortical structures exist 

at the backward face. As the value of the isosurface decreases, we observe that vortical 

structures appear in pairs with opposite streamwise turbulent vorticity and are elongated 

along the streamwise direction.  

In the same case, Tsai et al. (2015) attributed the elongated streaks in temperature 

contour to the Langmuir circulations by observing the contour distributions of the 

turbulent velocities and streamwise vorticities. Such vortical motions can also be revealed 

by the vortex identification method, as shown in Figure 4-4. It is observed that the cool 

streak is always between a structure with 𝜔𝑥
′ > 0 at the left side and a structure with 

𝜔𝑥
′ < 0 at the right side, in the streamwise direction; the position corresponds to the 

converging and vertical downward flow. On the contrary, the warm band is always 

between a structure with 𝜔𝑥
′ < 0 at the left side and a structure with 𝜔𝑥

′ > 0 at the right 

side, in the streamwise direction, the position corresponds to the diverging flow. In 

consequence, it is intuitive to reveal the vortical structures by using the vortex 

identification methods marked with sign of the vorticity. 
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(a) (b) 

  

(c) (d) 

  

Figure 4-3: Vortical structures beneath free-propagating wavy surface. The vortical 

structures are represented by isosurface of (a) 𝜆𝑐𝑖
2 = 0.003, (b) 𝜆𝑐𝑖

2 = 0.002 (c) 𝜆𝑐𝑖
2 =

0.001 , (d) 𝜆𝑐𝑖
2 = 0.0005 . The structures with 𝜔𝑥

′ > 0  are marked in red color; the 

structures with 𝜔𝑥
′ < 0 are marked in blue color. 
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(a) 

 
(b) 

 
(c) 

 

Figure 4-4: (a) The vortical structures beneath free-propagating wavy surface. (b) 

Temperature contour on the water surface. (c) Combination of (a) and (b). The wave 

propagates from left to right and the vortical structures are represented by isosurface of 

𝜆𝑐𝑖
2 = 0.003. Examples of cool streaks and warm bands are marked by circular dots and 

cross signs, respectively. The structures with 𝜔𝑥
′ > 0  are marked in red color; the 

structures with 𝜔𝑥
′ < 0 are marked in blue color.  
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 Relation between vorticity inclination angle and vortical 

structures 

Moin and Kim (1985) used the statistics of vorticity inclination angle to represent 

the occurrence of horseshoe vortices in turbulent channel flow. In this study, the two-

dimensional inclination angles of the projection of vorticity vectors in (𝑥, 𝑦)- and (𝑥, 𝑧)- 

planes are defined as 𝜃 = 𝑡𝑎𝑛−1(𝜔𝑦
′ 𝜔𝑥

′⁄ ) and 𝜙 = 𝑡𝑎𝑛−1(𝜔𝑧
′ 𝜔𝑥

′⁄ ), respectively, with 

the sign convention for the angles shown in Figure 4-5. The statistics of the inclination 

angles are weighted by the magnitudes of the projected vorticity vector, 

 𝜔𝑥𝑦
′ =

𝜔𝑥
′2 + 𝜔𝑦

′2

〈𝜔𝑥
′2 + 𝜔𝑦

′2〉𝑧
 , (4-4) 

 𝜔𝑥𝑧
′ =

𝜔𝑥
′2 + 𝜔𝑧

′2

〈𝜔𝑥
′2 + 𝜔𝑧

′2〉𝑧
 , (4-5) 

where 〈 〉𝑧 indicates average over the corresponding horizontal (𝑥, 𝑦)-plane. 

In our case, in order to study the relation between inclination angle and vortical 

structures, we compute the inclination angles in computational domain and focus on 

angles of the projection of vorticity vectors in (𝑥, 𝑦)-plane. Figure 4-6(a)-(d) shows the 

probabilities of 𝜃 , and the probable structures suspected from Figure 4-6(a)-(d) are 

shown in Figure 4-6(e). From the histograms we can observe that two parallel vorticity 

vectors with opposite directions, which seem to be two legs of the structure, are located 

near wave surface, and the head part is located in deeper depth. Since the histograms are 

statistic results of vorticity inclination angle, it is reasonable that the speculation of the 

structures are different to the vortical structures drawn by isosurface of the identification 

methods.  

Figure 4-7 shows vortex lines plotted by using the function of “streamtraces” in 

Tecplot. A vortex line is a line which is tangent to the local vorticity vector. Note that 
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these vortex lines are drawn by turbulent vorticities. For the hairpin-shaped vortex lines 

corresponding with cold streaks, their left and right legs merge into the vortical structures 

marked in positive and negative streamwise turbulent vorticity, respectively. Such vortex 

lines produce the ejecting flow from wave surface to the deeper water, causing the 

converging motion. Moreover, jet with fast-moving fluids is produced among those 

hairpin-shaped vortex lines, corresponding to the position of the cool streak. The statistic 

results of inclination angle contain only vortical structures if we filter the vorticity vectors 

with 𝜆2 < 0, thus the presumption structures are close to the identification results, which 

show elongated pairs with opposite streamwise turbulent vorticity vectors. The results are 

shown in Figure 4-8. 

From the observation above, we can see that vortex lines can explain the physical 

phenomenon as well, though drawing vortex lines requires more skill and experience. In 

conclusion, it is important to study the turbulent flow by using vortex lines and vortical 

structures.  

 

 

 

Figure 4-5: Sign convention for vorticity inclination angles 𝜃 and 𝜙. 
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(a) (b) 

  

(c) (d) 

  

(e) 

 

Figure 4-6: Distribution of the inclination angle of the projection of the vorticity 

vectors in (𝑥, 𝑦)-planes; data weighted with the magnitude of the projected vorticity. (a) 

z =  −0.0474 ; (b) −0.1032 ; (c) −0.8642 ; (d) −0.9851 . (e) Presumptions of the 

structures. 
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(a) 

 

(b) 

 

Figure 4-7: (a) Vortex lines among structures. (b) Vortex lines among structures and 

contour distribution of temperature on the water surface. The vortex lines are drawn with 

velocities fluctuation. The vortical structures are represented by isosurface of 𝜆𝑐𝑖
2 =

0.003. 
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(a) (b) 

  

(c) (d) 

  

(e) 

 

Figure 4-8: Distribution of the inclination angle of the projection of the vorticity 

vectors in (𝑥, 𝑦)-planes; data weighted with the magnitude of the projected vorticity and 

filtered by 𝜆2 < 0. (a) z =  −0.0474; (b) −0.1032; (c) −0.8642; (d) −0.9851. (e) 

Presumptions of the structures. 
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Chapter 5.  

Coherent vortical structures above wavy surface 

 

 Numerical simulation  

The details of the numerical model studied in this chapter are reported in Druzhinin 

(2012). Direct numerical simulation (DNS) is performed in a reference frame moving 

with the wave phase velocity. The length, width and depth of the computational domain 

are 6𝜆, 4𝜆 and 𝜆, respectively, discretized by 360, 240 and 180 grids. In addition, the 

wind flow is assumed to be periodical in horizontal directions. A no-slip boundary 

condition is considered at the lower boundary, as well as a no-slip boundary condition is 

prescribed at the upper horizontal plane which is assumed to be moving with bulk velocity 

𝑈0 in the x direction.  

The variables are transformed from the Cartesian frame (𝑥, 𝑧) into a curvilinear 

coordinate system (𝜉, 𝜂) defined by a conformal mapping 

 𝑥 = 𝜉 − 𝑎𝑒−𝑘𝜂 𝑠𝑖𝑛 𝑘𝜉, (5-1) 

 𝑧 = 𝜂 + 𝑎𝑒−𝑘𝜂 𝑐𝑜𝑠 𝑘𝜉. (5-2) 

In addition, a mapping is employed over the vertical coordinate 𝜂 as 

 𝜂 = 0.5 (1 +
𝑡𝑎𝑛ℎ �̃�

𝑡𝑎𝑛ℎ 1.5
), (5-3) 

where −1.5 < �̃� < 1.5 . Such mapping introduces a non-uniform spacing of the 

computational nodes in the vertical direction, with stretching in the middle of the domain 

and clustering near boundaries, as shown in Figure 5-1. 
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As Figure 5-2 shown, two sets of numerical simulation are presented in this chapter, 

one is simulated with the lower boundary of artificial ripples which is introduced in 

Druzhinin (2012) and the other is simulated with the lower boundary of simulated ripples 

which is introduced in Tsai (2015), with initial 𝑎𝑘 = 0.2 and 𝑎𝑘 = 0.3, respectively, 

both of their wave length are 𝜆 = 7 cm. In the present study, the case of artificial ripples 

and simulated ripples are named as AR020 and SR030, respectively. There are five time 

steps in SR030 and a single time step in AR020. 

 

 

 

 

Figure 5-1: An illustration of physical domain (left) and computational domain (right) 

above wavy surface. 
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(a) 

 

(b) 

 

Figure 5-2: Wave shape of (a) artificial ripples with 𝑎𝑘 = 0.2; and (b) simulated 

ripples with 𝑎𝑘 = 0.3. 
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 Results of structure identification 

In this section, we apply the vortex identification methods introduced in Chapter 3 

to the numerical simulation, and observe the vortical structures especially for reversed 

and forward horseshoe vortices. Additionally, we discover the existence of structure 

evolution and larger scale vortical motion. 

After applying the vortex identification methods, a flow field full of turbulent 

structures appears. As Figure 5-3(a) and Figure 5-4(a) show, the vortical structures in the 

two cases are too abundant and complicated to observe; thus, before identifying vortical 

structures, values of the isosurface that represents the vortical structures has to be 

determined appropriately. Note that in the present study, the vortical structures are 

exhibited at the region near wave surface. 

Figure 5-3 and Figure 5-4 show the cases AR020 and SR030, respectively. We 

choose an arbitrary time sequence for SR030 since the intensity of vortical structures 

between different time sequences are approximate. As the isosurface value of 𝜆𝑐𝑖
2  

increase, weak and trivial structures vanish, hence the flow field becomes easier to 

observe; however, the structures start splitting when the value of 𝜆𝑐𝑖
2  gets too large. As a 

result, we determine 𝜆𝑐𝑖
2 = 4 as an appropriate value of the isosurface for both cases. 
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(a) 

 

(b) 

 

  

(c) 

 

(d) 

 

  

Figure 5-3: (Top view) Vortical structures above wavy surface of artificial ripples with 

ak = 0.2. The wave propagates from left to right and the vortical structures are represented 

by isosurface of (a) 𝜆𝑐𝑖
2 = 2, (b) 𝜆𝑐𝑖

2 = 3(c) 𝜆𝑐𝑖
2 = 4, (d) 𝜆𝑐𝑖

2 = 5. The structures with 

𝜔𝑥
′ > 0 are marked in red color; the structures with 𝜔𝑥

′ < 0 are marked in blue color.  
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(a) 

 

(b) 

 

  

(c) 

 

(d) 

 

  

Figure 5-4: (Top view) Vortical structures above wavy surface of simulated ripples 

with 𝑎𝑘 = 0.3, time sequence = 05. The wave propagates from left to right and the 

vortical structures are represented by isosurface of (a) 𝜆𝑐𝑖
2 = 3.5, (b) 𝜆𝑐𝑖

2 = 4, (c) 𝜆𝑐𝑖
2 =

4.5, (d) 𝜆𝑐𝑖
2 = 5. The structures with 𝜔𝑥

′ > 0 are marked in red color; the structures with 

𝜔𝑥
′ < 0 are marked in blue color. 
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 Equivalent thresholds 

In section 3.5, we introduced the equivalent thresholds for intense vortical structures 

proposed by Chakraborty et al. Hereinafter, we apply the equivalent thresholds to the 

numerical simulation.  

From the discussion in the previous section, 𝜀2 = 4 is used for both cases as a value 

of the isosurface. Note that the value of 𝜀 represents the isosurface of vortical structures. 

The isosurface is a surface that represents points of a constant value within a volume of 

space. Figure 5-5 and Figure 5-6 show results after applying equivalent thresholds to the 

case AR020 and SR030, respectively. We choose an arbitrary time sequence for SR030 

since the intensity of vortical structures between different time sequences are similar. 

Figure 5-5 shows that four methods bring out similar results. However, in Figure 5-6(b), 

it can be seen that Δ method is more fluctuating than other methods. If we modify the 

isosurface value of Δ, four methods can give more similar results, as shown in Figure 5-7. 

  



doi:10.6342/NTU201704258

 

42 

(a) 

 

(b) 

 

  

(c) 

 

(d) 

 

  

Figure 5-5: (Top view) Vortical structures above wavy surface of artificial ripples with 

𝑎𝑘 = 0.2 . The wave propagates from left to right and the vortical structures are 

represented by the isosurface of (a) 𝑄 = 4, (b) Δ = 4, (c) 𝜆2 = −4, (d) 𝜆𝑐𝑖
2 = 4. The 

structures with 𝜔𝑥
′ > 0 are marked in red color; the structures with 𝜔𝑥

′ < 0 are marked 

in blue color.  
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(a) 

 

(b) 

 

  

(c) 

 

(d) 

 

  

Figure 5-6: (Top view) Vortical structures above wavy surface of simulated ripples 

with 𝑎𝑘 = 0.3, time sequence = 05. The wave propagates from left to right and the 

vortical structures are represented by the isosurface of (a) 𝑄 = 4, (b) Δ = 2.37, (c) 

𝜆2 = −4 , (d) 𝜆𝑐𝑖
2 = 4 . The structures with 𝜔𝑥

′ > 0  are marked in red color; the 

structures with 𝜔𝑥
′ < 0 are marked in blue color. 
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Figure 5-7: (Top view) Vortical structures above wavy surface of simulated ripples 

with 𝑎𝑘 = 0.3, time sequence = 05. The wave propagates from left to right and the 

vortical structures are represented by the isosurface of (a) 𝑄 = 4, (b) Δ = 6, (c) 𝜆2 =

−4, (d) 𝜆𝑐𝑖
2 = 4. The structures with 𝜔𝑥

′ > 0 are marked in red color; the structures with 

𝜔𝑥
′ < 0 are marked in blue color. 

 

  

(a) 

 

(b) 

 

  

(c) 

 

(d) 
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 Vortical structures 

In the simulated case by Yang and Shen (2009), they found that the dominant vortical 

structures in the wavy boundary are the quasi-streamwise vortices, such vortices are 

mostly located above windward face. In addition to these quasi-streamwise vortices, there 

exist some reversed horseshoe vortices near the wave trough. About 1/4 of the horseshoe 

vortices are forward type, and about 3/4 of them are reversed type.  

For the case AR020, the vortical structures are shown in Figure 5-8. Similar to Yang 

and Shen’s result, quasi-streamwise vortices are dominant; however, vortical structures 

attributed to capillary ripples are profound in this case. Figure 5-9 shows the forward and 

reversed horseshoe vortices subjectively marked by green and yellow circles, respectively. 

The ratio of forward and reversed horseshoe vortices is close to that of Yang and Shen’s. 

Additionally, most reversed horseshoe vortices are observed near the wave trough.  

For the case SR030, the evolution of the vortical structures is shown in Figure 5-10. 

It is found that the vortical structures attributed to capillary ripples vanish in this case and 

the dominant vortical structures are also quasi-streamwise vortices. The forward and 

reversed horseshoe vortices of the last time sequence are subjectively marked by green 

and yellow circles in Figure 5-11, respectively. In this case, more forward horseshoe 

vortices are observed than reversed horseshoe vortices. Similar to AR020, the reversed 

horseshoe vortices are mostly located near the wave trough.  

Note that in both cases, there are few vortical structures around the spanwise central 

region, we will discuss this phenomenon in section 5.2.4. 
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(a) 

 

(b) 

 

Figure 5-8: Vortical structures above wavy surface of artificial ripples with 𝑎𝑘 = 0.2: 

(a) oblique view; (b) top view. The wave propagates from left to right and the vortical 

structures are represented by the isosurface of 𝜆𝑐𝑖
2 = 4. The structures with 𝜔𝑥

′ > 0 are 

marked in red color; the structures with 𝜔𝑥
′ < 0 are marked in blue color. 
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(a) 

 

(b) 

 

Figure 5-10 (a, b): For caption see page 52. 
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(c) 

 

(d) 

 

Figure 5-10 (c, d): For caption see page 52. 
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Figure 5-10 (e, f): For caption see page 52. 

  

(e) 

 

(f) 
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(g) 

 

(h) 

 

Figure 5-10 (g, h): For caption see page 52. 
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(i) 

 

(j) 

 

Figure 5-10: Time evolution of vortical structures above wavy surface of artificial 

ripples with 𝑎𝑘 = 0.3 (oblique and top view): (a, b) time sequence = 01; (c, d) 02; (e, f) 

03; (g, h) 04; (i, j) 05. The wave propagates from left to right and the vortical structures 

are represented by the isosurface of 𝜆𝑐𝑖
2 = 4. The structures with 𝜔𝑥

′ > 0 are marked in 

red color; the structures with 𝜔𝑥
′ < 0 are marked in blue color.  
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 Regeneration of the forward horseshoe vortices 

The results in the previous section indicate that the quasi-streamwise vortices, 

forward and reversed horseshoe vortices exist above wave surface. In this section, we 

investigate the evolution of the forward horseshoe vortex. 

We first examine the instantaneous vortex field at successive times, hence the case 

SR030 with multiple time sequences is observed. Figure 5-12 shows the particular 

forward horseshoe vortex which is observed. The history of forward horseshoe vortex 

evolution is shown Figure 5-13. In Figure 5-12 (a, b) a forward horseshoe vortex marked 

with a green arrow is located above the wave trough, this vortical structure is a “parent” 

structure. In the next time sequence (c, d), the parent structure advance, and a “child” 

structure with a right leg, marked with a yellow arrow, is generated above the left leg of 

the parent structure. In (e, f) both structures grow and the parent structure propagate to 

the windward face; in addition, the child structure start growing its left leg. In (g, h) the 

child structure grow stronger; on the contrary, the parent structure weakens and breaks at 

its head. In the last time sequence (i, j), the parent structure vanishes. 

The above investigation of vortex evolution history is just an observation, the 

mechanism of vortex regeneration can be studied in the future. 
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Figure 5-12:  Enlarged view of the forward horseshoe vortex marked by the green box 

above wavy surface of simulated ripples with 𝑎𝑘 = 0.3. The wave propagates from left 

to right and the vortical structures are represented by the isosurface of 𝜆𝑐𝑖
2 = 4. The 

structures with 𝜔𝑥
′ > 0 are marked in red color; the structures with 𝜔𝑥

′ < 0 are marked 

in blue color. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

  

Figure 5-13 (a, b, c, d, e, f): For caption see following page. 
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(g) 

 

(h) 

 

  

(i) 

 

(j) 

 

  

Figure 5-13: Time evolution of the forward horseshoe vortex above wavy surface 

(oblique and top view): (a, b) time sequence = 01; (c, d) 02; (e, f) 03; (g, h) 04; (i, j) 05. 

The wave propagates from left to right and the vortical structures are represented by the 

isosurface of 𝜆𝑐𝑖
2 = 4. 
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 Larger scale vortical motions 

In section 5.2.2, we found that there are few vortical structures around the spanwise 

central region in both cases of AR020 and SR030. It is found that the area with less 

vortical structures corresponds with a low-speed streak above those structures; on the 

contrary, vortical structures tend to be produced within the high-speed region, as shown 

in Figure 5-14(b). Since two high-speed and two low-speed streaks can be observed and 

the flow is periodical in the spanwise direction, the width of each streak is about quarter 

of the span width. The observation above implies that there must exist a larger scale 

vortical motion over the flow field. 

To investigate the relation between streaks and entire flow field, distributions of 

streamwise-averaged turbulent velocities are shown in Figure 5-15. The interfaces of the 

high- and low-speed streamwise turbulent velocity contour marked by dash lines are 

corresponding with that of the high- and low-speed streaks. Furthermore, the turbulent 

velocity contours reveal the existence of larger scale counter-rotating vortical motions in 

the flow field. It is assumed that there are different mechanisms in producing vortical 

structures and larger scale vortical motions. The vortical structures are attributed to the 

wall boundary layer, and the larger scale vortical motions are speculated to be related to 

the Langmuir circulation, which is attributed to the instability caused by wave, see Tsai 

(2017). 
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(a) 

 

(b) 

 

Figure 5-14: (a) Vortical structures above wavy surface of simulated ripples with 𝑎𝑘 =

0.3, time sequence = 05. (b) Vortical structures and streamwise turbulent velocity contour 

above these structures. The wave propagates from left to right and the vortical structures 

are represented by the isosurface of 𝜆𝑐𝑖
2 = 4. The structures with 𝜔𝑥

′ > 0 are marked in 

red color; the structures with 𝜔𝑥
′ < 0 are marked in blue color.  
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(a) 

 
(b) 

 
(c) 

 

Figure 5-15: Distribution of streamwise-averaged (a) streamwise, (b) spanwise and (c) 

vertical turbulent velocity above wavy surface of simulated ripples with 𝑎𝑘 = 0.3, time 

sequence = 05. The green and yellow arrows indicate flow directions. The dotted lines 

mark the interface of fast and slow-moving fluids.  
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 Conditional averaging analysis 

 Conditional averaging procedures 

The conditional sampling methods are introduced in Chapter 2. Hereinafter we 

introduce the ensemble averaging method. To conditional average the events in the three-

dimensional space, we create several cuboid subdomains corresponding to the number of 

events detected by the sampling method, then place the events into the middle of the 

subdomains and average the flow field within these subdomains, this procedure is called 

ensemble average. In the present study, the length and width of the subdomain is set to be 

15Δ𝑥 and 15Δ𝑦 for streamwise and spanwise, respectively. Note that above procedure 

is suitable for the numerical simulation with uniform mapping and no wave phase. 

Conformal mapping in streamwise direction and non-uniform spacing in the vertical 

direction of the computational nodes are employed to the numerical simulation, hence 

ensemble average the subdomains in different phase in physical domain is impracticable. 

To resolve the problems, two ways of the conditional average are shown in Figure 5-16 

and Figure 5-17. In Figure 5-16, we first calculate vorticities, 𝜆2, 𝜆𝑐𝑖 and so on from the 

velocity field, then detect events in the flow field subjectively. Eventually, the operation 

of the ensemble average and reveal are in the computational domain. The values of vortex 

identification methods are directly ensemble-averaged instead of computing from the 

ensemble-averaged flow field. Such procedure can avoid problems caused by the wave 

phase. Referring to Yang and Shen (2009), the other way is to detect events at the same 

wave phase and ensemble average primitive flow field of the subdomains, as shown in 

Figure 5-16. The first step is to determine the detection position on (𝑥, 𝑧)-plane and 

design a suitable conditional sampling criterion. Then detect events at the same phase, 

and ensemble average the velocity field of the various subdomains. After that, the vortex 
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identification methods are applied to the ensemble-averaged velocity field. The advantage 

of this procedure is that the structures can be revealed in the physical domain. In both 

ways, the bottom of the subdomain is set at the position of wave surface; therefore, the 

problem of non-uniform spacing in the vertical direction is solved.  
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Figure 5-16: An illustration of conditional averaging in the computational domain.  
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Figure 5-17: An illustration of conditional averaging in the physical domain. 
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 Subjective conditional average 

In the previous section, two different procedures of the conditional average are 

presented. To single out the vortical structures by appropriate detecting criterions and 

ensure that conditional average with conditional sampling methods is feasible, we first 

observe the local flow field around the vortical structures which are found subjectively. 

Afterward, we apply the conditional average technique with conditional sampling 

methods to numerical simulation. The results of conditional average in manual are shown 

in this section. 

By the observation of horseshoe vortices in Figure 5-9, it is found that forward 

horseshoe vortices are too rare in the case AR020. Therefore, we ensemble average only 

the reversed horseshoe vortices in this case, as shown in Figure 5-18. It can be seen that 

a well-defined reversed horseshoe vortex is located in the center of a subdomain, with 

complete legs and split head. Furthermore, the result of Δ method is thicker than other 

methods. To observe the velocity field around the structure, the contour slice of turbulent 

velocities are shown in Figure 5-19. Around the head part of the reversed horseshoe 

vortices, the velocity field presents a clockwise rotating vortical motion. Note that 

upstream to the head of structure, partial derivative of the streamwise turbulent velocity 

with respect to 𝑥 are positive. 

In the case SR030, more forward horseshoe vortices are observed than reversed 

horseshoe vortices, as shown in Figure 5-11. A well-defined reversed horseshoe vortex is 

shown in Figure 5-20, with legs and head clearly represented. Furthermore, the result of 

Δ method is thicker than other methods. On the contrary, the ensemble average result of 

the forward horseshoe vortex is terrible, as shown in Figure 5-21. It is found that only 
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head part of the forward horseshoe vortex can be shown well and many trivial structures 

are revealed. Such cluttered result is caused by events located in different 𝜂.  
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(a) 

 

(b) 

 

  

(c) 

 

(d) 

 

  

Figure 5-18: Above wavy surface of artificial ripples with 𝑎𝑘 =  0.2: educed reversed 

horseshoe vortex by conditional averaging subjectively. The structures are represented by 

the isosurface of (a) 𝑄 = 4, (b) Δ = 30, (c) 𝜆2 = −4,  (d) 𝜆𝑐𝑖
2 = 4. The structures 

with 𝜔𝑥
′ > 0 are marked in red color; the structures with 𝜔𝑥

′ < 0 are marked in blue 

color. 
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(a) 

 

(b) 

 

  

(c) 

 

(d) 

 

  

Figure 5-19: Above wavy surface of artificial ripples with 𝑎𝑘 = 0.2: (a) the position of 

the contour slice; side view of the educed reversed horseshoe vortex by conditional 

averaging subjectively and contours of (b) streamwise, (c) vertical turbulent velocity, (d) 

partial derivative of the streamwise turbulent velocity with respect to 𝑥. The structures 

are represented by the isosurface of 𝜆𝑐𝑖
2 = 4. The structures with 𝜔𝑥

′ > 0 are marked in 

red color; the structures with 𝜔𝑥
′ < 0 are marked in blue color. The green arrows indicate 

flow directions. 
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(a) 

 

(b) 

 

  

(c) 

 

(d) 

 

  

Figure 5-20: Above wavy surface of simulated ripples with 𝑎𝑘 = 0.3, time squence = 

05: educed reversed horseshoe vortex by conditional averaging subjectively. The 

structures are represented by the isosurface of (a) 𝑄 = 8, (b) Δ = 100, (c) 𝜆2 = −8,  

(d) 𝜆𝑐𝑖
2 = 2. The structures with 𝜔𝑥

′ > 0 are marked in red color; the structures with 

𝜔𝑥
′ < 0 are marked in blue color. 
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(a) 

 

(b) 

 

  

(c) 

 

(d) 

 

  

Figure 5-21: Above wavy surface of simulated ripples with 𝑎𝑘 = 0.3, time sequence = 

05: educed forward horseshoe vortex by conditional averaging subjectively. The 

structures are represented by the isosurface of (a) 𝑄 = 2, (b) Δ = 20, (c) 𝜆2 = −2,  (d) 

𝜆𝑐𝑖
2 = 1.2. The structures with 𝜔𝑥

′ > 0 are marked in red color; the structures with 𝜔𝑥
′ <

0 are marked in blue color. 
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 Autonomous conditional average 

In this section, we apply the conditional average techniques with conditional 

sampling methods, such as VISA and quadrant (QD) methods, to the numerical simulation. 

As introduced in section 5.3.1, referring to Yang and Shen (2009), we use the contours of 

Reynolds stress 〈−𝑢′𝑤′〉  to determine the detection positions. Q1(𝑢′ > 0,𝑤′ > 0) , 

Q2 (𝑢′ < 0,𝑤′ > 0) , Q3 (𝑢′ < 0,𝑤′ < 0) , and Q4 (𝑢′ > 0,𝑤′ < 0)  are the four 

quadrants of contribution to the Reynold stress. Hereinafter, the contribution from mth-

quadrant is referred to as 〈−𝑢′𝑤′〉𝑚.  

Figure 5-22 shows the color contours of total Reynolds stress above wave surface of 

the case AR020. It is found that the majority of the contribution to the total Reynold stress 

comes from the Q2 and Q4 events. The high intensity regions of 〈−𝑢′𝑤′〉2  and 

〈−𝑢′𝑤′〉4 are indicated in Figure 5-22(a) and Figure 5-22(b), respectively. We expect the 

Q2 events to be associated with the forward horseshoe vortices, and the Q4 events 

associated with reversed horseshoe vortices. Figure 5-23 shows the conditionally 

averaged vortical structure associated with the Q4 events of AR020. It can be seen that a 

well-defined reversed horseshoe vortex is located above the wave trough, with legs and 

head clearly represented. Figure 5-24 shows the conditionally averaged vortical structure 

associated with the Q2 events. We expect to find a forward horseshoe vortex; however, 

two counter-rotating quasi-streamwise vortices incline at a certain angle are revealed in 

the subdomain. Such result is attributed to the upwelling (Q2) motion induced by the 

counter-rotating vortex pair; moreover, as we discussed in section 5.2.2, the quasi-

streamwise vortices are dominant in the flow field.  

Based on the observation in section 5.2.2, the forward horseshoe vortices are rare in 

the flow field. Hence, we use the VISA sampling method to detect the reversed horseshoe 
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vortices only. In addition, based on the observation of the velocity field in section 5.3.2, 

we modify the detecting criterion as 

 𝐷(𝑥, 𝑦, z, 𝑡0) = 1, if  𝑣𝑎𝑟 > 𝑘 ∙ 𝑢′
𝑟𝑚𝑠
2

  and  
𝜕𝑢′

𝜕𝑥
> 0

= 0, otherwise
. (5-4) 

Note that contour of the Reynold stress is impractical for VISA sampling method. 

Therefore, we subjectively choose an event as the detection position on the (𝑥, 𝑧)-plane. 

The conditionally averaged result is shown in Figure 5-25. It can be seen that the head is 

shown clearly while legs are split. In addition, some trivial and fine structures are revealed 

in the flow field. 

For the case SR030, the color contours of total Reynolds stress above wave surface 

are shown in Figure 5-26. The conditionally averaged vortical structures associated with 

the Q4 and Q2 events are shown in Figure 5-27 and Figure 5-28, respectively. It is 

observed that the conditionally averaged quasi-streamwise vortex pair is shorter than that 

in the case AR020.  

In the previous section, we discussed that the forward horseshoe vortices are located 

in different 𝜂, meaning that detecting at a fixed (𝑥, 𝑧) is impracticable. As a result, we 

use the VISA sampling method to detect the reversed horseshoe vortices only. We failed 

to detect the events by the detecting criterion of (2-6), hence we modify the detecting 

criterion as 

 
𝐷(𝑥, 𝑦, z, 𝑡0) = 1, if  𝑣𝑎𝑟 > 𝑘 ∙ 𝜔𝑦

′
𝑟𝑚𝑠

2
  and  𝜔𝑦

′ > 0

= 0, otherwise
. (5-5) 

Figure 5-29 shows the conditionally averaged results of the VISA sampling method 

detected with (5-5). As shown in the oblique and top view, a conditionally averaged 

reversed horseshoe vortex exists in the flow field full of structures. To maintain the 

completeness of the structure, the value of the isosurface is set to be small. 
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Apparently, the results of QD method are better than VISA method in both AR020 

and SR030. However, the VISA sampling method is heavily associated with the detecting 

criterion; if detected with an appropriate criterion, it is probable to derive a good result. 
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(a) 

 
(b) 

 

(c) 

 

Figure 5-23: Above wavy surface of artificial ripples with 𝑎𝑘 = 0.2: (a) oblique view , 

(b) side view and (c) top view of the conditionally averaged reversed horseshoe vortex 

by QD-4 sampling method. The detection threshold is chosen to be 5 and the structures 

are represented by the isosurface of 𝜆𝑐𝑖
2 = 2.625 . The structures with 𝜔𝑥

′ > 0  are 

marked in red color; the structures with 𝜔𝑥
′ < 0 are marked in blue color. 
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(a) 

 

(b) (c) 

  

Figure 5-24: Above wavy surface of artificial ripples with 𝑎𝑘 = 0.2: (a) oblique view , 

(b) side view and (c) top view of the conditionally averaged quasistreamwise vortex by 

QD-2 sampling method. The detection threshold is chosen to be 3 and the structures are 

represented by the isosurface of 𝜆𝑐𝑖
2 = 1.76. The structures with 𝜔𝑥

′ > 0 are marked in 

red color; the structures with 𝜔𝑥
′ < 0 are marked in blue color. 
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(a) 

 

(b) (c) 

  

Figure 5-25: Above wavy surface of artificial ripples with 𝑎𝑘 = 0.2: (a) oblique view , 

(b) side view and (c) top view of the conditionally averaged reversed horseshoe vortex 

by VISA sampling method. The detection threshold is chosen to be 1.5 and the structures 

are represented by the isosurface of 𝜆𝑐𝑖
2 = 0.5. The structures with 𝜔𝑥

′ > 0 are marked 

in red color; the structures with 𝜔𝑥
′ < 0 are marked in blue color. 
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(a) 

 

(b) (c) 

  

Figure 5-27: Above wavy surface of simulated ripples with 𝑎𝑘 = 0.3, time sequence = 

05: (a) oblique view , (b) side view and (c) top view of the conditionally averaged reversed 

horseshoe vortex by QD-4 sampling method. The detection threshold is chosen to be 10 

and the structures are represented by the isosurface of 𝜆𝑐𝑖
2 = 5. The structures with 𝜔𝑥

′ >

0 are marked in red color; the structures with 𝜔𝑥
′ < 0 are marked in blue color. 
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(a) 

 

(b) (c) 

  

Figure 5-28: Above wavy surface of simulated ripples with 𝑎𝑘 = 0.3, time sequence = 

05: (a) oblique view , (b) side view and (c) top view of the conditionally averaged 

quasistreamwise vortex by QD-2 sampling method. The detection threshold is chosen to 

be 2 and the structures are represented by the isosurface of 𝜆𝑐𝑖
2 = 1. The structures with 

𝜔𝑥
′ > 0 are marked in red color; the structures with 𝜔𝑥

′ < 0 are marked in blue color. 
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(a) 

 

(b) (c) 

  

Figure 5-29: Above wavy surface of simulated ripples with 𝑎𝑘 = 0.3, time sequence = 

05: (a) oblique view , (b) side view and (c) top view of the conditionally averaged reversed 

horseshoe vortex by VISA sampling method. The detection threshold is chosen to be 6 

and the structures are represented by the isosurface of 𝜆𝑐𝑖
2 = 0.45. The structures with 

𝜔𝑥
′ > 0 are marked in red color; the structures with 𝜔𝑥

′ < 0 are marked in blue color. 
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Chapter 6.  

Conclusion 

 

In this study, we investigate the flow field near wavy surface in two different sets of 

numerical simulation. The vortex identification methods are applied to the numerical 

simulation, showing that four methods could derive similar results by adjusting their 

isosurface values; however, results of the Δ criterion in the air flow case often shows 

more fluctuating than others. By drawing the vortex lines among vortical structures, we 

realize that both of them can explain the mechanism of cold streaks; moreover, observing 

the vortical structures is a more intuitive way to study the flow field. However, it is 

inadequate for researchers to study the turbulence by observing the vortical structures 

only. Other information such as the velocity field, vorticity field, and so forth are essential. 

For instance, the streamwise turbulent vorticity is marked on the vortical structures to 

assist the determination of swirling direction in this study. The conditional average results 

show that the quadrant analysis sampling technique is more feasible than the VISA 

sampling technique in our cases due to the detecting criterion. For future works, the 

mechanisms of structure regeneration as well as larger scale vortical motions in the 

turbulent flow can be investigated. 
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Appendix A. 

Phase plane method and critical point theory 

 

Consider a two dimensional homogeneous system 

 𝒚′ = 𝑨𝒚 ; (A-1) 

in components,  

 

𝑦1
′ = 𝑎11𝑦1 + 𝑎12𝑦2 , 

𝑦2
′ = 𝑎21𝑦1 + 𝑎22𝑦2 , 

(A-2) 

try the solution 

 𝒚 = 𝒙𝑒𝜆𝑡 . (A-3) 

Substitute (A-3) into (A-1) and eliminate 𝑒𝜆𝑡, we obtain the eigenvalue problem 

 𝑨𝒙 = 𝜆𝒙 . (A-3) 

Hence the general solution is  

 𝒚 = 𝑐1𝒙𝟏𝑒
𝜆1𝑡 + 𝑐2𝒙𝟐𝑒

𝜆2𝑡 , (A-4) 

where 𝑐1, 𝑐2 are constant coefficients, 𝒙𝟏, 𝒙𝟐 and 𝜆1, 𝜆2 are the eigenvectors and 

eigenvalues of 𝐀. From (A-2), we obtain 

 
𝑑𝑦2

𝑑𝑦1
=

𝑦2
′

𝑦1
′ =

𝑎21𝑦1 + 𝑎22𝑦2

𝑎11𝑦1 + 𝑎12𝑦2
 . (A-5) 

At a point 𝑃(𝑦1, 𝑦2) = (0,0) , (A-4) becomes 0/0 . Therefore, this point is called a 

critical point. 

The (𝑦1, 𝑦2)-plane is called the phase plane. There are five types of critical points 

in the phase plane, depending on the geometric shape of the trajectories near them. As 

figure A-1 shown, improper node, proper node and saddle point occur when the 
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eigenvalues are real; in contrast, center and spiral point occur when the eigenvalues are 

not real. 

 

 

 

 

Figure A-1: Five types of critical points (phase portrait). Adapted from Advanced 

engineering mathematics (p.143-145), by Kreyszig, E., 2010. Copyright 2011, 2006, 

1999 by John Wiley & Sons, Inc. 
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Appendix B. 

Properties of the Hessian matrix 

 

The Hessian matrix 

 𝐻𝑖,𝑗 =
𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
 , 

 

(B-1) 

has the following properties: If the Hessian is positive definite (all its eigenvalues are 

positive), then 𝑓 attains a local minimum. If the Hessian is negative definite (all its 

eigenvalues are negative), then 𝑓  attains a local maximum. If the Hessian has both 

positive and negative eigenvalues then it is a saddle point for 𝑓.  

Take two dimensional array for instance, close to a local extreme point 𝒙𝟎  the 

Taylor series of a function 𝑓(𝒙𝟎 + 𝒄) can be expressed as 

𝑓(𝒙𝟎 + 𝒄) = 𝑓(𝒙𝟎) + 𝑓𝑥|𝒙𝟎
⋅ 𝑐1 + 𝑓𝑦|𝒙𝟎

⋅ 𝑐2

+
1

2
(𝑓𝑥𝑥|𝒙𝟎

⋅ 𝑐1
2 + 𝑓𝑦𝑦|𝒙𝟎

⋅ 𝑐2
2 + 2𝑓𝑥𝑦|𝒙𝟎

⋅ 𝑐1𝑐2) 

= 𝑓(𝒙𝟎) + 𝛻𝑓 ⋅ 𝒄 +
1

2
𝑐1(𝑓𝑥𝑥𝑐1 + 𝑓𝑥𝑦𝑐2) +

1

2
𝑐2(𝑓𝑥𝑦𝑐1 + 𝑓𝑦𝑦𝑐2) 

= 𝑓(𝒙𝟎) + 𝛻𝑓 ⋅ 𝒄 +
1

2
[𝑐1 𝑐2] [

𝑓𝑥𝑥 𝑓𝑥𝑦

𝑓𝑦𝑥 𝑓𝑦𝑦
] [

𝑐1

𝑐2
] 

= 𝑓(𝒙𝟎) + 𝛻𝑓 ⋅ 𝒄 +
1

2
𝒄𝑇𝑯𝒄 , 

(B-2) 

where 𝒄 = [
𝑐1

𝑐2
] and 𝑯 is the Hessian matrix. At a critical point, the first derivative of 

function 𝑓 must be zero, hence  

 𝑓(𝒙𝟎 + 𝒄) = 𝑓(𝒙𝟎) +
1

2
𝒄𝑇𝑯𝒄 . (B-3) 
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Figure B-1: An illustration of a saddle point. Adapted July 25, 2017, from 

https://commons.wikimedia.org/wiki/User:StuRat#/media/File:Saddle_pt.jpg. 

As figure B-1 shows, if 𝒄𝑇𝑯𝒄 > 0, then 𝑓(𝒙𝟎 + 𝒄) > 𝑓(𝒙𝟎), which means 𝒙𝟎 is 

a local minimum point in 𝒙𝟎 − 𝒄 direction. In contrast, if 𝒄𝑇𝑯𝒄 < 0, then 𝑓(𝒙𝟎 + 𝒄) <

𝑓(𝒙𝟎), which means 𝒙𝟎 is a local maximum point in 𝒙𝟎 − 𝒄 direction. 

The Hessian matrix 𝑯 can be decomposed by its eigenvalues and eigenvectors 

 𝑯 = 𝑬𝑇𝑫𝑬 , (B-4) 

where 𝑬 = [
𝑬𝟏

𝑬𝟐
]  is the matrix of eigenvectors, 𝑫 = [

𝝀𝟏 𝟎
𝟎 𝝀𝟐

]  is the matrix of 

eigenvalues. Then, 

 𝒄𝑇𝑯𝒄 = 𝒄𝑇𝑬𝑇𝑫𝑬𝒄 = 𝒘𝑇𝑫𝒘 , (B-5) 

where 𝒘 is the product of matrix 𝑬 and 𝒄. Since 𝑫 is diagonal, 

 𝒘𝑇𝑫𝒘 = [𝑤1 𝑤2] [
𝜆1 0
0 𝜆2

] [
𝑤1

𝑤2
] = 𝜆1𝑤1

2 + 𝜆2𝑤2
2 . (B-6) 

𝒙𝟎 

𝒙𝟎 + 𝒄 𝒙𝟎 + 𝒄 
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If 𝜆1 & 𝜆2 > 0, then 𝒘𝑇𝑫𝒘 > 𝟎, thus 𝒙𝟎 is a local minimum point. If 𝜆1 & 𝜆2 <

0, then 𝒘𝑇𝑫𝒘 < 𝟎, thus 𝒙𝟎 is a local maximum point. If 𝜆1& 𝜆2 are opposite sign, 

then 𝒘𝑇𝑫𝒘 can be positive or negative (depend on 𝒄), thus 𝒙𝟎 is a saddle point. 
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