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風浪生成機制的直接數值模擬 

研究生： 林媺瑛              指導教授： 蔡武廷 教授 

 

國立交通大學 

土木工程學系博士班 

 

摘 要 

    利用直接數值模擬的方法，建立一個空氣與水的耦合紊流模式，並以此耦合紊流模

式探討風浪的生成機為本論文的研究重點。其中風浪的生成機制可因風速的不同而不

同，我們僅以低風速下產生的風浪為研究範疇。在考慮低風速的情況下，水面上得到的

平均風應力約為 0.089 dyn cm-2 ，依此平均風應力而得到的空氣和水的摩擦速度，分別

約為 8.6 cm s-1 和 0.3 cm s-1。由於此空氣與水的耦合紊流模式，在空氣與水的介面上，

同時滿足速度與應力連續的條件，所以這個耦合模式可以同時捕捉到空氣與水體的運動

和它們之間的交互作用。研究顯示，發展最快之波浪的波長與實驗的量測結果很接近，

波長約為 8~12 公分。而且，在波浪生成之後，因波浪成長速率的不同，可分為線性與

指數成長兩階段，也與理論和觀測的結果相同。但是，受限於在空氣與水的介面處使用

了線性的邊界條件，因此當波浪的梯度大於 0.01 時，即無法再利用此耦合模式繼續進行

模擬。模擬的時間間隔，約為波浪開始生成之後 70 秒內的發展過程。波浪生成之後，

我們分析了波浪對空氣與水體中紊流場的影響；也執行了一些敏感性測試，包括水體中

的紊流場、表面張力和空氣的高度。藉由與理論的結果比較，在線性的成長階段，我們

的波浪成長率只有在較高的空氣高度的算例中，與 Phillips (1957) 的理論預測較一致；

在指數的成長階段，有些的波浪成長率與 Belcher & Hunt (1993)的理論預測、Plant (1982)

所統計的實驗觀測和一些數值模擬的結果一致。但是，有些波浪的成長率則較前人的研

究結果大 2~3 倍。雖然在量的比較上與前人的結果有些許的差異，但是在風浪生成機制

的定性條件上，和 Phillips (1957)與 Belcher & Hunt (1993)所提的機制是符合的。風的能
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量能夠傳輸至波浪的主要因素：在線性的波浪成長階段，如 Phillips (1957)所提的機制一

樣，來自紊流所引起的壓力擾動；在指數的波浪成長階段，如 Belcher & Hunt (1993)所

提的機制一樣，來自波浪所引起的壓力擾動與波浪之間所形成的形狀阻力。 
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ABSTRACT 

An air-water coupled model is developed to investigate wind-wave generation 

processes at low wind speed where the surface wind stress is about -2cm dyn 089.0  and the 

associated surface friction velocities of the air and the water are -1s cm 6.8~∗
au  and 

-1s cm 3.0~∗
wu , respectively. The air-water coupled model satisfies continuity of velocity and 

stress at the interface simultaneously, and hence can capture the interaction between air and 

water motions. Our simulations show that the wavelength of the fastest growing waves agrees 

with laboratory measurements ( )cm 128~ −λ  and the wave growth consists of linear and 

exponential growth stages as suggested by theoretical and experimental studies. Constrained 

by the linearization of the interfacial boundary conditions, we perform simulations only for a 

short time period, about 70s; the maximum wave slope of our simulated waves is 01.0~ak  

and the associated wave age is 5~∗
auc , which is a slow moving wave. The effects of waves 

on turbulence statistics above and below the interface are examined. Sensitivity tests are 

carried out to investigate the effects of turbulence in the water, surface tension, and the 

numerical depth of the air domain. The growth rates of the simulated waves are compared to 

Phillips’ (1957) theory for linear growth and to Plant’s (1982) experimental data and previous 

simulation results for exponential growth. In the exponential growth stage, some of the 

simulated wave growth rates are comparable to previous studies, but some are about 2~3 

times larger than previous studies. In the linear growth stage, the simulated wave growth rates 

are sensitive to the numerical depth of the air domain, and are comparable to Phillips’ 
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prediction only for the larger air domain. In qualitative agreement with the theories proposed 

by Phillips (1957) and Belcher and Hunt (1993) for slow moving waves, the mechanisms for 

the energy transfer from wind to waves in our simulations are mainly from 

turbulence-induced pressure fluctuations in the linear growth stage and due to the in-phase 

relationship between wave slope and wave-induced pressure fluctuations in the exponential 

growth stage, respectively. 
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Chapter I  
 

Introduction 
 

      As wind flows over a water surface, air and water motions interact and induce many 

phenomena at the interface. Wind-generated waves are the most visible signature of this 

interaction and play a major influence on the momentum and energy transfer across the 

interface. These wind-generated waves, observed by microwave-radar backscatter, have 

wavelengths of the order of 4-40 cm (Massel, 1996). Because these small-scale waves impact 

remote sensing of the sea surface, the generation and growth of wind-generated waves have 

been subjects of intense research. However, the mechanisms that generate these surface waves 

are still an open issue due to (1) difficulties in obtaining a dataset from laboratory and field 

measurements that records the time evolution of motions in both atmosphere and ocean 

domains, (2) mathematical difficulties in dealing with highly turbulent flows over complex 

moving surfaces, and (3) lack of a suitable coupled model to simulate turbulent flows in both 

atmosphere and ocean simultaneously. With increases in computer power, it is now possible to 

simulate wave and turbulence phenomenon by direct numerical simulation (DNS). DNS 

numerically solves the Navier-Stokes equation subject to boundary conditions and hence such 

simulated flow fields contain no uncertainties other than numerical errors. In this study we 

develop an air-water coupled DNS model and use it to study wind-wave generation and 

growth processes. 

      Theoretical studies (Jeffreys 1925; Phillips 1957; Phillips & Katz 1961; Miles 1957; 

Townsend 1972, 1980; Phillips 1977; Jacobs 1987; Kahma & Donelan 1988; van Duin & 

Janssen 1992 and Belcher & Hunt 1993, among many others) have proposed different 

mechanisms as to how surface waves are generated from calm water and quantify the 

consequential growth rate of surface waves. These studies suggest that there are linear and 
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exponential growth regimes for surface waves.  

With the increase of computer power, the numerical simulation (DNS) technique has 

become a useful tool in studying turbulent flows. Such a numerical simulation, by directly 

solving the fluid dynamics equations, produces three-dimensional, time evolving flow fields 

which can be analyzed to study the details of the flow structure and to deduce the turbulence 

statistics. However, most of the previous numerical studies (Davis 1970; Gent & Taylor 1976; 

Al-Zanaidi & Hui 1984; De Angelis et al. 1997; Henn & Sykes 1999; Sullivan et al. 2000; 

Tsai et al. 2005) examine either the wave effect on air motions or the wind stress effect on 

water motions by simulating only air or water flows (i.e., one-phase flow). These so-called 

one-phase flow simulations are driven by either wind shear near the surface for turbulence in 

the air or an imposed surface stress for turbulence in the water. Because the interface is 

prescribed, the interaction between the wind and the waves is prohibited. Only a few 

numerical studies are conducted for two-phase flows (Lombardi et al. 1996; De Angelis 1998; 

Fulgosi et al. 2003) but none of them investigate the wind-wave generation processes. The 

present study, therefore, is aimed at unraveling wind-wave generation processes by 

conducting direct numerical simulations that couple turbulent air and water flows.  

      The organization of this paper is as follows. The numerical aspects of the present 

simulation, including the model formulation, numerical method and simulation 

implementation are described in section 2. The simulated flow structures of surface waves and 

elongated streaks generated by wind are shown in section 3. The wave effect on the statistics 

of mean velocity and turbulent intensity is reported in section 4. The characteristics of the 

generated surface waves are examined in section 5. Two wave growth types are defined in 

section 6. Comparison with theoretical wind-wave generation mechanisms is given in section 

7. The effects of turbulence in the water, surface tension, and the numerical domain in the air 

side on wave growth are examined in section 8. Finally, the main conclusions of this paper are 

reported in section 9. 
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Chapter II 
 

The coupled model 
 

 

II.1  Flow configuration 

 

Consider two turbulent flows, air and water, under a wind-driven system that interacts 

across a deformable interface. The turbulent and wave motions must satisfy the continuity of 

velocity and stress across the interface. As a first step, we simplify the problem by excluding 

the non-linearity of waves and wave breaking effect and linearized these interfacial boundary 

conditions via the small amplitude wave assumption. We use the coupled model to study the 

initial stage of the generation of waves by wind. 

First we have to choose the characteristic velocity and length scales of the flow. In the 

study of a turbulent flow over given water waves, Sullivan et al. (2000) chose the constant 

velocity imposed at the upper boundary and the wavelength of the imposed water wave as the 

characteristic scales. In the study of turbulent shear flow under a free surface, Tsai et al. (2005) 

used the mean velocity at the free surface and the length of viscous sub-layer given from 

experimental result (Melville et al., 1998) as their characteristic scales. Flow features are 

typically characterized by their external condition: a given wave or imposed wind speed, 

which make it easy to choose the characteristic scales, such as above studies of single-phase 

turbulent flows. For two-phase flows we investigate here, there are two problems in choosing 

the characteristic scales. First is due to the deformable interface that is not a fixed wave type. 

The interface changes with time and varies from place to place. This boundary does not 

provide any characteristic length for us to define the domain size or the bulk Reynolds 

number, or to scale the governing equations before we start the simulation. Second problem is 
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due to the different time and length scales of turbulent motions in air and water. In general, we 

should use two sets of characteristic variables to measure these two motions. But 0U  is the 

only characteristic flow feature we know before starting the simulation. 

Thus, we consider two turbulent flows (air and water) interacting across a deformable 

interface under a wind-driven system. Each domain of the two immiscible fluids is a 

rectangular box with a depth h  and horizontal length hLL yx  6),( = , as shown in figure 1. 

We adopt a Cartesian coordinate where the air region occupies the 0≥z  domain, and the 

water region the 0≤z  domain. The horizontal coordinates x  and y  are in the streamwise 

and spanwise directions, respectively. The external forcing of the system is a constant velocity 

0U  imposed at the upper boundary ( hz = ) in the air region, i.e., similar to a Couette flow. 

We set -1
0 s m 3=U  in this study. 

 

 

II.2  Governing equations 

 

The mass and momentum conservation equations for incompressible, Newtonian 

fluids of air and water with density lρ  and kinematic viscosity lν  are 

0=⋅∇ lu ,                                (2.1) 

lll

l

ll
l uuuu 21

∇+∇−=∇⋅+
∂
∂ ν

ρ
p

t
,                     (2.2) 

where the subscript l  denotes variables in air ( a=l ) or water ( w=l ), ( )wvu ,,=u  are 

velocity components in streamwise, spanwise and vertical directions respectively, and lp  is 

the pressure. 

The Poisson equation for lp  is obtained by taking the divergence of (2.2) and using 

(2.1) 

l
lll Η

z
p

y
p

x
p

=
∂
∂

+
∂
∂

+
∂
∂

2

2

2

2

2

2

,                         (2.3) 

where the source term lΗ  is the divergence of the convective and diffusive terms in 
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equation (2.2). The solution of (2.3) forces the continuity equation (2.1) to be satisfied at each 

time step. 

 

 

II.3  Boundary conditions 

 

The domains of the two immiscible fluids have six external boundaries and one 

internal deformable interface. For external boundaries, periodic conditions are assumed on the 

four sidewalls of the computational domain. At the top of the domain, hz = , a 

constant-velocity condition is applied as 

0Uua = , 0=av , 0=aw , 0=
∂
∂

z
pa .                    (2.4) 

At the lower bottom of the water region, hz −= , we impose free-slip boundary conditions 

0=
∂
∂

z
uw , 0=

∂
∂

z
vw , 0=ww , 0=

∂
∂

z
pw ,                   (2.5) 

to emulate an infinite depth. 

For the deformable boundary, the interface of two viscous fluids must satisfy the 

following requirements as stated in Wehausen & Laitone (1960): 

1. The effect of surface tension as one passes through the interface is to produce a 

discontinuity in the normal stress proportional to the mean curvature of the boundary surface. 

2. For viscous fluids the tangential stress must be continuous as one passes through the 

interface. 

3. For viscous fluids the tangential component of the velocity must be continuous as one 

passes through the interface. 

Without simplification, these requirements lead to complicated boundary conditions (see 

equations 3.2~3.6 in Wehausen & Laitone, 1960). However, assuming small interfacial 

deformation, as in the initial wind-wave generation processes considered here, we can 

linearize the interfacial conditions (Tsai & Yue, 1995), which yields boundary conditions 



 6

satisfied at 0=z  as follows: 

                 wa uu = , wa vv = , wa ww = ,                        (2.6) 
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⎠
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where aaa νρμ ≡  and www νρμ ≡  are dynamic viscosities of air and water, and γ  is the 

surface tension of the water interface. The linearized kinematical condition satisfied at z = 0 is 

w
y

v
x

u
t

=
∂

∂
+

∂
∂

+
∂
∂ )()( ηηη .                       (2.10) 

The use of a central-differencing scheme at the interface requires additional points 

(ghost points) below the interface for ( )aaaa pwvu ,,,  and above the interface for 

( )wwww pwvu ,,, , as shown in figure 2. The ( )wwaa vuvu ,,,  values at the ghost points are 

determined using the continuity conditions for velocity (2.6) and tangential stresses (2.7 and 

2.8). ( )wa ww ,  at the ghost points are determined by two additional conditions: Applying the 

continuity equation (2.1) and the boundary conditions (2.6) at 0=z  results in the condition 

z
w

z
w wa

∂
∂

=
∂
∂ .                             (2.11) 

A second condition is obtained by adding the x-derivative of (2.7) and the y-derivative of (2.8) 

(Chandrasekhar, 1954), leading to 
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The pressure ( )wa pp ,  at the ghost points is determined by applying the normal stress 

condition (2.9) and the continuity condition for the vertical velocity (2.6) to the vertical 
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component of the momentum equation at the interface, which results in 
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II.4  Numerical method 

 

The aim of our coupling algorithm is to simulate the air and water flows 

simultaneously. Most of previous coupled simulations used iterative methods (e.g., Lombardi 

et al., 1996), which determine the interfacial variables on air side or water side using different 

continuity conditions by imposing continuity of velocity on the air side and continuity of 

stress on the water side. Then the calculation is iterated until two continuity conditions are 

satisfied on both sides. This iterative method is time consuming. Lombardi et al. (1996) 

simplified the iteration by using a fractional time step method, which uses only the first step 

of the iterative scheme, to study their coupled gas-liquid flow. But then the continuity 

condition is not satisfied exactly with this fractional time step method. Thus we develop a 

new model to study the coupling problem. 

The numerical method used to solve the system of equations (2.2) and (2.3) subject to 

the boundary conditions (2.4)~(2.10) is based on the scheme described by Tsai (1998) and 

Tsai et al. (2005). We use a staggered grid in the vertical as shown in figure 2 where the grids 

are stretched with finer resolution near the interface as in Tsai et al. (2005). We use a 

pseudo-spectral method to evaluate x  and y  derivatives, second-order finite-difference 

scheme for z  derivatives, and a second-order Runge-Kutta method (Spalart et al., 1991) for 

time integration. 

We use ( ) ( )65 ,64 ,64,, =zyx NNN  gridpoints in each of the air and water domains. 

The domain size in both x  and y  directions is cm 24 . In the water, the horizontal grid 

size in wall units is 25.11=Δ=Δ=Δ ∗++
wwwww uyyx ν , where the water friction velocity ∗

wu  is 
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given in section 2.5. Near the interface the stretched vertical grid adequately resolves the 

viscous layer. There are 14  grids in the near surface region ( )10≤− +
wz . In the air domain, 

the corresponding non-dimensional horizontal spacings are 4.21=Δ=Δ ++
aa yx , and there are 

ten gridpoints within the region 10≤+
az  in the vertical direction near the interface.  

As suggested by Moin & Mahesh (1998), the grid resolution requirements for spectral 

method of boundary layer flow in x (streamwise) and y (spanwise) and second-order central 

difference scheme in z are ( ) ( )ζ26.0 ,8.4 ,3.14 , , =ΔΔΔ zyx  where ( ) 413 ενζ a=  is the 

Kolmogorov microscale, h3~υε  is dissipate rate and ( ) 21222
aaa wvu +′+′=υ  is 

root-mean-square fluctuating speed. For our grid system, the Kolmogorov microscale is 

025.0~ζ cm, the horizontal spacing is 0.375 cm and the vertical spacing near the interface is 

about 01.0 cm. This spatial resolution is close to the requirements suggested by Moin & 

Mahesh (1998). 

 

 

II.5  Initialization 

 

      The simulation flow field is initiated in four steps. First, we assign the mean velocity 

profile of the coupled air-water flow based on the analytical solution of laminar, transient flow 

(Choy & Reible 2000) at the time when the mean velocity at the interface reaches -1s cm 8 . 

Second, we spin up the turbulence by adding small random perturbations in the air and water 

temperature fields to the buoyancy force in the w momentum equation. (The buoyancy force 

induces a quick spin-up to a turbulent state.) For this air-water coupled model, it takes about 

120  large-eddy turnover time units ( )htU0  to spin up the turbulence. Third, we turn off the 

buoyancy force in the w  momentum equation and continue the spin-up simulation for 

another 2400  large-eddy turnover time units to reach a pure shear-driven state. The criterion 

for established pure shear-driven flow is determined by comparing the near-surface velocity 

variances in the air and water domains to the shear turbulent flow above a flat boundary 

reported in Sullivan et al. (2000) and the shear-driven turbulent water flow in Tsai et al. 



 9

(2005). Finally, we start our simulation from this fully developed shear-driven turbulent flow 

by allowing the flat interface to deform. All results shown below are from this final stage. 

Figure 3 shows the time evolution of the mean shear stress sτ  at the interface after the 

interface is allowed to evolve. For the time interval s 50<t , the mean interfacial stress sτ  

remains at a nearly constant value of -2cm dyn 089.0 , implying that our simulation has 

reached a statistically quasi-steady state in response to the wind forcing. The associated 

friction velocities in the air and water are -1s cm 56.8≈=∗
asau ρτ  and 

-1s cm 3.0≈=∗
wswu ρτ , respectively. The ratio of 0Uua

∗  is hence about 0.03. For 

s 50>t , the mean interfacial stress smoothly increases due to the growth of surface waves. 

We discuss the properties of the generated waves in section 6. 

The total u momentum flux in the air is 

*
aaa

a
a uwu

z
U

=′′−
∂
∂ν .                        (2.14) 

Figure 4 shows the vertical distributions of viscous, turbulence, and total momentum flux. As 

requital for a Couette flow under a steady condition, the total mean vertical momentum flux is 

nearly constant with height. 

       The bulk Reynolds number of the air flow ( aa hURe ν0≡ ) is about 8000. This value 

is the same as that in the turbulent Couette flow simulation of Sullivan et al. (2000). The 

simulated turbulence, therefore, is considered to be fully developed. The associated wall 

Reynolds number ( aaa huRe ν2∗∗ ≡ ) is about 115 . Our wall Reynolds number is about % 12  

less than that of Sullivan et al. (2000). In the water, the bulk Reynolds number 

( wsw hURe ν≡ ) is about 2000, where -1s cm 10≈sU  is the mean velocity at the interface. 

The corresponding wall Reynolds number ( www huRe ν2∗∗ ≡ ) is about 60 , which is 

comparable to that in the simulations reported by Lombardi et al. (1996) and Tsai et al. 

(2005). 
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Figure 1. Numerical domain of two immiscible turbulent flows driven by velocity 0U  on a 

Cartesian coordinate. The interface of air and water is located at 0=z . The size of air and 

water sub-domains is the same, ( ) ( )hhLL yx  1 ,6 ,6 , , = . 
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Figure 2. Location of velocity components and pressure on staggered grid systems for the 

mixed finite-differencing and pseudospectral scheme. Symbols with solid circle and cross are 

ghost points at the interface. 
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Figure 3. Time evolution of the mean wind stress sτ  at the interface. 
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Figure 4. Vertical profiles of dimensionless mean vertical turbulent flux ( )2*

aaa uwu ′′−  

(thick dashed line), viscous flux ( ) zUhu aaa ∂∂*ν  (thick dash-dotted line), and their sum 

(thick solid line) in the air. The thin lines represent these terms at various time instances 

during 50 to 70 s, while the thick lines are their averages. 
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Chapter III 
 

Flow visualization 
 

 

III.1  Waves and streaks 

 

Waves and streaks are frequently observed phenomena at the air-water interface; they 

are also found in our numerical simulation results. Figure 5 shows contour distributions of the 

interface elevation ( )tyx  , , η  and the streamwise velocity ( )tzyxuw  ,0 , , =  at three 

representative time instances 6.2=t , 16  and s 64 . The results show that the surface waves 

grow in time in our simulation (figures 5a-c). High-speed streaks are observed before the 

initiation of surface waves (figures 5d, 5e). When the wave motion is weak, the structure of 

the high-speed streaks (figure 5d) is similar to that observed by Tsai et al. (2005) in which a 

stress-driven free-surface turbulent shear flow is considered. Low-speed streaks in the air flow 

near the interface (figure 6a) are also observed. The low-speed streaky structure is similar to 

that commonly observed in a turbulent boundary layer next to a stationary, no-slip boundary 

(e.g. Kim et al. 1987). When the wave motion becomes significant, both velocity structures on 

the interface and within the sublayer of the air side are re-organized and correlate with the 

waveform (figures 5f and 6b). 

Figure 7 shows isosurfaces of the vertical velocity in the water at two representative 

time instances before and after the generation of the surface waves. When surface waves are 

weak, as shown in figure 7(a), the flow is shear dominated and the distributions of ejections 

and sweeps are irregular. However, when the flow becomes wave dominated, the vertical 

velocity distributions align with the waves (figure 7b). 

      In the air side, the wave effect on the air velocity field is not as significant as that in 
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the water and confined to within the viscous sublayer as shown in figures 8(a-c). But for the 

air pressure field (figures 8d-f), the wave effect can extend outside the viscous sublayer when 

the interface is wave dominated. These different responses of the velocity and the pressure 

fields to the surface waves were also observed by Sullivan et al. (2000). 

 

 

III.2  Pressure and stress fields 

 

Figure 9 shows two representative distributions of the fluctuating air and water 

pressures, ap ′  and wp′ , at the interface, and the distribution of surface wave elevation. At the 

early stage when surface waves are weak, pressure fluctuations in the air (figure 9a) exhibit 

no correlation with the surface wave elevation (figure 9b), but pressure fluctuations in the 

water (figure 9c) already reveal a high correlation with the surface waves. This suggests that 

in the early stage of wind-wave generation, pressure fluctuations in the water are driven 

almost passively by surface waves, and the turbulence in the water may not play an important 

role in generating waves. In section 8, a numerical experiment is designed to test the impact 

of water turbulence on wind-wave generation processes. When wave motions dominate 

(figures 9d-f), the pressure fluctuations in both the air and water are highly correlated with the 

surface wave elevation. At this stage, the air pressure fluctuations show a slight phase shift 

relative to the surface waves, and the region of maximum (minimum) pressure occurs on the 

backward (forward) face of the surface wave near the crest (trough), as observed by Sullivan 

et al. (2000). Belcher et al. (1993) term this phenomenon non-separated sheltering. Also, the 

pressure fluctuations in the air (figure 9d) are less regular than those in the water (figure 9f), 

implying turbulence-induced pressure fluctuations in the air are more active than that in the 

water. 

Figure 10 shows shear stress fluctuations at the interface at early (figure 10a) and late 

(figure 10b) stages of wave growth. Similar to the pressure field in the air, the shear stress 

field reveals a wave-induced component only when the waves become strong. The 
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wave-induced shear-stress fluctuations also exhibit a phase shift relative to the surface wave 

elevation. The contribution of wave-induced pressure and shear stress fluctuations to wave 

growth is discussed in Section 7.2. 

      The wave effect on the pressure fields in the vertical direction can also be seen in the 

vertical distributions of pressure fluctuations at s 16=t  (figures 11a-c) and 66 s (figures 

11d-f). At s 66=t , pressure fluctuations in the air and water are influenced by waves, and the 

wave effect extends outside the viscous sublayer. At 16=t s, pressure fluctuations in the air 

are not related to the wave motions, but pressure fluctuations of the water are already highly 

correlated with waves. Simultaneous animations of η  and ap′  show that at early time 

pressure fluctuations in the air usually sweep over the water surface with varying speeds 

without interacting with the wave motions, but at late time ap′  becomes well correlated with 

the surface waves. This suggests different wave generation processes at early and late times. 

We discuss this in more detail in section 7. 
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Figure 5. Snapshots of the instantaneous surface wave height η  (left panels) and streamwise 

velocity u at the interface (right panels) at time s 6.2=t , s 16  and s 64  (from top to 

bottom), respectively. 
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Figure 6. Snapshots of the instantaneous streamwise velocity au  within the viscous sublayer 

of the air domain at time 6.2=t s (a) and 64 s (b). 
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Figure 7. Representative iso-surfaces of vertical velocity in the water at time s 6.2=t  (a) 

and s 66=t  (b). Black and grey iso-surfaces show vertical velocity for values -1s cm 5.1−  

and -1s cm 5.1 , respectively. 
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Figure 8. Snapshots of the instantaneous streamwise velocity (left panels) and pressure 

fluctuations (right panels) of the air flow in ( ) −yx, planes at t=64s at three different heights. 

The upper panels are within the viscous sublayer cm 045.0=z , middle panels are in the 

matched layer cm 23.0=z , and lower panels are in the inertial sublayer cm 37.0=z . 
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Figure 9. Snapshots of the instantaneous pressure fluctuations of the air ap ′  (a, d) and water 

wp′  (c, f), and wave height η  (b, e) on the interface at time s 16=t  (left column) and 

s 66=t  (right column). 
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Figure 10. Snapshots of the instantaneous shear stress fluctuations sτ ′  at the interface at time 

s 16=t  (a) and s 66=t  (b). 
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Figure 11. Snapshots of instantaneous pressure fluctuations in the air ap ′  and water wp′  in 

an ( ) −zx, plane and the associated surface wave height η  at time s 16=t  (figures a-c) and 

s 66=t  (figures d-f). The cross section is located at cm5.7=y  in figure 9. η  is 

normalized by its maximum value at this time. 
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Chapter IV 
 

Characteristics of the surface waves 
 

Figure 12 shows the wavenumber spectra of surface elevation at 6.2=t , 16  and 

s 64 . At the beginning of the simulation ( s 6.2=t ) when the surface wave height is randomly 

distributed (figure 5a), the spectrum shows no significant energy in the low wavenumber 

range (figure 12a). As waves begin to form at s 16=t  (figure 5b), the wave energy is more 

or less evenly distributed at certain selected wave components (figure 12b). When waves 

become strong at s 64=t  (figure 5c), wave energy is concentrated in a few 

small-wavenumber components (figure 12c). Table 1 lists the five largest energy-containing 

components at early ( s 15~t ) and late ( s 68~t ) stages. At early time, the fraction of energy 

in each component is low and rather evenly distributed. At a later stage, about % 80  of wave 

energy is possessed by three wave components. These fastest growing waves are 

( ) ( )0. ,78.0, =yx kk , (0.52, 0.) and ( ) -1cm 0.26 ,78.0 . Their associated wavelengths are in the 

range of 8 to 12 cm, close to those found by Kahama & Donelan (1988) in their laboratory 

experiment. The wavenumber-frequency spectrum of the surface wave elevations are plotted 

in figure 13 for the time interval s 5.66~66=t . It shows that the frequency of the most 

energetic wave component ( ) -1
x cm .)0 , 78.0(, =ykk  is -1s 9.36  which agrees with the linear 

dispersion relation for a propagating gravity wave (dashed line in figure 13). 

Theoretical study (Massel 1996) predicts this component a wind-induced gravity wave 

for wave frequency within the range of -1s 85 19.0 << σ . Experimental results from Veron & 

Melville (2001) also show that the first detectable wind-induced gravity wave is at a 

frequency of about -1s 88 , and most of the detectable waves are located at a frequency of 
-1s 25 . Thus, we believe the waves generated from our simulation are wind-induced gravity 

waves. 
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Figure 12. Wavenumber spectra of surface wave height ( )yx kk , η̂  (normalized by its total 

energy) at time s 5.0=t  (a), s 16=t  (b) and s 64=t  (c). Note that the maximum contour 

level in (c) is higher than that in (a) and (b). 
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Figure 13. Wavenumber-frequency spectrum of the surface wave height ( )ση , ˆ xk  

(normalized by its total energy) at time interval s 5.66~66=t  for 0=yk . The dashed line 

represents the linear dispersion relation xsx kgUk +=σ  where 12=sU  cm s-1 is the 

mean surface current. 
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 Wave number 

( )yx kk ,=κ  ( -1cm ) 

 

( ) 2/12 ><Φ ηη  

 

 

s 15~t  

 

 

(0.26, 1.) 

(1., 1.) 

(1., 0.) 

(0.52, 0.) 

(0.52, 0.52) 

7.1 % 

5.6 % 

5.3 % 

4.5 % 

4.1 % 

 

 

s 68~t  

 

(0.78, 0.) 

(0.52, 0.) 

(0.78, 0.26) 

(0.52, 0.26) 

(1., 0.26) 

32 % 

24 % 

21 % 

7.6 % 

5 % 

 

Table 1 Dominate waves and the percentage of each wave energy at early (t~15s) and late 

(t~68 s) stages for the control case. Note that the dominate waves at these two stages are 

different. 
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Chapter V 
 

Wave effect on flow fields 

 
V.1  Wave effect on mean velocity profiles 

 

Surface waves at the air-sea interface have significant effects on the mean velocity 

profiles of air and water flows (Sullivan el al., 2000, Cheung & Street, 1988 and Howe et al., 

1982). To examine the wave effect on the mean velocity profiles, we compare the air and 

water mean velocity profiles in our simulation with the two-layer velocity profile of a wall 

turbulent boundary layer 

++ = zU ,                              (5.1) 

within the viscous sublayer, and 

+

+
++ ≡+=

0

ln1 ln1
z
zbzU

κκ
,                       (5.2) 

in the inertial layer, where κ  is the von Karman constant, b  is a constant related to the 

surface roughness length +
0z , and bez κ−+ =0 . The non-dimensional wall coordinate +z  and 

velocity +U  are defined as aaauz ν∗  and ( ) ∗− asa uUU  in the air and wwwuz ν∗−  and 

( ) ∗− wws uUU  in the water, respectively. sU  is the mean velocity at the interface, and aU  

and wU  are the mean velocities in the air and in the water, respectively. 

We compute the mean velocities by averaging the flow field in horizontal planes at 

each time, and plot the time variation of these mean velocities in figures 14(a) and 14(b), 

along with the theoretical profiles. Figure 14(a) shows that the simulated mean velocity 

profiles in the air compare well with the theoretical two-layer velocity profile. When surface 

waves are small ( s 50<t ), the mean velocity profiles fit the same linear-logarithmic profile. 
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But, when surface waves become significant ( s 50>t ), wave motions change the mean 

velocity profiles, a systematic downward shift with time. This downward shift in the air 

velocity profile is equivalent to an increase in surface roughness +
0z  (figure 16f), as 

described in Sullivan et al. (2004), implying the enhancement of surface drag due to waves. 

The surface roughness +
0z  is nearly constant 3.0~  when s 50<t  and increases to about 

95.0  when s 70~t . The associated von Karman constant used to fit the logarithmic profile 

is about 33.0  at all time. Figure 14(b) shows the simulated mean velocity profiles and their 

associated two-layer velocity profiles in the water. Not all profiles show the logarithmic 

distribution and the von Karman constant κ  is changing with time, 36.022.0 << κ  when t 

< 24 s and 44.036.0 << κ  when t > 24 s. (At t=3 s, the flow in the water may be too viscous 

as the mean wind profile is rather linear throughout.) The mean velocity profiles do not 

undergo a systematic downward shift with time as in the air. 

 

V.2  Wave effect on and turbulence intensities 

 

      The wave effect on the turbulent velocity variances is also different in air and water. 

Figure 15 shows the turbulent velocity variances at two stages: s 16=t  when turbulence 

dominates (figure 15a and 15b) and s 64=t  when waves dominate (figures 15c and 15d). In 

the air, the vertical distributions of the velocity variances (normalized by the surface friction 

velocity) ( )22 )( ∗〉′〈 ai uzu  are in close agreement with wall-bounded shear turbulent flows 

(Kim et al. 1987, Aydin & Leutheusser 1991, Papavassiliou & Hanratty 1997 and Sullivan et 

al. 2000). There is no significant change between turbulence and wave-dominated stages. In 

the water, our profiles at s 16=t  agree with the stress-driven turbulent flow simulated by 

Tsai et al. (2005). However, at the stage when waves become significant, the velocity 

variances in the water are strongly affected by waves, particularly the w component. The 

horizontal-velocity variances near the interface also increase significantly due to waves. Such 

an enhancement in the near surface turbulent velocity variances is attributed to the orbital 

motions of the generated surface waves.  
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Figure 14. Mean profiles of the streamwise velocity of the air (a) and water (b). The circular 

and delta symbols denote the matched linear-logarithmic profiles at s 16=t  and s 70=t , 

respectively. The log-law constants used to collapse the profiles ( )+0, zκ  are (0.34, 0.31) and 

(0.33, 0.84) in the air and ( )+0, zκ  are (0.3, 1.55) and (0.37, 0.3) in the water at time s 16=t  

and s 70=t , respectively. 
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Figure 15. Vertical distributions of the normalized turbulent velocity variances of the air 

(upper panels) and of the water (lower panels) at early ( s 16=t ) and later ( s 64=t ) stages. 
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Chapter VI  
 

Wave growth types 
 

      Previous theoretical studies suggest that wave growth processes can be separated into 

linear and exponential growth stages and that the forcing mechanisms may involve either 

turbulence-induced or wave-induced pressure and stress fluctuations. The consensus is that in 

the linear growth stage, the wave-induced effects are ineffective since wave motions are weak 

and thus turbulence plays a major role in generating waves. In the exponential growth stage, 

wave-induced fluctuations of pressure and stress dominate and result in a feedback 

mechanism to grow waves quickly. In this study, we examine the wave growth processes in 

our simulated flow by classifying the simulation into linear and exponential wave-growth 

stages using four features as follows. 

First, the behaviour of pressure and shear stress fluctuations in the air is different at 

early and later stages as described in section 3.2; they are turbulence dominated at early stage 

and wave dominated at later stage. Second, the time evolution of the root-mean-square of 

surface wave height 212 〉〈η  (figure 16a) clearly shows slow growth before s 40~t  and fast 

growth after s 40~t . Other statistical quantities, such as 212 〉′〈 ap , the form drag pD , the 

mean surface current sU , the root-mean-square of the interfacial shear-stress fluctuations 

212 〉′〈 sτ  and the surface roughness +
0z  (shown in figures 16b–f) also behave differently 

during early and late stages of the wave growth. They are nearly constant before s 40~t  and 

then increase sharply with time. Third, the individual wave components of the fastest growing 

modes given in Table 1 also reveal linear and exponential growth as shown in figure 17 where 

the time evolutions of the wave amplitudes of the five fastest-growing waves in linear 

coordinates for s 16<t  are shown in figure 17(a), and the three fastest-growing waves in 

exponential coordinates for s 6840 << t  in figure 17(b). They clearly reveal trends of linear 
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and exponential growth for each wave mode at the early and later stages, respectively. Fourth, 

each wave component of the form stress also shows different behaviour at the early and later 

stages of wave growth. Here we define the dimensional form stress per unit area, pD , of each 

wave component as 

∫ ∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂′=

y xL L

a
yx

p dydx
yx

p
LL

D
 

0 

 

0 
 1 ηη .                   (6.1) 

Again we plot the time evolution of pD  of the five largest waves in linear coordinates for 

s 16<t  in figure 18(a) and the largest three waves in exponential coordinates during 

s 6840 << t  in figure 18(b). The form stress is nearly zero when s 16<t  but increases 

exponentially with time when s 40>t . Because the form stress oscillates rapidly in the 

transition regime between 40 s and 50 s, we choose s 160 << t  as the linear growth stage 

and s 7050 << t as the exponential growth stage. 
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Figure 16. Time evolution of interfacial parameters: (a) root-mean-square of the surface wave 

height 212 〉〈η , (b) root-mean-square of pressure fluctuations 212 〉′〈 ap , (c) form stress pD , (d) 

mean surface current sU , (e) root-mean-square of shear stress fluctuations 212 〉′〈 sτ  and (f) 

surface roughness length +
0z  of the air. 

 



 35

 

 

 

 

 

 

 

 

t (s)
4 8 12 16

0

0.0002

0.0004

0.0006

0.0008

0.001

(0.26, 1.)

(1., 1.)

(1., 0.)

(0.52, 0.52)

(0.52, 0.)

(kx, ky) (cm-1)

(a)

t (s)
40 44 48 52 56 60 64 68

0.02

0.04
0.06

(0.78, 0.)

(0.52, 0.)

(0.78, 0.26)

(kx, ky) (cm-1)

(b) (cm)

 
 

Figure 17. Time evolutions of wave amplitudes of the five fastest growth waves at early stage 

(a), and the three fastest growth waves at late stage (b). Note that we use a linear coordinate 

for (a) but an exponential coordinate for (b).  
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Figure 18. Time evolution of the form stress pD  for the same wave modes as those shown in 

figure 17. 
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Chapter VII  
 

Comparison with wind-wave generation 

theories and measurements 
 
 
VII.1  Linear growth stage 

 

      Phillips (1957) proposed a theoretical model for wave generation and argued that the 

turbulence-induced pressure fluctuations in the air are responsible for the birth and early 

growth of waves. His theoretical model predicts that the wave growth of each wavenumber k  

depends on the time scale of the pressure fluctuations in air of the same wavenumber k .  

For the pressure field of the air varies little from its value at the initial instant (pressure 

components remain correlated with the one at the initial instant), in which case we will be 

able to argue as though the pressure field were being convected over the water as a rigid body, 

Phillips’ (1957) derivation leads to a resonance mechanism that explains the initialization of 

wave growth. The resonance mechanism occurs when the convection speed of the fluctuating 

pressure coincides with the phase velocity of surface waves at the same wavenumber, i.e. 

( ) ( ) ακκ coscUc = , where ( )κcU  is the convection speed of the fluctuating pressure in the 

wind direction, and α  is the angle of wave propagation relative to wind direction. From the 

flow field at the early stage of our simulation ( s 16<t ), we found that for each wavenumber, 

the convection speed of the pressure fluctuations in the air is always larger than the phase 

speed of the surface wave. In other words, no resonance mode is found in our simulations. 

The lack of a resonance mode is likely due to our flow condition is unable to fulfill Phillips’ 

assumption that the pressure is assumed to be time-invariant. 
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For the time period much larger than the time scale of pressure fluctuations, Phillips’ 

derivation considers the time development of turbulence pressure fluctuations, and that leads 

to the following prediction for the linear growth of the wave spectrum ( )t,κΦ  

( ) ( ) ( ) tkt
w

22

2

22
  ~,
σρ
κκκ ΘΠ

Φ ,                          (7.1) 

where ( )κΠ  is the pressure spectrum, σ  is the wave frequency, and ( )κΘ  is the 

development time scale in turbulence pressure fluctuations. For the definition of ( )κΘ , 

readers are referred to equation (4.2.5) in Phillips (1977). Application of (7.1) is however 

hindered by the factor ( )κΘ , which is difficult to compute from a simulated flow field. Thus 

we use a simplified version of (7.1) proposed by Phillips (1957) 

( ) ( )
( )

t
gU

t
cw κρ

κκ
222

~, Π
Φ .                         (7.2) 

The simplification from (7.1) to (7.2) is obtained by (a) using the gravity-wave dispersion 

relation with no mean surface current at the interface, gk=2σ  and (b) assuming ( )κcU  is 

greater than ( ) ακ cosc  by a factor of 3-4, then ( ) ( )κκ ckU1~Θ . Transforming to physical 

space, (7.2) becomes 

t
gU

p

cw

a
2

2
2

22
~

ρ
ξ >′<

>< .                          (7.3) 

Equation (7.2) has limitations. It is inadequate for waves with low wavenumber at 

high wind speed (said a wind speed larger than -1sec m 10 ) and for waves with high 

wavenumber at low wind speed (said a wind speed smaller than -1sec m 1 ). This is due to the 

different behaviour of ( )κΘ  at high and low wind speeds and the relation between ( )κΘ  

and ( )κκ Π . For a detailed interpretation, readers are referred to Phillips (1957, pages 

437—440). In our numerical experiments, the wind is mild and the generated surface waves 

are mostly high wavenumber. So it may not be proper to compare our simulation with 

equation (7.2). 

For the application of (7.3), Phillips’ (1957) proposed the following relation between 

air friction velocity and convection speed 
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∗
ac uU  18~ ,                               (7.4) 

based on field measurements. By using this relation, we obtain a convection speed cU  of 

about -1s cm 162  (where -1s cm 9~∗
au ) which is close to the mean wind speed in the 

simulated logarithmic layer where -1s cm 20170~ ±aU . Figure 19a compares the mean 

square surface wave height from our simulation 2η  and the prediction 2ξ  from (7.3). 

Our simulated growth rate is larger than the theoretical prediction by a factor of about 1.5. 

The other three simulations shown in figures 19(b-d) will be described in section 8. 

As mentioned previously, wind energy can be transferred into waves by pressure and 

shear stress fluctuations. Figures 16(c) and 16(d) show that in the linear growth stage the 

root-mean-square shear stress fluctuations is about one-tenth of the root-mean-square pressure 

fluctuations where 212 〉′〈 ap  is about -2cm dyn 22.0  (figure 16c) and 212 〉′〈 sτ  is about 

-2cm dyn 029.0  (figure 16d). Their ratio is close to the value measured in laboratory 

boundary layers (Phillips, 1977). Therefore, the contribution to wave growth from 〉′〈 2
sτ  is 

about 17% of 〉′〈 2
ap . Furthermore, measurements from atmospheric and laboratory boundary 

layers (Elliott 1972a,b) show that 212 〉′〈 ap  is about 6.2  times larger than the mean wind 

stress sτ  (see figures 16c and 3). Our simulation shows that the mean wind stress is about 

0.085 dyn cm-2 (figure 3) during s 20<t  and thus our 212 〉′〈 ap  is also about 2.6 times larger 

than the mean wind stress.  

 

 

VII.2  Exponential growth stage 

 

      Many theories have been proposed to explain the exponential growth of wind 

generated surface waves. By examining the various processes that generate the asymmetric 

pressure perturbation at the surface, Belcher & Hunt (1993) show that the term induced by the 

thickening of the perturbed boundary layer on the leeside of the wave crest, which is called 

the non-separated sheltering effect, dominates. Furthermore, they relate the asymmetric 

effects to the drag force on the wave. When the asymmetric effect grows with time, it also 
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increases the form stress on waves. This way, the form stress can play an important role in the 

exponential wave growth stage. 

Here we calculate the growth rate of our simulated waves and compare it to 

measurements synthesized by Plant (1982) and to theoretical (Belcher & Hunt 1993; Li 1995) 

and numerical studies (Sullivan & McWilliams 2002). The wave growth rate is defined as 

dt
dE

Edt
da

a
12

==∗β ,                           (7.5) 

where ∗β  is dimensional wave growth rate, a  is wave amplitude and kcaE w
225.0 ρ=  is 

wave energy density. Since the form stress dominates the contribution of energy input from 

the perturbed air flow to surface waves, the dimensionless wave growth rate β  (where 

σββ ∗=  and σ  is wave frequency) computed from the right hand side of equation (7.5) 

can also be expressed as (Li 1995) 

( )

2

2
121
⎟
⎠
⎞

⎜
⎝
⎛==

cak
D

dt
dE

E
p

wρσ
β ,                      (7.4) 

where the relation between the rate of change of the wave energy, dtdE , and the form stress, 

pD , is given as pcDdtdE = . We compute the growth rates from the above two relations and 

examine the contribution of form stress to wave growth. The one computed directly from 

wave amplitude is used to verify the contribution of form stress on wave growth. Figure 20(a) 

shows the time averaging (t=56~70s) of the growth rates of the three fast-growing wave 

components from our simulation. The growth rates calculated directly from the wave 

amplitude and from the form stress are similar to each other. For some wave modes the rates 

are close to the measurements synthesized by Plant (1982) and the simulation results from Li 

(1995) and Sullivan & McWilliams (2002) but others are 2-3 times larger than the 

measurements and theoretical predictions. The other three simulations shown in figures 

20(b-d) are described in section 8. 

The consistency of the growth rates calculated from wave amplitude and form stress 

supports Belcher & Hunt’s (1993) argument that the form stress dominates the contribution of 

energy input from air to waves at the exponential wave growth stage. 
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Figure 19. The comparison of the mean square surface wave height between our numerical 

results 〉〈 2η  (solid lines) from four simulations and the theoretical predictions 〉〈 2ξ  

(dashed-dotted lines) of Phillips (1957). The four simulations are : (a) the control run with the 

height of the air domain h = 4 cm, (b) the run with no initial turbulence in the water, (c) the 

run with no surface tension and (d) the run with the height of the air domain h = 8 cm. For the 

theoretical curves, * 18 ac uU =  is used. 
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Figure 20. Wave growth rate as a function of inverse wave age. Small symbols are results 

from the measurements (synthesized by Plant, 1982) and the simulation results (Li, 1995; 

Sullivan & McWilliams, 2002) as published in Sullivan & McWilliams (2002). The dashed 

lines are the empirical formula ( )( )2*02.004.0 cu±=β  proposed by Plant (1982) The cross 

and large triangle symbols are our results calculated from the growth of wave amplitude (7.3) 

and from the form stress (7.4), respectively, for the three fast-growing wave components. The 

three fast-growing wave components are ( ) ( ).0 ,78.0, =yx kk , ( ).0 ,52.0  and 

( )26.0 ,78.0 -1cm  for the control simulation (a), ( ).0 ,52.0 , ( )26.0 ,78.0  and 

( )26.0 ,52.0 -1cm  for the simulation with no initial turbulence in the water (b), ( ).0 ,78.0 , 

( )26.0 ,52.0  and ( ).0 ,52.0 -1cm  for the simulation with no surface tension (c), and ( ).0 ,52.0 , 

( ).0 ,78.0  and ( )26.0 ,78.0 -1cm  for the simulation with larger air domain (d). 
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Chapter VIII  
 

Sensitivity tests 
 

VIII.1  The effects of turbulence in the water 

 

      To study other possible mechanisms that may influence the simulated wave growth 

processes, we perform three sensitivity tests to examine the effects of turbulence in the water, 

surface tension and the computational domain height above the water surface. 

    Our first sensitivity test was motivated by Teixeira & Belcher’s (2006) study. Teixeira & 

Belcher developed an analytical model to test the influence of turbulence in the air and in the 

water, separately, on surface wave growth. They suggested that turbulence in the water might 

play an important role, more than that suggested by Phillips (1957). To test their finding, we 

set up a simulation that consists of no turbulence in the water at the beginning of the 

simulation (that is, at our initialization procedure described in section 2.5 we do not allow for 

turbulence in the water to spin up before the interface starts to deform). Figures 21(c,d) 

compare the wave energy spectrum of the surface wave height at time s 16=t  and s 64=t  

between the cases with and without turbulence in the water at the initial time of wave growth. 

Similar to the simulation with turbulence in the water (i.e., the control case) the case without 

turbulence in the water shows a spread of wave energy in wavenumber space at the early 

stage ( s 16=t ), but then energy begins to be concentrated to just a few dominate wave 

components that have similar wavelengths as the control case at the exponential growth stage 

( s 64=t ). We also compare the growth rates from this sensitivity test with theoretical 

predictions by Phillips (1957). In the linear growth stage, the magnitudes of the mean square 

surface wave height are similar between the simulations with and without turbulence in the 

water (comparing figure 19a and 19b).  Figure 20(b) indicates that turbulence in the water 
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also has no significant effect on the wave growth in the exponential growth stage. 

 

VIII.2  The effects of surface tension 

 

 In the second sensitivity test, the surface tension in the interfacial boundary condition 

(2.9) is set to zero. The distributions of wave energy spectra (figures 21e,f) exhibit similar 

patterns as those from the previous two simulations with surface tension (figures 21a-d). The 

computed wave growth rates are slightly higher than the cases with surface tension at the 

linear growth stage (comparing figure 19c with figures 19a,b), but are similar to previous 

studies at the exponential growth stage (figure 20c). We conclude that surface tension has no 

significant impact on the initial wind-wave generation. 

 

VIII.3  The effects of the computational domain of air 

 

For the third sensitivity test, we double the height of the computational domain of air 

(while vertical resolution remains the same). The distribution of wave energy spectra shows 

similar patterns as the previous three cases (figures 21g,h). The linear wave growth rates of 

the larger-numerical domain simulation (figure 19d) are smaller than those of other three 

simulations (figures 19a-c), and are now closer to the theoretical predication of Phillips 

(1957). However, the wave growth rates from this simulation are a little larger than the other 

simulations and also larger than theoretical predictions at the exponential growth stage (figure 

20d). 
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Figure 21. Wavenumber spectra of surface wave height ( )yx kk , η̂  (normalized by its total 

energy) at time s 16=t  (left panels) and s 64=t  (right panels) for the control case shown 

in (a, b), the simulation without generating turbulence in the water at the beginning of the 

simulation shown in (c, d), the simulation without surface tension at the interface in (e, f), and 

the simulation doubling the height of the computational domain of the air in (g, h). 
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Chapter IX  
 

Conclusions 
 

      The initial wind-wave generation processes consist of linear and exponential growth 

stages as proposed by theoretical studies and supported by some laboratory and field 

measurements but these processes have never been studied by numerical simulation before. In 

this study we developed an air-water coupled model where the continuity of velocity and 

stress is satisfied at the interface so it can simulate the interaction of two fully developed 

turbulent layers (air and water) above and below the interface. The limitation of our coupled 

model is the linearization of the interfacial boundary conditions and hence the model is only 

applicable to small amplitude waves. 

The characteristics of simulated waves are similar to field and laboratory observation 

at the initial stage of wind-wave generation. The wavelength of the dominate waves is about 

8cm which is in the range of wind-induced gravity waves. The corresponding wave age 

5~*
auc  belongs to ‘young sea’ or ‘slow moving waves’. 

 At the early stage of wave growth, the turbulent flow structures in the air (and in the 

water) remain similar to shear-driven turbulent flows over a flat surface (and under a flat free 

surface). At the later stage of our simulation, waves grow exponentially and the flow fields are 

strongly influenced by wave motions. The wave effects on the flow fields are summarized as 

follows. First, the streaky structure, which is a typical phenomenon of shear-driven turbulent 

flow, is interrupted by wave motions and the streamwise velocity field forms a pocket-like 

feature. Second, the flow field over the whole water domain is strongly affected by the waves 

at the later stage. This effect is evidenced from the iso-surface of vertical velocity, the vertical 

profiles of the mean velocity and turbulence intensity. Motions in the water are dominated by 

wavy features and the flow field in the water is nearly irrotational flow. This agrees with most 
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theoretical and experimental studies which assume water flow to be irrotational underneath 

the surface wave. Third, wave effects on the velocity field in the air are confined only in a thin 

viscous sublayer. The turbulence intensity of the air does not change significantly due to 

waves. Fourth, the pressure field in the air behaves differently at early and late stages. In the 

early stage, the pressure fluctuations of the air are mainly turbulent-induced and advect faster 

than the phase velocity of the waves. During the later stage, the air pressure fluctuations 

become wavelike throughout the turbulent layer and move along with the surface waves. 

Similar to theoretical studies, our simulated waves can be separated into linear and 

exponential growth stages as distinguished by the following: (1) the behavior of pressure 

fluctuations in the air (which are considered to be the main factor that is available to initiate 

and support wave motion), (2) the simulated interfacial properties , (3) the growth trend, and 

(4) the magnitude of the form stress (which is considered to be the main contributor of energy 

transfer from wind to waves at the exponential growth stage). 

Our growth rates are comparable to theoretical predictions, field and laboratory 

measurements, and other numerical simulations. In the linear growth stage, the theoretical 

prediction from Phillips’ (1957) wind-wave generation mechanism is examined. Our wave 

growth rates are comparable to those theoretical predictions if we use an air domain that is 

deep enough. In the linear stage the simulations show that the contribution of shear stress 

fluctuations to the wave growth is about % 17  of pressure fluctuations contribution, which 

agrees with laboratory measurements. In the exponential growth stage, our wave growth is 

consistent with Belcher & Hunt’s (1993) non-separated sheltering mechanism. However, the 

growth rates computed from our simulated waves are somewhat larger (by about a factor of 2) 

than those obtained from measurements (Plant 1982), simulations (Sullivan & McWilliams, 

2002; Li, 1995) and Belcher & Hunt’s (1993) theoretical prediction. 
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Appendix A 
 
Numerical Method 
 

I. Pressure Poisson Equations 

 

To solve the Poisson equation (2.3), we transfer the pressure field and the source term 

into wave space and apply center-differencing scheme to calculate the vertical derivatives, 

which yields 
lllllllll

)))))) Η=++++ −+ 1,,,,1,,,,2,,1 123  kjikkjikkjikkjikji pDpDpDpp αα ,        (A.1) 

where coefficients 1α  and 2α  are produced from fast Fourier transform (FFT) ,and l
kD3 , 

l
kD2  and l

kD1  are coefficients from second-order finite-differencing schemes. For 

computational efficiency, we separated the coefficient matrix of equation (A.1) to two 

sub-matrices and used the interface from conditions (2.9) and (2.13). These two interfacial 

points can be treated as Dirichlet boundary conditions for each sub-domain. The sub-matrices 

became two tri-diagonal matrices and the computational time is greatly reduced. 

 

II. Stretching Grid systems 

In the vertical direction, the discretization grids are stretched with a finer resolution 

near the interface using the following transform functions 

 

( )
( ) ⎥

⎦

⎤
⎢
⎣

⎡
−=

α
ας

tanh
tanh

1 kaa
k hz           in air,         (A.2) 

and 

( )
( ) ⎥

⎦

⎤
⎢
⎣

⎡
−−=

α
ας

tanh
tanh

1 kww
k hz           in water,      (A.3) 

where kς  ( 10 ≤≤ kς ) is uniformly distributed constants and 8417.1=α  (Gavrilakis, 1992) 

is the degree of stretch. 
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Appendix B 
 
Initialization 
 
I. Analytical solution:  

the mean velocity profile of the coupled air-water flow 

 
The first step to initiate the simulation flow field is the assignment of mean velocity 

profile. We assign the mean velocity profile of the coupled air-water flow based on the 

analytical solution of laminar, transient flow (Choy & Reible 2000) at the time when the mean 

velocity at the interface reaches -1s cm 8 . The governing equations to describe this flow are 
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∂ ν ,                         (B.1) 
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where boundary conditions are applied as 

( ) 0, UthzUa == ,                        (B.3) 
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Generation solutions of aU  and wU  obtained by Choy & Reible (2000) are given as 
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where 
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( ) ( ) ( )∫∫ ′′+′′= zdzzdzN naanwwn
22 ],[],[ βψρβψρβ ,            (B.9) 

( ) ( ) ( ) ( ) ( )∫∫ ′′′+′′′=
−

h

naah nwwn zdzCzzdzCzI
0 00

0

0   ,  , βψρβψρβ ,       (B.10) 

and ( )zC0  is the initial condition. aψ  and wψ  are engenfunctions of the air and water 

respectively which can be expressed as 
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and the eigenvalue nβ  is given by  
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where naA , , naB , , nwA ,  and nwB ,  are given by 
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For detail deviation, readers are referred to Choy & Reible (2000). 
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II.  Generating turbulence by Buoyancy force 

 

      The second step to initiate the simulation flow field is the generation of turbulence. 

We spin up the turbulence by adding small random perturbations in the air and water 

temperature fields to the buoyancy force in the w momentum equation. The governing 

equations used to express these flow fields (air and water) are 
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where lα  is coefficient of thermal expansion, lΚ  is thermal diffusivity, and l
o
l αθ 1=  is 

reference temperature. Again the subscript l  denotes variables in air ( a=l ) or water 

( w=l ). 

      Boundary conditions for temperature fields are described as follows. For four 

sidewalls of computation domain, periodic boundary conditions are assumed on them. For 

upper and lower boundaries, constant temperature condition is applied as  

( ) 1,,, θθ == thzyxa ,                       (B.22) 

( ) 2,,, θθ =−= thzyxw ,                      (B.23) 

where 21 θθ > . For the boundary at the interface of air and water domain, the linearized 

conditions for this boundary are continuity of temperature and heat flux. The expressions of 

these interfacial boundary conditions are 

wa θθ = ,                             (B.24) 
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zz
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where a
paaa CρΚ=h  and w

pwww CρΚ=h  are thermal conductivity of the air and water, and 
a
pC  and w

pC  are heat capacity of the air and water. 

Boundary conditions for velocity fields are described as in section II.3. 
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Appendix C 
 

Decomposition of the flow field in the Water 
 

Wave motions are generated at the air-water interface and their effect is larger in the 

water than in the air. And because the flow field in the water is nearly irrotational, it is easier 

to decompose into ensemble, wave-correlated and wave-uncorrelated turbulent components as 

( ) ( ) ( ) ( )tzyxftzyxfzftzyxf tw ,,,,,,,,, ++= .           (C.1) 

The ensemble component ( )zf  is defined as averages over horizontal space and time; the 

wave-correlated component ( )tzyxf w ,,,  is defined as those directly affected by the surface 

wave motion, which will be described below, and the remainder is turbulent component. 

Decomposing the flow field in the air is much harder so we will leave it for future study. 

The wave-correlated motions ( )tzyxf w ,,,  are the flow fields induced by and move 

with the surface wave ( )tyxw ,,η . The wave component of the surface wave ( )tyxw ,,η  is a 

filtered field of the total wave height ( )tyx ,,η . We assume that high frequency potion of the 

wave height is associated with (or generated by) the turbulence. The cutoff frequency is 

chosen to be where the energy spectrum ( )ηΦ  has a significant drop. The wave component 

( )tyxw ,,η  is used to determine the wave-induced velocity and pressure fields in the water. 

Because the wave-induced motion in the water is nearly irrotational, we can establish a linear 

relation between the surface wave and the wave-induced motions as follows. The first step 

uses the analytical solution of sinusoidal waves on deep water. For an irrotational motion, a 

velocity potential ( )tzyxw ,,,φ  exists and the wave-induced velocity and pressure satisfy 
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where the suberscript w  represents variables in the water domain and the supscript w  
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represents wave-induced motions. The associated solution of potential function ( )tzyxw ,,,φ  

is related to the wave height ( )tyxw ,,η  as  

( ) ( ) ( )tyxeztzyx wiw t ,, ,,, ηφ αΦ=                  (C.4) 

where ( )zΦ  is a vertical distribution function and tα  represents a o90  phase lag in time 

between ( )tzyxw ,,,φ  and ( )tyxw ,,η . From ( )tzyxw ,,,φ , we can then compute the 

wave-induced velocity and pressure from equations (C.2) and (C.3). Note that there is also 

another o90  phase lag between ( )w
w

w
w vu ,  and ( )tzyxw ,,,φ  in ( )yx, , respectively, 

according to (C.2). For more detail derivation and description, readers are referred to 

Lighthill ( )1978 . 

In the second step, we obtain the vertical distribution function ( )zΦ  by looking at the 

correlations between the simulated flow fields in the water to the surface wave height 

component, as follows: 
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ηη
η
,

,
=Φ ,                       (C.8) 

where the symbols Co  and Spec  represent cross-spectrum and power-spectrum of 

variables in bracket. For the u  component we correlate it with x  and t  derivatives of 

( )tyxw ,,η  (denoted as w
xtη ), which yields a o90  phase lag in both x  and time t , 

consistent with equations (C.2) and (C.4). Similarly, the ( )tzyxvw
w ,,,  field has a o90  phase 

lag in y  with ( )tzyxw ,,,φ , and then a o90  phase lag in t  with ( )tyxw ,,η . For the 

w -component, we consider just the o90  time lag between w  and ( )tyxw ,,η . The pressure 

field has no phase lag with ( )tyxw ,,η , according to (C.3) and (C.4). The correlation analysis 
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shown in equations (C.5)-(C.8) yields a height dependence of the correlation between the flow 

field and the surface wave height; the closer to the surface, the larger the correlation. 

      Figures 22-25 show the application of this method on surface wave height, streamwise 

velocity, spanwise velocity and vertical velocity at the interface. Different cutoff frequency 

and wavenumber are chosen to be where the energy spectrum ( )ηΦ  has a significant drop 

and the energy spectrum ( )ηΦ  contains most of the wave energy. No significant change on 

tu  and tv  components, but the distribution of tη  and tw  is more irregular.   
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Figure 22. The decomposition of surface wave height near time t~65 s. With the application of 

decomposition method in Appendix C, the total surface wave height (a, b) can split into 

wave-correlated components (c, d) and wave-uncorrelated components (e, f). The difference 

between left and right columns is the cutoff frequency (or wavenumber). The cutoff frequency 

(wavenumber) of left column is smaller (larger) than right column. 
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Figure 23. As figure 22 but for the decomposition of streamwise velocity at the interface. 
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Figure 24. As figure 22 but for the decomposition of spanwise velocity at the interface. 
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Figure 25. As figure 22 but for the decomposition of vertical velocity at the interface. 
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Appendix D 
 
Some records for four simulation runs 
 
      Some analytic results for four simulation runs are recorded in this section. 

      Figure 26 shows the time evolution of mean wind stress of four simulation runs. As 

described in previous section, the nearly constant mean wind stress represents that the 

air-water coupled flow reaches a statistically quasi-steady state in respond to the wind forcing. 

Furthermore, the distribution of mean vertical turbulent flux, viscous flux and their sum of the 

wind field (figure 27) has similar behaviour of a Couette flow under a steady condition. 

Therefore, these four simulation runs reach the state of fully-developed, wind-driven turbulent 

flow. 

      Figures 28-30 show that the simulations with no initial turbulence in the water, no 

surface tension at the interface and the height of the air domain h = 8 cm also observe the 

phenomena of waves and streaks. Also, the dominate waves for these four simulation runs are 

different (tables 1-4). 

      Compare wavenumber spectra of pressure fluctuations of the air (figure 31) with 

wavenumber spectra of surface wave height (figure 21), the result shows that the peaks of 

their energy distribution do not coincide with each other at early stage but are at the same 

wave components at late stage. This interprets that pressure field has different behaviours at 

early and late stage. One is turbulent-induced components dominated at early stage that do not 

correlate with surface waves, and the other is wave-induced components dominated at late 

stage that correlate with surface waves. 

      Time evolution of some flow quantities at the interface for other three runs (figure 

32-34) also has similar results as control run. For surface wave height 212 〉〈η , it grows 

slowly before s 40~t  and fast after s 40~t . For other flow quantities, they are nearly 

constant before s 40~t  and then increase sharply with time except for the mean surface 

current sU  of the run with no initial turbulence in the water. It increases with time before 
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t~60 s and decreases with time after t~60s. 

      Figures 35 and 36 show that time evolution of wave amplitude and form stress of the 

simulations with no initial turbulence in the water, no surface tension at the interface and the 

height of the air domain h = 8 cm have different behaviour as described in section VI at early 

and late stages. However, for wave components those grow much slower than the fastest 

growing wave in these two stages will not have the same behaviour. In linear growth stage, 

for example, wave component ( ) .)0,78.0(, =yx kk cm-1 of the simulation with larger air height, 

does not have linear wave growth trend. And in exponential growth stage, the form stress of 

wave components ( ) )26.0,52.0(, =yx kk  and (0.78,0.26)cm-1 of the simulation with no initial 

turbulence in the water and larger air height respectively do not have exponential growth 

trend. 
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Figure 26. As figure 3 but for (a) the control run with the height of the air domain h = 4 cm, (b) 

the run with no initial turbulence in the water, (c) the run with no surface tension and (d) the 

run with the height of the air domain h = 8 cm. 
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Figure 27. As figure 4 but for (a) the control run with the height of the air domain h = 4 cm, (b) 

the run with no initial turbulence in the water, (c) the run with no surface tension and (d) the 

run with the height of the air domain h = 8 cm. 
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Figure 28. As figure 5 but for the run with no initial turbulence in the water. 
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Figure 29. As figure 5 but for the simulation without surface tension at the interface. 
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Figure 30. As figure 5 but for the simulation doubling the height of the computational domain 

of the air. 
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Figure 31. Wavenumber spectra of surface pressure fluctuations of the air (normalized by its 

total energy) at time s 16=t  (left panels) and s 64=t  (right panels) for the control case 

shown in (a, b), the simulation without generating turbulence in the water at the beginning of 

the simulation shown in (c, d), the simulation without surface tension at the interface in (e, f), 

and the simulation doubling the height of the computational domain of the air in (g, h). 
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Figure 32. As figure 16 but for the run with no initial turbulence in the water. 

 

 



 69

 

 
U

s
(c

m
s-1

)

8

10

12

14

16

(b)

<p
a'

2 >1/
2

(d
yn

cm
-2

)

0.2

0.3

0.4

0.5

0.6

0.7
(c)

<η
2 >1/

2
(c

m
)

0

0.02

0.04

0.06

0.08

(a)

<τ
s'

2 >1/
2

(d
yn

cm
-2

)

0.02

0.04

0.06

0.08

0.1

(d)

D
p

(d
yn

cm
-2

)

0

0.01
(e)

t (s)

z 0+
(a

ir)

10 20 30 40 50 60 700

0.5

1 (f)

 

Figure 33. As figure 16 but for the simulation without surface tension at the interface. 
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Figure 34. As figure 16 but for the simulation doubling the height of the computational 

domain of the air. 
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Figure 35. As figure 17 but for the control case shown in (a, b), the simulation without 

generating turbulence in the water at the beginning of the simulation shown in (c, d), the 

simulation without surface tension at the interface in (e, f), and the simulation doubling the 

height of the computational domain of the air in (g, h). 
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Figure 36. As figure 18 but for the control case shown in (a, b), the simulation without 

generating turbulence in the water at the beginning of the simulation shown in (c, d), the 

simulation without surface tension at the interface in (e, f), and the simulation doubling the 

height of the computational domain of the air in (g, h). 
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s 15~t  

 

 

(0.52, 0.) 

(0.52, 1.83) 

(1.52, 0.26) 

(0.26, 0.26) 

(0.78, 0.26) 

11 % 

9.7 % 

8.5 % 

7.8 % 

7.3 % 

 

s 68~t  

 

(0.52, 0.) 

(0.78, 0.26) 

(0.52, 0.26) 

50 % 

20 % 

9.8 % 

 

Table 2 Dominate waves and the percentage of each wave energy at early (t~15s) and late 

(t~68 s) stages for the simulation without generating turbulence in the water at the beginning 

of the simulation. 
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Table 3 Dominate waves and the percentage of each wave energy at early (t~15s) and late 

(t~68 s) stages for the simulation without surface tension effect. 
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13 % 

 

Table 4 Dominate waves and the percentage of each wave energy at early (t~15s) and late 

(t~68 s) stages for the simulation with larger air domain. 
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Appendix E 
 

Future Work 
 
      Some future work of the present study is introduced as follows. 

      First, apply message-passing interface (MPI) method to make this code has ability of 

doing parallel computing. This can solve the problem of the limitation of computer power. For 

example, we need 6 weeks to finish a run with one processor where 2.4 GHz CPU is used and 

3642 ×  gridpoints are calculated. If the MPI method is applied, the reduction rate of the 

calculating time will decrease according to how many processors are used at the same time. 

      Second, we need to do some sensitivity tests of larger computation domain and 

stronger wind forcing. After this code can do parallel computing, it will become practicable to 

realize the effect of computation domain and wind forcing on wind-wave generation 

processes. 

      Third, temperature is also an important factor to influence wave growth. The effect of 

stable, neutral and unstable stratosphere on wind-wave generation processes will also be an 

interesting topic. 

      Last, this coupled model also has its limitation due to the linearized interfacial 

boundary conditions and the use of direct numerical simulation method. When linearized 

interfacial boundary conditions are used, this coupled model can not simulate wave breaking 

effect, wave-wave interaction and large amplitude wave where wave slope greater than 0.01. 

And when direct numerical simulation is used, it is unable to simulate mesoscale and 

macroscale motions with present computer power. Therefore, use other simulation scheme or 

nonlinear interfacial boundary conditions can extend the application of this study to more 

variety topics. 
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