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ABSTRACT

An air-water coupled model is developed to investigate wind-wave generation
processes at low wind speed where the surface wind stress is about 0.089dyncm™ and the
associated surface friction velocities of the air and the water are u’ ~8.6cms™ and
u’ ~0.3cms™, respectively. The air-water coupled model satisfies continuity of velocity and
stress at the interface simultaneously, and hence can capture the interaction between air and
water motions. Our simulations show that the wavelength of the fastest growing waves agrees
with laboratory measurements (4 ~8-12cm) and the wave growth consists of linear and
exponential growth stages as suggested by theoretical and experimental studies. Constrained
by the linearization of the interfacial boundary conditions, we perform simulations only for a
short time period, about 70s; the maximum wave slope of our simulated waves is ak ~ 0.01
and the associated wave age is c/u’ ~5, which is a slow moving wave. The effects of waves
on turbulence statistics above and below the interface are examined. Sensitivity tests are
carried out to investigate the effects of turbulence in the water, surface tension, and the
numerical depth of the air domain. The growth rates of the simulated waves are compared to
Phillips’ (1957) theory for linear growth and to Plant’s (1982) experimental data and previous
simulation results for exponential growth. In the exponential growth stage, some of the
simulated wave growth rates are comparable to previous studies, but some are about 2~3
times larger than previous studies. In the linear growth stage, the simulated wave growth rates

are sensitive to the numerical depth of the air domain, and are comparable to Phillips’



prediction only for the larger air domain. In qualitative agreement with the theories proposed
by Phillips (1957) and Belcher and Hunt (1993) for slow moving waves, the mechanisms for
the energy transfer from wind to waves in our simulations are mainly from
turbulence-induced pressure fluctuations in the linear growth stage and due to the in-phase
relationship between wave slope and wave-induced pressure fluctuations in the exponential

growth stage, respectively.
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Chapter |

Introduction

As wind flows over a water surface, air and water motions interact and induce many
phenomena at the interface. Wind-generated waves are the most visible signature of this
interaction and play a major influence on the momentum and energy transfer across the
interface. These wind-generated waves, observed by microwave-radar backscatter, have
wavelengths of the order of 4-40 cm (Massel, 1996). Because these small-scale waves impact
remote sensing of the sea surface, the generation and growth of wind-generated waves have
been subjects of intense research. However, the mechanisms that generate these surface waves
are still an open issue due to (1) difficulties in obtaining a dataset from laboratory and field
measurements that records the time evolution of motions in both atmosphere and ocean
domains, (2) mathematical difficulties in dealing with highly turbulent flows over complex
moving surfaces, and (3) lack of a suitable coupled model to simulate turbulent flows in both
atmosphere and ocean simultaneously. With increases in computer power, it is now possible to
simulate wave and turbulence phenomenon by direct numerical simulation (DNS). DNS
numerically solves the Navier-Stokes equation subject to boundary conditions and hence such
simulated flow fields contain no uncertainties other than numerical errors. In this study we
develop an air-water coupled DNS model and use it to study wind-wave generation and
growth processes.

Theoretical studies (Jeffreys 1925; Phillips 1957; Phillips & Katz 1961; Miles 1957;
Townsend 1972, 1980; Phillips 1977; Jacobs 1987; Kahma & Donelan 1988; van Duin &
Janssen 1992 and Belcher & Hunt 1993, among many others) have proposed different
mechanisms as to how surface waves are generated from calm water and quantify the

consequential growth rate of surface waves. These studies suggest that there are linear and



exponential growth regimes for surface waves.

With the increase of computer power, the numerical simulation (DNS) technique has
become a useful tool in studying turbulent flows. Such a numerical simulation, by directly
solving the fluid dynamics equations, produces three-dimensional, time evolving flow fields
which can be analyzed to study the details of the flow structure and to deduce the turbulence
statistics. However, most of the previous numerical studies (Davis 1970; Gent & Taylor 1976;
Al-Zanaidi & Hui 1984; De Angelis et al. 1997; Henn & Sykes 1999; Sullivan et al. 2000;
Tsai et al. 2005) examine either the wave effect on air motions or the wind stress effect on
water motions by simulating only air or water flows (i.e., one-phase flow). These so-called
one-phase flow simulations are driven by either wind shear near the surface for turbulence in
the air or an imposed surface stress for turbulence in the water. Because the interface is
prescribed, the interaction between the wind and the waves is prohibited. Only a few
numerical studies are conducted for two-phase flows (Lombardi ez al. 1996; De Angelis 1998;
Fulgosi et al. 2003) but none of them investigate the wind-wave generation processes. The
present study, therefore, is aimed at unraveling wind-wave generation processes by
conducting direct numerical simulations that couple turbulent air and water flows.

The organization of this paper is as follows. The numerical aspects of the present
simulation, including the model formulation, numerical method and simulation
implementation are described in section 2. The simulated flow structures of surface waves and
elongated streaks generated by wind are shown in section 3. The wave effect on the statistics
of mean velocity and turbulent intensity is reported in section 4. The characteristics of the
generated surface waves are examined in section 5. Two wave growth types are defined in
section 6. Comparison with theoretical wind-wave generation mechanisms is given in section
7. The effects of turbulence in the water, surface tension, and the numerical domain in the air
side on wave growth are examined in section 8. Finally, the main conclusions of this paper are

reported in section 9.



Chapter 11

The coupled model

1.1  Flow configuration

Consider two turbulent flows, air and water, under a wind-driven system that interacts
across a deformable interface. The turbulent and wave motions must satisfy the continuity of
velocity and stress across the interface. As a first step, we simplify the problem by excluding
the non-linearity of waves and wave breaking effect and linearized these interfacial boundary
conditions via the small amplitude wave assumption. We use the coupled model to study the
initial stage of the generation of waves by wind.

First we have to choose the characteristic velocity and length scales of the flow. In the
study of a turbulent flow over given water waves, Sullivan et al. (2000) chose the constant
velocity imposed at the upper boundary and the wavelength of the imposed water wave as the
characteristic scales. In the study of turbulent shear flow under a free surface, Tsai et al. (2005)
used the mean velocity at the free surface and the length of viscous sub-layer given from
experimental result (Melville et al., 1998) as their characteristic scales. Flow features are
typically characterized by their external condition: a given wave or imposed wind speed,
which make it easy to choose the characteristic scales, such as above studies of single-phase
turbulent flows. For two-phase flows we investigate here, there are two problems in choosing
the characteristic scales. First is due to the deformable interface that is not a fixed wave type.
The interface changes with time and varies from place to place. This boundary does not
provide any characteristic length for us to define the domain size or the bulk Reynolds

number, or to scale the governing equations before we start the simulation. Second problem is



due to the different time and length scales of turbulent motions in air and water. In general, we
should use two sets of characteristic variables to measure these two motions. But U, is the
only characteristic flow feature we know before starting the simulation.

Thus, we consider two turbulent flows (air and water) interacting across a deformable
interface under a wind-driven system. Each domain of the two immiscible fluids is a
rectangular box with a depth # and horizontal length (Z,,L,) =64, as shown in figure 1.
We adopt a Cartesian coordinate where the air region occupies the z>0 domain, and the
water region the z <0 domain. The horizontal coordinates x and y are in the streamwise
and spanwise directions, respectively. The external forcing of the system is a constant velocity
U, imposed at the upper boundary (z = /) in the air region, i.e., similar to a Couette flow.

We set U, =3ms™ in this study.

1.2 Governing equations

The mass and momentum conservation equations for incompressible, Newtonian

fluids of air and water with density p, and kinematic viscosity v, are

V-u, =0, (2.1)
A, u, -vVu, :—inﬁvévzuﬂ, (2.2)
ot Py .

where the subscript ¢ denotes variables in air (/=a) or water (/=w), u:(u,v,w) are
velocity components in streamwise, spanwise and vertical directions respectively, and p, is
the pressure.

The Poisson equation for p, is obtained by taking the divergence of (2.2) and using

2.1)

azp[ n azp[ " azpf —H

: 2.3
x? oyt oz? ! (23)

where the source term H, is the divergence of the convective and diffusive terms in



equation (2.2). The solution of (2.3) forces the continuity equation (2.1) to be satisfied at each

time step.

1.3 Boundary conditions

The domains of the two immiscible fluids have six external boundaries and one
internal deformable interface. For external boundaries, periodic conditions are assumed on the
four sidewalls of the computational domain. At the top of the domain, z=#h4, a

constant-velocity condition is applied as

u,=U,, v,=0, w, =0, aap“=0. (2.4)

a a Z
At the lower bottom of the water region, z=—4, we impose free-slip boundary conditions

Oy _g "% _g w. =0, P _q (2.5)
oz 0z Oz

to emulate an infinite depth.

For the deformable boundary, the interface of two viscous fluids must satisfy the
following requirements as stated in Wehausen & Laitone (1960):
1. The effect of surface tension as one passes through the interface is to produce a
discontinuity in the normal stress proportional to the mean curvature of the boundary surface.
2. For viscous fluids the tangential stress must be continuous as one passes through the
interface.
3. For viscous fluids the tangential component of the velocity must be continuous as one
passes through the interface.
Without simplification, these requirements lead to complicated boundary conditions (see
equations 3.2~3.6 in Wehausen & Laitone, 1960). However, assuming small interfacial
deformation, as in the initial wind-wave generation processes considered here, we can

linearize the interfacial conditions (Tsai & Yue, 1995), which yields boundary conditions



satisfied at z=0 as follows:

u,=u,, v,=v,, W,=Ww,, (2.6)
ou, ow ou, oOw
¢ = | 2.7
'u“( 0z  Ox j ,uw( 0z  Ox j 27)
| Qg Oy [ Py O] 28)
0z Oy 0z Oy
ou, Ov,
P, —P.E&N+2u, +
ox 0Oy
: (2.9)
— + -2 8”" +8L —— @_{_62_77
pa pagn /Lla 6x ay 7/ ax2 ayZ

where 4, =p v, and p, = p, v, are dynamic viscosities of air and water, and y is the

surface tension of the water interface. The linearized kinematical condition satisfied atz = 0 is

6_77+_8(u77) +—a(w7) =w. (2.10)
ot Ox oy

The use of a central-differencing scheme at the interface requires additional points
(ghost points) below the interface for (u,,v,,w,,p,) and above the interface for
(u,,v,,w,,p,), as shown in figure 2. The (u,,v,u,,v,) values at the ghost points are
determined using the continuity conditions for velocity (2.6) and tangential stresses (2.7 and
2.8). (wa,ww) at the ghost points are determined by two additional conditions: Applying the

continuity equation (2.1) and the boundary conditions (2.6) at z=0 results in the condition

ow, _ ow,, ' 2.11)
Oz Oz

A second condition is obtained by adding the x-derivative of (2.7) and the y-derivative of (2.8)

(Chandrasekhar, 1954), leading to

aZWa I azwa + azwa _ 82‘/Vw + aZWW + azww (2 12)
Ha o’ oyt o H X 28 ) |

The pressure (pa, pw) at the ghost points is determined by applying the normal stress

condition (2.9) and the continuity condition for the vertical velocity (2.6) to the vertical



component of the momentum equation at the interface, which results in
2 2 2
_i%_a(uawa)_a(vawa)_f?(wawa)wa 0 P L0 LA L9 LA
p, 0z ox oy 0z Ox oy Oz
2 2 2
:_iﬁpw_a(u,w)_a(vw)_ﬁ(ww)_’_‘/w(& ww_’_aw o“w

(2.13)
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11.4 Numerical method

The aim of our coupling algorithm is to simulate the air and water flows
simultaneously. Most of previous coupled simulations used iterative methods (e.g., Lombardi
et al., 1996), which determine the interfacial variables on air side or water side using different
continuity conditions by imposing continuity of velocity on the air side and continuity of
stress on the water side. Then the calculation is iterated until two continuity conditions are
satisfied on both sides. This iterative method is time consuming. Lombardi et al. (1996)
simplified the iteration by using a fractional time step method, which uses only the first step
of the iterative scheme, to study their coupled gas-liquid flow. But then the continuity
condition is not satisfied exactly with this fractional time step method. Thus we develop a
new model to study the coupling problem.

The numerical method used to solve the system of equations (2.2) and (2.3) subject to
the boundary conditions (2.4)~(2.10) is based on the scheme described by Tsai (1998) and
Tsai et al. (2005). We use a staggered grid in the vertical as shown in figure 2 where the grids
are stretched with finer resolution near the interface as in Tsai er al. (2005). We use a
pseudo-spectral method to evaluate x and y derivatives, second-order finite-difference
scheme for z derivatives, and a second-order Runge-Kutta method (Spalart ez al., 1991) for

time integration.

We use (N,,N,,N,)=(64,64,65) gridpoints in each of the air and water domains.
The domain size in both x and y directions is 24cm. In the water, the horizontal grid

size in wall units is Ax! = Ay, = Ay, u, /v, =11.25, where the water friction velocity u’, is



given in section 2.5. Near the interface the stretched vertical grid adequately resolves the
viscous layer. There are 14 grids in the near surface region (— z 310). In the air domain,
the corresponding non-dimensional horizontal spacings are Ax; = Ay, =21.4, and there are
ten gridpoints within the region z; <10 in the vertical direction near the interface.

As suggested by Moin & Mahesh (1998), the grid resolution requirements for spectral
method of boundary layer flow in x (streamwise) and y (spanwise) and second-order central
difference scheme in z are (Ax,Ay,Az)=(14.3,4.8,0.26) where ¢ =(v3/e}" is the
Kolmogorov microscale, &~0°/h is dissipate rate and o= (u;2 +v? +wf)]/2 is
root-mean-square fluctuating speed. For our grid system, the Kolmogorov microscale is
¢ ~0.025 cm, the horizontal spacing is 0.375 cm and the vertical spacing near the interface is
about 0.01cm. This spatial resolution is close to the requirements suggested by Moin &

Mahesh (1998).

11.5 [Initialization

The simulation flow field is initiated in four steps. First, we assign the mean velocity
profile of the coupled air-water flow based on the analytical solution of laminar, transient flow
(Choy & Reible 2000) at the time when the mean velocity at the interface reaches 8cms™.
Second, we spin up the turbulence by adding small random perturbations in the air and water
temperature fields to the buoyancy force in the w momentum equation. (The buoyancy force
induces a quick spin-up to a turbulent state.) For this air-water coupled model, it takes about
120 large-eddy turnover time units (U,z/k) to spin up the turbulence. Third, we turn off the
buoyancy force in the w momentum equation and continue the spin-up simulation for
another 2400 large-eddy turnover time units to reach a pure shear-driven state. The criterion
for established pure shear-driven flow is determined by comparing the near-surface velocity
variances in the air and water domains to the shear turbulent flow above a flat boundary

reported in Sullivan er al. (2000) and the shear-driven turbulent water flow in Tsai et al.



(2005). Finally, we start our simulation from this fully developed shear-driven turbulent flow

by allowing the flat interface to deform. All results shown below are from this final stage.

Figure 3 shows the time evolution of the mean shear stress 7, at the interface after the
interface is allowed to evolve. For the time interval 7 <50s, the mean interfacial stress z
remains at a nearly constant value of 0.089dyncm™, implying that our simulation has
reached a statistically quasi-steady state in response to the wind forcing. The associated
friction velocities in the air and water are u =.r /p, ~856cms® and
u, =4z, /p, ~03cms™?, respectively. The ratio of u./U, is hence about 0.03. For
t >50s, the mean interfacial stress smoothly increases due to the growth of surface waves.
We discuss the properties of the generated waves in section 6.

The total # momentum flux in the air is

na%—WmD=é- (2.14)

(04

Figure 4 shows the vertical distributions of viscous, turbulence, and total momentum flux. As
requital for a Couette flow under a steady condition, the total mean vertical momentum flux is
nearly constant with height.

The bulk Reynolds number of the air flow (Re, = U,/v, ) is about 8000. This value
is the same as that in the turbulent Couette flow simulation of Sullivan er al. (2000). The
simulated turbulence, therefore, is considered to be fully developed. The associated wall
Reynolds number (Re! =u'h/2v,) is about 115. Our wall Reynolds number is about 12 %
less than that of Sullivan et al. (2000). In the water, the bulk Reynolds number
(Re, =U h/v,) is about 2000, where U, ~10cms™ is the mean velocity at the interface.
The corresponding wall Reynolds number ( Re], zujvh/ZvW ) is about 60, which is
comparable to that in the simulations reported by Lombardi et al. (1996) and Tsai et al.

(2005).
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Figure 1. Numerical domain of two immiscible turbulent flows driven by velocity U, on a
Cartesian coordinate. The interface of air and water is located at z=0. The size of air and
water sub-domains is the same, (L., L,,/)=(6,6,1)%.
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Figure 2. Location of velocity components and pressure on staggered grid systems for the

mixed finite-differencing and pseudospectral scheme. Symbols with solid circle and cross are

ghost points at the interface.
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Figure 3. Time evolution of the mean wind stress z_ at the interface.

12



0.8

0.6

0.4

0.2

N
1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1

Figure 4. Vertical profiles of dimensionless mean vertical turbulent flux —<u;w;>/(u;)2
(thick dashed line), viscous flux (va/u:h)Ean/fiz (thick dash-dotted line), and their sum
(thick solid line) in the air. The thin lines represent these terms at various time instances

during 50 to 70 s, while the thick lines are their averages.
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Chapter Il

Flow visualization

I11.1 Waves and streaks

Waves and streaks are frequently observed phenomena at the air-water interface; they
are also found in our numerical simulation results. Figure 5 shows contour distributions of the
interface elevation 7 (x, y,¢) and the streamwise velocity u (x,y,z=0,7) at three
representative time instances ¢=2.6, 16 and 64s. The results show that the surface waves
grow in time in our simulation (figures 5a-c). High-speed streaks are observed before the
initiation of surface waves (figures 5d, 5¢). When the wave motion is weak, the structure of
the high-speed streaks (figure 5d) is similar to that observed by Tsai ez al. (2005) in which a
stress-driven free-surface turbulent shear flow is considered. Low-speed streaks in the air flow
near the interface (figure 6a) are also observed. The low-speed streaky structure is similar to
that commonly observed in a turbulent boundary layer next to a stationary, no-slip boundary
(e.g. Kim et al. 1987). When the wave motion becomes significant, both velocity structures on
the interface and within the sublayer of the air side are re-organized and correlate with the
waveform (figures 5f'and 65).

Figure 7 shows isosurfaces of the vertical velocity in the water at two representative
time instances before and after the generation of the surface waves. When surface waves are
weak, as shown in figure 7(a), the flow is shear dominated and the distributions of ejections
and sweeps are irregular. However, when the flow becomes wave dominated, the vertical
velocity distributions align with the waves (figure 75).

In the air side, the wave effect on the air velocity field is not as significant as that in
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the water and confined to within the viscous sublayer as shown in figures 8(a-c). But for the
air pressure field (figures 84-f), the wave effect can extend outside the viscous sublayer when
the interface is wave dominated. These different responses of the velocity and the pressure

fields to the surface waves were also observed by Sullivan ez al. (2000).

I11.2 Pressure and stress fields

Figure 9 shows two representative distributions of the fluctuating air and water
pressures, p! and p! , atthe interface, and the distribution of surface wave elevation. At the
early stage when surface waves are weak, pressure fluctuations in the air (figure 9a) exhibit
no correlation with the surface wave elevation (figure 95), but pressure fluctuations in the
water (figure 9c¢) already reveal a high correlation with the surface waves. This suggests that
in the early stage of wind-wave generation, pressure fluctuations in the water are driven
almost passively by surface waves, and the turbulence in the water may not play an important
role in generating waves. In section 8, a numerical experiment is designed to test the impact
of water turbulence on wind-wave generation processes. When wave motions dominate
(figures 9d-f), the pressure fluctuations in both the air and water are highly correlated with the
surface wave elevation. At this stage, the air pressure fluctuations show a slight phase shift
relative to the surface waves, and the region of maximum (minimum) pressure occurs on the
backward (forward) face of the surface wave near the crest (trough), as observed by Sullivan
et al. (2000). Belcher et al. (1993) term this phenomenon non-separated sheltering. Also, the
pressure fluctuations in the air (figure 94) are less regular than those in the water (figure 9/),
implying turbulence-induced pressure fluctuations in the air are more active than that in the
water.

Figure 10 shows shear stress fluctuations at the interface at early (figure 10a) and late
(figure 10b) stages of wave growth. Similar to the pressure field in the air, the shear stress

field reveals a wave-induced component only when the waves become strong. The
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wave-induced shear-stress fluctuations also exhibit a phase shift relative to the surface wave
elevation. The contribution of wave-induced pressure and shear stress fluctuations to wave
growth is discussed in Section 7.2.

The wave effect on the pressure fields in the vertical direction can also be seen in the
vertical distributions of pressure fluctuations at ¢ =16s (figures 1la-c) and 66 s (figures
11d-f). At ¢t =665, pressure fluctuations in the air and water are influenced by waves, and the
wave effect extends outside the viscous sublayer. At =165, pressure fluctuations in the air
are not related to the wave motions, but pressure fluctuations of the water are already highly
correlated with waves. Simultaneous animations of n and p/ show that at early time
pressure fluctuations in the air usually sweep over the water surface with varying speeds
without interacting with the wave motions, but at late time p/ becomes well correlated with
the surface waves. This suggests different wave generation processes at early and late times.

We discuss this in more detail in section 7.
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Figure 5. Snapshots of the instantaneous surface wave height r (left panels) and streamwise
velocity u at the interface (right panels) at time ¢=2.6s, 16s and 64s (from top to

bottom), respectively.
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Figure 6. Snapshots of the instantaneous streamwise velocity u, within the viscous sublayer
of the air domain attime ¢=2.6s (a) and 64s (b).
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Figure 7. Representative iso-surfaces of vertical velocity in the water at time ¢=2.6s (a)

and +=66s (b). Black and grey iso-surfaces show vertical velocity for values —1.5cms™

and 1.5cms™, respectively.
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Figure 8. Snapshots of the instantaneous streamwise velocity (left panels) and pressure
fluctuations (right panels) of the air flow in (x, y)—planes at t=64s at three different heights.
The upper panels are within the viscous sublayer z=0.045cm, middle panels are in the

matched layer z =0.23cm, and lower panels are in the inertial sublayer z=0.37cm.
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Figure 9. Snapshots of the instantaneous pressure fluctuations of the air p! (a, d) and water
p. (¢, f), and wave height r (b, e) on the interface at time 7=16s (left column) and
t=66s (right column).

21



-0.08 0.12

Figure 10. Snapshots of the instantaneous shear stress fluctuations z! at the interface at time
t=16s (a)and 1=66s (b).
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Figure 11. Snapshots of instantaneous pressure fluctuations in the air p! and water p! in
an (x,z)- plane and the associated surface wave height 7 attime r=16s (figures a-c) and
t=66s (figures d-f). The cross section is located at y=7.5cm in figure 9. 7 is

normalized by its maximum value at this time.
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Chapter IV

Characteristics of the surface waves

Figure 12 shows the wavenumber spectra of surface elevation at r=2.6, 16 and
64 s. At the beginning of the simulation (¢ =2.6s) when the surface wave height is randomly
distributed (figure 5a), the spectrum shows no significant energy in the low wavenumber
range (figure 12a). As waves begin to form at #=16s (figure 5b), the wave energy is more
or less evenly distributed at certain selected wave components (figure 125). When waves
become strong at r=64s (figure 5c¢), wave energy is concentrated in a few
small-wavenumber components (figure 12¢). Table 1 lists the five largest energy-containing
components at early (# ~15s) and late (z ~68s) stages. At early time, the fraction of energy
in each component is low and rather evenly distributed. At a later stage, about 80 % of wave
energy is possessed by three wave components. These fastest growing waves are
(k..k,)=1(0.78,0.), (0.52, 0.) and (0.78,0.26)cm™. Their associated wavelengths are in the
range of 8 to 12 cm, close to those found by Kahama & Donelan (1988) in their laboratory
experiment. The wavenumber-frequency spectrum of the surface wave elevations are plotted
in figure 13 for the time interval ¢ =66 ~66.5s. It shows that the frequency of the most
energetic wave component (kx,ky)z (0.78,0.)cm™ is 36.9s™ which agrees with the linear
dispersion relation for a propagating gravity wave (dashed line in figure 13).

Theoretical study (Massel 1996) predicts this component a wind-induced gravity wave
for wave frequency within the range of 0.19< o < 85s™. Experimental results from Veron &
Melville (2001) also show that the first detectable wind-induced gravity wave is at a
frequency of about 88s™, and most of the detectable waves are located at a frequency of
25s™. Thus, we believe the waves generated from our simulation are wind-induced gravity

waves.
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Figure 12. Wavenumber spectra of surface wave height ﬁ(kx,ky) (normalized by its total
energy) at time ¢=0.5s (a), t=16s (b) and ¢t=64s (c). Note that the maximum contour
level in (c) is higher than that in () and (b).
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Figure 13. Wavenumber-frequency spectrum of the surface wave height ﬁ(kx,a)
(normalized by its total energy) at time interval =66 ~66.5s for &k, =0. The dashed line
represents the linear dispersion relation o/k, =U, +./g/k, where U, =12 cm s is the

mean surface current.
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Wave number
K= (kx,ky) (cm™) CD(T])/< n? >?
(0.26, 1. 7.1%
(1.,1) 5.6 %
t~15s (1., 0) 5.3%
(0.52,0.) 4.5 %
(0.52, 0.52) 4.1 %
(0.78,0.) 32%
(0.52,0.) 24 %
t~68s (0.78, 0.26) 21 %
(0.52, 0.26) 7.6 %
(1., 0.26) 5%

Table 1 Dominate waves and the percentage of each wave energy at early (+~15s) and late

(~68 s) stages for the control case. Note that the dominate waves at these two stages are

different.
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Chapter V

Wave effect on flow fields

V.1 Wave effect on mean velocity profiles

Surface waves at the air-sea interface have significant effects on the mean velocity
profiles of air and water flows (Sullivan e/ al., 2000, Cheung & Street, 1988 and Howe et al.,
1982). To examine the wave effect on the mean velocity profiles, we compare the air and
water mean velocity profiles in our simulation with the two-layer velocity profile of a wall
turbulent boundary layer

U'=z", (5.1)
within the viscous sublayer, and

¥
z

Ut =tinz +bzlln—+,
K Kz

(5.2)

in the inertial layer, where x is the von Karman constant, » is a constant related to the
surface roughness length z;, and z; =e ™. The non-dimensional wall coordinate z* and
velocity U* are defined as zu'/v, and (U,-U,)/u’ in the air and —zu’ /v, and
(U, U, )/u’, in the water, respectively. U, is the mean velocity at the interface, and U,
and U, arethe mean velocities in the air and in the water, respectively.

We compute the mean velocities by averaging the flow field in horizontal planes at
each time, and plot the time variation of these mean velocities in figures 14(a) and 14(b),
along with the theoretical profiles. Figure 14(a) shows that the simulated mean velocity
profiles in the air compare well with the theoretical two-layer velocity profile. When surface

waves are small (# <50s), the mean velocity profiles fit the same linear-logarithmic profile.
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But, when surface waves become significant (z>50s), wave motions change the mean
velocity profiles, a systematic downward shift with time. This downward shift in the air
velocity profile is equivalent to an increase in surface roughness z, (figure 16f), as
described in Sullivan et al. (2004), implying the enhancement of surface drag due to waves.
The surface roughness z; is nearly constant ~0.3 when 7<50s and increases to about
0.95 when ¢~ 70s. The associated von Karman constant used to fit the logarithmic profile
is about 0.33 at all time. Figure 14(b) shows the simulated mean velocity profiles and their
associated two-layer velocity profiles in the water. Not all profiles show the logarithmic
distribution and the von Karman constant « is changing with time, 0.22 < k¥ <0.36 when ¢
<24sand 0.36 <x<0.44 when¢>24s. (At¢=3s, the flow in the water may be too viscous
as the mean wind profile is rather linear throughout.) The mean velocity profiles do not

undergo a systematic downward shift with time as in the air.

V.2 Wave effect on and turbulence intensities

The wave effect on the turbulent velocity variances is also different in air and water.
Figure 15 shows the turbulent velocity variances at two stages: #=16s when turbulence
dominates (figure 154 and 156) and ¢ =64s when waves dominate (figures 15¢ and 15d). In
the air, the vertical distributions of the velocity variances (hormalized by the surface friction
velocity) (uf)(z)/(u;)2 are in close agreement with wall-bounded shear turbulent flows
(Kim et al. 1987, Aydin & Leutheusser 1991, Papavassiliou & Hanratty 1997 and Sullivan et
al. 2000). There is no significant change between turbulence and wave-dominated stages. In
the water, our profiles at r=16s agree with the stress-driven turbulent flow simulated by
Tsai et al. (2005). However, at the stage when waves become significant, the velocity
variances in the water are strongly affected by waves, particularly the w component. The
horizontal-velocity variances near the interface also increase significantly due to waves. Such
an enhancement in the near surface turbulent velocity variances is attributed to the orbital

motions of the generated surface waves.
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Figure 14. Mean profiles of the streamwise velocity of the air () and water (). The circular
and delta symbols denote the matched linear-logarithmic profiles at 1 =16s and ¢=70s,
respectively. The log-law constants used to collapse the profiles (K,zg ) are (0.34, 0.31) and
(0.33, 0.84) in the air and (K,zg) are (0.3, 1.55) and (0.37, 0.3) in the water at time ¢=16s
and 7=70s, respectively.
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Figure 15. Vertical distributions of the normalized turbulent velocity variances of the air

(upper panels) and of the water (lower panels) at early (¢ =16s) and later (¢ = 64 s) stages.
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Chapter VI

Wave growth types

Previous theoretical studies suggest that wave growth processes can be separated into
linear and exponential growth stages and that the forcing mechanisms may involve either
turbulence-induced or wave-induced pressure and stress fluctuations. The consensus is that in
the linear growth stage, the wave-induced effects are ineffective since wave motions are weak
and thus turbulence plays a major role in generating waves. In the exponential growth stage,
wave-induced fluctuations of pressure and stress dominate and result in a feedback
mechanism to grow waves quickly. In this study, we examine the wave growth processes in
our simulated flow by classifying the simulation into linear and exponential wave-growth
stages using four features as follows.

First, the behaviour of pressure and shear stress fluctuations in the air is different at
early and later stages as described in section 3.2; they are turbulence dominated at early stage
and wave dominated at later stage. Second, the time evolution of the root-mean-square of
surface wave height (n?)¥? (figure 164) clearly shows slow growth before 7~ 40s and fast
growth after ¢~ 40s. Other statistical quantities, such as <p;2>”2, the form drag D, the
mean surface current U_, the root-mean-square of the interfacial shear-stress fluctuations
(:;2)]/2 and the surface roughness z, (shown in figures 165 -f) also behave differently
during early and late stages of the wave growth. They are nearly constant before 7~ 40s and
then increase sharply with time. Third, the individual wave components of the fastest growing
modes given in Table 1 also reveal linear and exponential growth as shown in figure 17 where
the time evolutions of the wave amplitudes of the five fastest-growing waves in linear
coordinates for #<16s are shown in figure 17(a), and the three fastest-growing waves in

exponential coordinates for 40 <7< 68s in figure 17(b). They clearly reveal trends of linear
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and exponential growth for each wave mode at the early and later stages, respectively. Fourth,
each wave component of the form stress also shows different behaviour at the early and later

stages of wave growth. Here we define the dimensional form stress per unit area, D, of each

wave component as

] =iﬁ JOLXp;(é—Z+%jdxdy. (6.1)
Again we plot the time evolution of D, of the five largest waves in linear coordinates for
t<16s in figure 18(«) and the largest three waves in exponential coordinates during
40<t<68s in figure 18(b). The form stress is nearly zero when ¢<16s but increases
exponentially with time when ¢>40s. Because the form stress oscillates rapidly in the

transition regime between 40s and 50s, we choose 0<t<16s as the linear growth stage

and 50 < ¢ < 70s as the exponential growth stage.
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Figure 16. Time evolution of interfacial parameters: (a) root-mean-square of the surface wave
height (1°)*?, (b) root-mean-square of pressure fluctuations (p.*)¥?, (c) form stress D, (d)
mean surface current U_, (e) root-mean-square of shear stress fluctuations (z'*)*? and (/)

surface roughness length z, of the air.
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Figure 17. Time evolutions of wave amplitudes of the five fastest growth waves at early stage
(a), and the three fastest growth waves at late stage (»). Note that we use a linear coordinate

for (a) but an exponential coordinate for (b).
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Chapter VII

Comparison with wind-wave generation

theories and measurements

VII.1 Linear growth stage

Phillips (1957) proposed a theoretical model for wave generation and argued that the
turbulence-induced pressure fluctuations in the air are responsible for the birth and early
growth of waves. His theoretical model predicts that the wave growth of each wavenumber &
depends on the time scale of the pressure fluctuations in air of the same wavenumber £ .

For the pressure field of the air varies little from its value at the initial instant (pressure
components remain correlated with the one at the initial instant), in which case we will be
able to argue as though the pressure field were being convected over the water as a rigid body,
Phillips’ (1957) derivation leads to a resonance mechanism that explains the initialization of
wave growth. The resonance mechanism occurs when the convection speed of the fluctuating
pressure coincides with the phase velocity of surface waves at the same wavenumber, i.e.
U,(x)=c(x)/coser, where U, (x) is the convection speed of the fluctuating pressure in the
wind direction, and « is the angle of wave propagation relative to wind direction. From the
flow field at the early stage of our simulation (¢ <16s), we found that for each wavenumber,
the convection speed of the pressure fluctuations in the air is always larger than the phase
speed of the surface wave. In other words, no resonance mode is found in our simulations.
The lack of a resonance mode is likely due to our flow condition is unable to fulfill Phillips’

assumption that the pressure is assumed to be time-invariant.
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For the time period much larger than the time scale of pressure fluctuations, Phillips
derivation considers the time development of turbulence pressure fluctuations, and that leads

to the following prediction for the linear growth of the wave spectrum CD(K‘, t)

k? H(K‘) O(x) ;
2\/5/350'2 ’

where TI(x) is the pressure spectrum, o is the wave frequency, and O(x) is the

CD(K,Z) ~ (7.1)

development time scale in turbulence pressure fluctuations. For the definition of @(x),
readers are referred to equation (4.2.5) in Phillips (1977). Application of (7.1) is however
hindered by the factor @(zc), which is difficult to compute from a simulated flow field. Thus

we use a simplified version of (7.1) proposed by Phillips (1957)

M(x)

<I>(K,f)~m

. (7.2)

The simplification from (7.1) to (7.2) is obtained by (a) using the gravity-wave dispersion
relation with no mean surface current at the interface, o® = gk and (b) assuming U, (x) is

greater than c(x)/cosa by a factor of 3-4, then @(x)~ 1/kU, (k). Transforming to physical

space, (7.2) becomes

12
<pr>

<& >~ — .
T a2peU,

(7.3)

Equation (7.2) has limitations. It is inadequate for waves with low wavenumber at
high wind speed (said a wind speed larger than 10msec™) and for waves with high

wavenumber at low wind speed (said a wind speed smaller than 1msec™). This is due to the

different behaviour of ©(x) at high and low wind speeds and the relation between ©(x)
and /(H(K). For a detailed interpretation, readers are referred to Phillips (1957, pages
437—440). In our numerical experiments, the wind is mild and the generated surface waves
are mostly high wavenumber. So it may not be proper to compare our simulation with
equation (7.2).

For the application of (7.3), Phillips’ (1957) proposed the following relation between

air friction velocity and convection speed
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U,~18u, (7.4)
based on field measurements. By using this relation, we obtain a convection speed U, of
about 162cms™ (where u' ~9cms™) which is close to the mean wind speed in the
simulated logarithmic layer where U, ~170+20cms™. Figure 19a compares the mean
square surface wave height from our simulation <772> and the prediction <§2> from (7.3).
Our simulated growth rate is larger than the theoretical prediction by a factor of about 1.5.
The other three simulations shown in figures 19(b-d) will be described in section 8.

As mentioned previously, wind energy can be transferred into waves by pressure and
shear stress fluctuations. Figures 16(c) and 16(d) show that in the linear growth stage the
root-mean-square shear stress fluctuations is about one-tenth of the root-mean-square pressure
fluctuations where (p/?)"? is about 0.22dyncm® (figure 16¢) and (z/*)"? is about
0.029dyncm™ (figure 16d). Their ratio is close to the value measured in laboratory
boundary layers (Phillips, 1977). Therefore, the contribution to wave growth from (z'*) is
about 17% of (p'*y. Furthermore, measurements from atmospheric and laboratory boundary
layers (Elliott 1972a,b) show that (p'?)¥? is about 2.6 times larger than the mean wind
stress 7, (see figures 16¢ and 3). Our simulation shows that the mean wind stress is about
0.085 dyn cm (figure 3) during #<20s and thus our (p'?)¥? is also about 2.6 times larger

a

than the mean wind stress.

VI11.2 Exponential growth stage

Many theories have been proposed to explain the exponential growth of wind
generated surface waves. By examining the various processes that generate the asymmetric
pressure perturbation at the surface, Belcher & Hunt (1993) show that the term induced by the
thickening of the perturbed boundary layer on the leeside of the wave crest, which is called
the non-separated sheltering effect, dominates. Furthermore, they relate the asymmetric

effects to the drag force on the wave. When the asymmetric effect grows with time, it also
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increases the form stress on waves. This way, the form stress can play an important role in the
exponential wave growth stage.

Here we calculate the growth rate of our simulated waves and compare it to
measurements synthesized by Plant (1982) and to theoretical (Belcher & Hunt 1993; Li 1995)
and numerical studies (Sullivan & McWilliams 2002). The wave growth rate is defined as

._2da_1dE 75
adt FE dt
where 3" is dimensional wave growth rate, a is wave amplitude and E =0.5p,a’°c’k is

wave energy density. Since the form stress dominates the contribution of energy input from
the perturbed air flow to surface waves, the dimensionless wave growth rate g (where
p= ,B*/a and o is wave frequency) computed from the right hand side of equation (7.5)

can also be expressed as (Li 1995)

T oE dr Py (ak)2

1 dEm2 D, (1j2 (7.4)

c

where the relation between the rate of change of the wave energy, dE/dt, and the form stress,
D, ,isgivenas dE/dt=cD,.\We compute the growth rates from the above two relations and
examine the contribution of form stress to wave growth. The one computed directly from
wave amplitude is used to verify the contribution of form stress on wave growth. Figure 20(a)
shows the time averaging (¢=56~70s) of the growth rates of the three fast-growing wave
components from our simulation. The growth rates calculated directly from the wave
amplitude and from the form stress are similar to each other. For some wave modes the rates
are close to the measurements synthesized by Plant (1982) and the simulation results from Li
(1995) and Sullivan & McWilliams (2002) but others are 2-3 times larger than the
measurements and theoretical predictions. The other three simulations shown in figures
20(b-d) are described in section 8.

The consistency of the growth rates calculated from wave amplitude and form stress
supports Belcher & Hunt’s (1993) argument that the form stress dominates the contribution of

energy input from air to waves at the exponential wave growth stage.
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Figure 19. The comparison of the mean square surface wave height between our numerical
results (n*) (solid lines) from four simulations and the theoretical predictions (&?)
(dashed-dotted lines) of Phillips (1957). The four simulations are : (a) the control run with the
height of the air domain # = 4 cm, (b) the run with no initial turbulence in the water, (c) the

run with no surface tension and (&) the run with the height of the air domain # = 8 cm. For the

theoretical curves, U, =18u, is used.
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Figure 20. Wave growth rate as a function of inverse wave age. Small symbols are results
from the measurements (synthesized by Plant, 1982) and the simulation results (Li, 1995;
Sullivan & McWilliams, 2002) as published in Sullivan & McWilliams (2002). The dashed
lines are the empirical formula g = (0.04 +0.02)(u./c)* proposed by Plant (1982) The cross
and large triangle symbols are our results calculated from the growth of wave amplitude (7.3)
and from the form stress (7.4), respectively, for the three fast-growing wave components. The
three fast-growing wave components are (k,,k,)=(0.78,0) , (0.52,0) and
(0.78,0.26) cm™ for the control simulation (a), (0.52,0.) , (0.78,0.26) and
(0.52,0.26) cm™ for the simulation with no initial turbulence in the water (), (0.78,0.),
(0.52,0.26) and (0.52,0.)cm™ for the simulation with no surface tension (c), and (0.52,0.),
(0.78,0.) and (0.78,0.26) cm™ for the simulation with larger air domain (d).
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Chapter VI1II

Sensitivity tests

VIIl.1 The effects of turbulence in the water

To study other possible mechanisms that may influence the simulated wave growth
processes, we perform three sensitivity tests to examine the effects of turbulence in the water,
surface tension and the computational domain height above the water surface.

Our first sensitivity test was motivated by Teixeira & Belcher’s (2006) study. Teixeira &
Belcher developed an analytical model to test the influence of turbulence in the air and in the
water, separately, on surface wave growth. They suggested that turbulence in the water might
play an important role, more than that suggested by Phillips (1957). To test their finding, we
set up a simulation that consists of no turbulence in the water at the beginning of the
simulation (that is, at our initialization procedure described in section 2.5 we do not allow for
turbulence in the water to spin up before the interface starts to deform). Figures 21(c,d)
compare the wave energy spectrum of the surface wave height at time ¢=16s and ¢=64s
between the cases with and without turbulence in the water at the initial time of wave growth.
Similar to the simulation with turbulence in the water (i.e., the control case) the case without
turbulence in the water shows a spread of wave energy in wavenumber space at the early
stage (#=16s), but then energy begins to be concentrated to just a few dominate wave
components that have similar wavelengths as the control case at the exponential growth stage
(t=64s). We also compare the growth rates from this sensitivity test with theoretical
predictions by Phillips (1957). In the linear growth stage, the magnitudes of the mean square
surface wave height are similar between the simulations with and without turbulence in the

water (comparing figure 194 and 196). Figure 20(b) indicates that turbulence in the water
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also has no significant effect on the wave growth in the exponential growth stage.

VIII1.2 The effects of surface tension

In the second sensitivity test, the surface tension in the interfacial boundary condition
(2.9) is set to zero. The distributions of wave energy spectra (figures 21e,f) exhibit similar
patterns as those from the previous two simulations with surface tension (figures 21a-d). The
computed wave growth rates are slightly higher than the cases with surface tension at the
linear growth stage (comparing figure 19¢ with figures 19a,b), but are similar to previous
studies at the exponential growth stage (figure 20c). We conclude that surface tension has no

significant impact on the initial wind-wave generation.

VI1I1.3 The effects of the computational domain of air

For the third sensitivity test, we double the height of the computational domain of air
(while vertical resolution remains the same). The distribution of wave energy spectra shows
similar patterns as the previous three cases (figures 21g,/#). The linear wave growth rates of
the larger-numerical domain simulation (figure 194) are smaller than those of other three
simulations (figures 19a-c), and are now closer to the theoretical predication of Phillips
(1957). However, the wave growth rates from this simulation are a little larger than the other

simulations and also larger than theoretical predictions at the exponential growth stage (figure

20d).
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Figure 21. Wavenumber spectra of surface wave height ﬁ(kx,ky) (normalized by its total
energy) at time ¢=16s (left panels) and ¢=64s (right panels) for the control case shown
in (a, b), the simulation without generating turbulence in the water at the beginning of the
simulation shown in (¢, d), the simulation without surface tension at the interface in (e, f), and

the simulation doubling the height of the computational domain of the air in (g, 4).
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Chapter IX

Conclusions

The initial wind-wave generation processes consist of linear and exponential growth
stages as proposed by theoretical studies and supported by some laboratory and field
measurements but these processes have never been studied by numerical simulation before. In
this study we developed an air-water coupled model where the continuity of velocity and
stress is satisfied at the interface so it can simulate the interaction of two fully developed
turbulent layers (air and water) above and below the interface. The limitation of our coupled
model is the linearization of the interfacial boundary conditions and hence the model is only
applicable to small amplitude waves.

The characteristics of simulated waves are similar to field and laboratory observation
at the initial stage of wind-wave generation. The wavelength of the dominate waves is about
8cm which is in the range of wind-induced gravity waves. The corresponding wave age
c/u: ~5 belongs to ‘young sea’ or ‘slow moving waves’.

At the early stage of wave growth, the turbulent flow structures in the air (and in the
water) remain similar to shear-driven turbulent flows over a flat surface (and under a flat free
surface). At the later stage of our simulation, waves grow exponentially and the flow fields are
strongly influenced by wave motions. The wave effects on the flow fields are summarized as
follows. First, the streaky structure, which is a typical phenomenon of shear-driven turbulent
flow, is interrupted by wave motions and the streamwise velocity field forms a pocket-like
feature. Second, the flow field over the whole water domain is strongly affected by the waves
at the later stage. This effect is evidenced from the iso-surface of vertical velocity, the vertical
profiles of the mean velocity and turbulence intensity. Motions in the water are dominated by

wavy features and the flow field in the water is nearly irrotational flow. This agrees with most
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theoretical and experimental studies which assume water flow to be irrotational underneath
the surface wave. Third, wave effects on the velocity field in the air are confined only in a thin
viscous sublayer. The turbulence intensity of the air does not change significantly due to
waves. Fourth, the pressure field in the air behaves differently at early and late stages. In the
early stage, the pressure fluctuations of the air are mainly turbulent-induced and advect faster
than the phase velocity of the waves. During the later stage, the air pressure fluctuations
become wavelike throughout the turbulent layer and move along with the surface waves.

Similar to theoretical studies, our simulated waves can be separated into linear and
exponential growth stages as distinguished by the following: (1) the behavior of pressure
fluctuations in the air (which are considered to be the main factor that is available to initiate
and support wave motion), (2) the simulated interfacial properties , (3) the growth trend, and
(4) the magnitude of the form stress (which is considered to be the main contributor of energy
transfer from wind to waves at the exponential growth stage).

Our growth rates are comparable to theoretical predictions, field and laboratory
measurements, and other numerical simulations. In the linear growth stage, the theoretical
prediction from Phillips’ (1957) wind-wave generation mechanism is examined. Our wave
growth rates are comparable to those theoretical predictions if we use an air domain that is
deep enough. In the linear stage the simulations show that the contribution of shear stress
fluctuations to the wave growth is about 17 % of pressure fluctuations contribution, which
agrees with laboratory measurements. In the exponential growth stage, our wave growth is
consistent with Belcher & Hunt’s (1993) non-separated sheltering mechanism. However, the
growth rates computed from our simulated waves are somewhat larger (by about a factor of 2)
than those obtained from measurements (Plant 1982), simulations (Sullivan & McWilliams,

2002; Li, 1995) and Belcher & Hunt’s (1993) theoretical prediction.
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Appendix A

Numerical Method

I. Pressure Poisson Equations

To solve the Poisson equation (2.3), we transfer the pressure field and the source term
into wave space and apply center-differencing scheme to calculate the vertical derivatives,
which yields

a, P+, b, +D3. b . +D2, b, +DLp, =H, (A1)
where coefficients «, and «, are produced from fast Fourier transform (FFT) ,and D3,
D2, and D1, are coefficients from second-order finite-differencing schemes. For
computational efficiency, we separated the coefficient matrix of equation (A.1l) to two
sub-matrices and used the interface from conditions (2.9) and (2.13). These two interfacial
points can be treated as Dirichlet boundary conditions for each sub-domain. The sub-matrices

became two tri-diagonal matrices and the computational time is greatly reduced.

I1. Stretching Grid systems
In the vertical direction, the discretization grids are stretched with a finer resolution

near the interface using the following transform functions

20 = he  _ tanh(ag, ) in air, (A.2)
tanh(xr)
and
z, =-h" 1__tanh(“§k) in water, (A.3)
tanh(cr)

where ¢, (0<¢, <1)is uniformly distributed constants and « =1.8417 (Gavrilakis, 1992)

is the degree of stretch.

48



Appendix B

Initialization

. Analytical solution:

the mean velocity profile of the coupled air-water flow

The first step to initiate the simulation flow field is the assignment of mean velocity
profile. We assign the mean velocity profile of the coupled air-water flow based on the
analytical solution of laminar, transient flow (Choy & Reible 2000) at the time when the mean

velocity at the interface reaches 8cms™. The governing equations to describe this flow are

ouU o0°U,

&= : B.1
o g, o (B.1)
oU o°U
Loy — B.2
ot W oz* (8.2)
where boundary conditions are applied as
U,((z=ht)=U,, (B.3)
U(z=0,¢)=U,(z=0,1) (B.4)
oU (z=0,1) oU (z=0,7)
- w B.5
lLla 82 ILlW at ( )
8UW(Z = —h,t) ~0. (BG)
Oz
Generation solutions of U, and U, obtained by Choy & Reible (2000) are given as
['e] ) 1
Ua Z’t = eiﬂ"t—vla ﬂn'z ] ﬁn }' (B7)
()= S e vl s)
00 ) 1
Uz t)= e_ﬂ”t—t//w B z)\B, } (B.8)
)= - )

where
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NB,)=p.[ v (B, 2)d +p,[ w8,z dz,

0

18,)=p.[ (B, 2)Co() '+ p, [ v, (B,.2") Col2')

(B.9)

(B.10)

and C,(z) is the initial condition. w, and w, are engenfunctions of the air and water

respectively which can be expressed as

wa(ﬂn,Z)=Aa,,,Sin[ rﬂ}B ( =)

v (fo2)= A, [ \/—ﬂJB [ )

and the eigenvalue £, is given by

ol

|4

<

w a

1 [Puths
V P, [( Btk h _
— e o) | —————|f, |+cos|| ——+—|B, |=0,

1+ pw/'lw
\ PuH,

where 4,,, B,,, 4,, and B, aregiven by

cos( B, h]cos{ B, ZhJ

Aa,n == 1
sin ﬁh
N

For detail deviation, readers are referred to Choy & Reible (2000).
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Il. Generating turbulence by Buoyancy force

The second step to initiate the simulation flow field is the generation of turbulence.
We spin up the turbulence by adding small random perturbations in the air and water
temperature fields to the buoyancy force in the w momentum equation. The governing

equations used to express these flow fields (air and water) are

ou, Ov, Ow
/,+ 1’,+ /

=0, (B.17)
ox Oy Oz
2 2 2 2
ou, N ou; N ou,v, N ou,w, =_i op, iy, 0 uzf N 0 L;/ N 0 Ié,{ | (B.18)
ot ox oy oz p, Ox | ox oy oz
2 2 2 2
v, ouyv,  Ovi Ovw, 1 Op +v, o v; 49 vf + ‘;[ : (B.19)
ot Ox oy oz p, Oy Ox oy 0z
2 2 2 2
ow, N ou,w, N ov,w, N ow; :_i%+w 0 Mz/é N 0 Mzzf N 0 Mz/( +g%(@ _9;)’ (B.20)
Ot Oox oy Oz fo) == : |\ ox oy oz

(B.21)

00, N ou,0, . ov,0, (o ow,0, = i 626’; N 8202[ N 622,{ |
ot ox oy oz ox oy oz

where «, is coefficient of thermal expansion, K, is thermal diffusivity, and 6, =1/, is
reference temperature. Again the subscript ¢ denotes variables in air (/=a) or water
(/=w).

Boundary conditions for temperature fields are described as follows. For four
sidewalls of computation domain, periodic boundary conditions are assumed on them. For
upper and lower boundaries, constant temperature condition is applied as

0,(x,y,z=h,t)=6,, (B.22)

0,(x,y,z=-ht)=0,, (B.23)
where 6, > 6,. For the boundary at the interface of air and water domain, the linearized
conditions for this boundary are continuity of temperature and heat flux. The expressions of
these interfacial boundary conditions are

0,=0,, (B.24)

a w
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00, _1, 06,

e _ ' B.23
0z h, Oz ( )

where 7, =K, p,C; and 7, =K p C) are thermal conductivity of the air and water, and
C; and C, are heat capacity of the air and water.

Boundary conditions for velocity fields are described as in section 11.3.
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Appendix C

Decomposition of the flow field in the Water

Wave motions are generated at the air-water interface and their effect is larger in the
water than in the air. And because the flow field in the water is nearly irrotational, it is easier
to decompose into ensemble, wave-correlated and wave-uncorrelated turbulent components as

SGeyiz )= () )+ 1" (e yz, 0+ 1%y, 2,0). (C.1)
The ensemble component <f>(z) is defined as averages over horizontal space and time; the
wave-correlated component f W(x, y,z,t) is defined as those directly affected by the surface
wave motion, which will be described below, and the remainder is turbulent component.
Decomposing the flow field in the air is much harder so we will leave it for future study.

The wave-correlated motions f (x y,z,t) are the flow fields induced by and move
with the surface wave 7" (x,y,t). The wave component of the surface wave 7" (x,y,?) is a
filtered field of the total wave height n(x,y,t). We assume that high frequency potion of the
wave height is associated with (or generated by) the turbulence. The cutoff frequency is
chosen to be where the energy spectrum ®(;7) has a significant drop. The wave component
17" (x,y,t) is used to determine the wave-induced velocity and pressure fields in the water.
Because the wave-induced motion in the water is nearly irrotational, we can establish a linear
relation between the surface wave and the wave-induced motions as follows. The first step
uses the analytical solution of sinusoidal waves on deep water. For an irrotational motion, a

velocity potential ¢W(x, Yz, t) exists and the wave-induced velocity and pressure satisfy

(v, w )= [aw 90 8¢Wj (C.2)
ox Oy Oz
and
, op”
" » at = - C.3
pulx, ,z2,t) p” (C.3)

where the suberscript w represents variables in the water domain and the supscript w
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represents wave-induced motions. The associated solution of potential function ¢"(x, y,z,?)
is related to the wave height 7" (x, y,7) as
$" (x,y,2,0)= ®(z) e n" (x, y,1) (C4)

where cD(z) is a vertical distribution function and ¢, represents a 90° phase lag in time
between ¢"(x,y,z,¢) and 7"(x,y,t). From ¢"(x,y,z,t), we can then compute the
wave-induced velocity and pressure from equations (C.2) and (C.3). Note that there is also
another 90° phase lag between (u‘:vvw) and ¢"(x,y,z,¢) in (x,y), respectively,
according to (C.2). For more detail derivation and description, readers are referred to
Lighthill (1978).

In the second step, we obtain the vertical distribution function ®(z) by looking at the
correlations between the simulated flow fields in the water to the surface wave height
component, as follows:

= Co(uw,nxvﬁ)
(0)) (Z)—W, (C5)

D, (z)= Colvur) (C.6)

- SP€C(U;£,U; )’
— CO(WW’UW)
D, (z)= W (C.7)

and

O (z)= Colp,..n") (C8)

where the symbols Co and Spec represent cross-spectrum and power-spectrum of
variables in bracket. For the » component we correlate it with x and ¢ derivatives of
7" (x,y,¢) (denoted as 7), which yields a 90° phase lag in both x and time ¢,
consistent with equations (C.2) and (C.4). Similarly, the v (x,y,z,¢) field hasa 90° phase
lag in y with ¢"(x,y,z,¢), and then a 90° phase lag in ¢ with 7"(x,y,t). For the
w-component, we consider just the 90° time lag between w and n“’(x, y,t).The pressure

field has no phase lag with n‘”’(x,y,t), according to (C.3) and (C.4). The correlation analysis
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shown in equations (C.5)-(C.8) yields a height dependence of the correlation between the flow
field and the surface wave height; the closer to the surface, the larger the correlation.

Figures 22-25 show the application of this method on surface wave height, streamwise
velocity, spanwise velocity and vertical velocity at the interface. Different cutoff frequency
and wavenumber are chosen to be where the energy spectrum @(;) has a significant drop
and the energy spectrum ®(;) contains most of the wave energy. No significant change on

u’ and v' components, but the distribution of »" and w' is more irregular.
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Figure 22. The decomposition of surface wave height near time /~65 s. With the application of
decomposition method in Appendix C, the total surface wave height (a, ») can split into
wave-correlated components (¢, d) and wave-uncorrelated components (e, f). The difference
between left and right columns is the cutoff frequency (or wavenumber). The cutoff frequency

(wavenumber) of left column is smaller (larger) than right column.
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Figure 23. As figure 22 but for the decomposition of streamwise velocity at the interface.
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Figure 24. As figure 22 but for the decomposition of spanwise velocity at the interface.
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Figure 25. As figure 22 but for the decomposition of vertical velocity at the interface.
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Appendix D

Some records for four simulation runs

Some analytic results for four simulation runs are recorded in this section.

Figure 26 shows the time evolution of mean wind stress of four simulation runs. As
described in previous section, the nearly constant mean wind stress represents that the
air-water coupled flow reaches a statistically quasi-steady state in respond to the wind forcing.
Furthermore, the distribution of mean vertical turbulent flux, viscous flux and their sum of the
wind field (figure 27) has similar behaviour of a Couette flow under a steady condition.
Therefore, these four simulation runs reach the state of fully-developed, wind-driven turbulent
flow.

Figures 28-30 show that the simulations with no initial turbulence in the water, no
surface tension at the interface and the height of the air domain 2 = 8 cm also observe the
phenomena of waves and streaks. Also, the dominate waves for these four simulation runs are
different (tables 1-4).

Compare wavenumber spectra of pressure fluctuations of the air (figure 31) with
wavenumber spectra of surface wave height (figure 21), the result shows that the peaks of
their energy distribution do not coincide with each other at early stage but are at the same
wave components at late stage. This interprets that pressure field has different behaviours at
early and late stage. One is turbulent-induced components dominated at early stage that do not
correlate with surface waves, and the other is wave-induced components dominated at late
stage that correlate with surface waves.

Time evolution of some flow quantities at the interface for other three runs (figure
32-34) also has similar results as control run. For surface wave height (7%)*?, it grows
slowly before ¢~40s and fast after #~40s. For other flow quantities, they are nearly

constant before 7~40s and then increase sharply with time except for the mean surface

current U, of the run with no initial turbulence in the water. It increases with time before
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t~60 s and decreases with time after ~60s.

Figures 35 and 36 show that time evolution of wave amplitude and form stress of the
simulations with no initial turbulence in the water, no surface tension at the interface and the
height of the air domain # = 8 cm have different behaviour as described in section VI at early
and late stages. However, for wave components those grow much slower than the fastest
growing wave in these two stages will not have the same behaviour. In linear growth stage,
for example, wave component (kx,ky): (0.78,0.) cm™ of the simulation with larger air height,
does not have linear wave growth trend. And in exponential growth stage, the form stress of
wave components (k. ,k, )= (0.52,0.26) and (0.78,0.26)cm™ of the simulation with no initial
turbulence in the water and larger air height respectively do not have exponential growth

trend.
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Figure 26. As figure 3 but for (a) the control run with the height of the air domain # =4 cm, (b)
the run with no initial turbulence in the water, (c) the run with no surface tension and (d) the

run with the height of the air domain # = 8 cm.
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Figure 27. As figure 4 but for (a) the control run with the height of the air domain z =4 cm, (b)
the run with no initial turbulence in the water, (c) the run with no surface tension and (d) the

run with the height of the air domain # = 8 cm.
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Figure 28. As figure 5 but for the run with no initial turbulence in the water.
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Figure 29. As figure 5 but for the simulation without surface tension at the interface.
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Figure 30. As figure 5 but for the simulation doubling the height of the computational domain

of the air.
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Figure 31. Wavenumber spectra of surface pressure fluctuations of the air (normalized by its
total energy) at time 7=16s (left panels) and 7=64s (right panels) for the control case
shown in (a, b), the simulation without generating turbulence in the water at the beginning of
the simulation shown in (c, d), the simulation without surface tension at the interface in (e, f),

and the simulation doubling the height of the computational domain of the air in (g, 4).
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Figure 32. As figure 16 but for the run with no initial turbulence in the water.
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Figure 35. As figure 17 but for the control case shown in (a, b), the simulation without

generating turbulence in the water at the beginning of the simulation shown in (¢, d), the

simulation without surface tension at the interface in (e, f), and the simulation doubling the

height of the computational domain of the air in (g, /).
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Figure 36. As figure 18 but for the control case shown in (a, b), the simulation without
generating turbulence in the water at the beginning of the simulation shown in (¢, d), the
simulation without surface tension at the interface in (e, f), and the simulation doubling the

height of the computational domain of the air in (g, /).
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Wave number
w=lkok,) (em?) a(p)/<n? >4

(0.52,0.) 11 %

(0.52, 1.83) 9.7 %

t~15s (1.52, 0.26) 8.5 %
(0.26, 0.26) 7.8%

(0.78, 0.26) 7.3%

(0.52,0.) 50 %

t ~ 685 (0.78, 0.26) 20 %
(0.52, 0.26) 9.8 %

Table 2 Dominate waves and the percentage of each wave energy at early (+~15s) and late
(¢~68 s) stages for the simulation without generating turbulence in the water at the beginning

of the simulation.
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Wave number
w=lkok,) (em?) a(p)/<n? >4

(0.78, 1.3) 9%
(052, 1) 8.6 %
t~15s (0.26, 1) 5.3 %
(0.52, 1.57) 4.7 %
(0.52, 0.26) 4.1 %

(0.78, 0.) 27 %

t ~ 685 (0.52, 0.26) 22 %
(0.52,0.) 19 %

Table 3 Dominate waves and the percentage of each wave energy at early (-~15s) and late

(¢~68 s) stages for the simulation without surface tension effect.
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Wave number
w=lkok,) (em?) a(p)/<n? >4

(0.78, 0.78) 8.3 %

(0.52,0.) 6.2 %

t~15s (0.26, 0.52) 5.1%
(1.,0.52) 4.9 %

(0.78,0.) 4.6 %

(0.52,0.) 31 %

t~68s (0.78,0.) 28 %
(0.78, 0.26) 13 %

Table 4 Dominate waves and the percentage of each wave energy at early (+~15s) and late

(¢~68 s) stages for the simulation with larger air domain.
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Appendix E

Future Work

Some future work of the present study is introduced as follows.

First, apply message-passing interface (MPI) method to make this code has ability of
doing parallel computing. This can solve the problem of the limitation of computer power. For
example, we need 6 weeks to finish a run with one processor where 2.4 GHz CPU is used and
2% 64° gridpoints are calculated. If the MPI method is applied, the reduction rate of the
calculating time will decrease according to how many processors are used at the same time.

Second, we need to do some sensitivity tests of larger computation domain and
stronger wind forcing. After this code can do parallel computing, it will become practicable to
realize the effect of computation domain and wind forcing on wind-wave generation
processes.

Third, temperature is also an important factor to influence wave growth. The effect of
stable, neutral and unstable stratosphere on wind-wave generation processes will also be an
interesting topic.

Last, this coupled model also has its limitation due to the linearized interfacial
boundary conditions and the use of direct numerical simulation method. When linearized
interfacial boundary conditions are used, this coupled model can not simulate wave breaking
effect, wave-wave interaction and large amplitude wave where wave slope greater than 0.01.
And when direct numerical simulation is used, it is unable to simulate mesoscale and
macroscale motions with present computer power. Therefore, use other simulation scheme or
nonlinear interfacial boundary conditions can extend the application of this study to more

variety topics.
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