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Abstract

Wave and vortex motions generated simultaneously by different excitation

mechanisms interact with each other resulting in distinct and intricate features

of nonlinear dynamics. In this thesis, we examine two important examples of these

interactions: an asymptotic study of resonant interactions between directly and

parametrically forced waves thus expounding a route to deterministic chaos; and a

numerical study of the interactions between a free surface and a vortex sheet shed

in the wake of a body thus quantifying the critical role of the Froude number.

I. Regular and chaotic motions in a wave tank

We consider the resonant excitation of surface waves inside a rectangular wave tank

of arbitrary water depth with a flap-type wavemaker on one side. Depending on

the length and width of the tank relative to the sinusoidal forcing frequency of the

wave paddle, three classes of resonant mechanisms can be identified. The first two

are the well-known synchronous, resonantly forced longitudinal standing waves, and

the subharmonic, parametrically excited transverse (cross) waves. The third class

is new and involves the simultaneous resonance of the longitudinal and cross waves

and their internal interactions. In this case, temporal chaotic motions are found for



a broad range of parameter values and initial conditions. These are studied by local

bifurcation and stability analyses, direct numerical simulations, estimations of the

Lyapunov exponents and power spectra, and examination of Poincare surfaces. To

obtain a global criterion for widespread chaos, the method of resonance overlap is

adopted and found to be remarkably effective.

II. Interactions between a free surface and a shed vortex sheet

The nonlinear interactions between a free surface and a shed vortex shear layer in

the inviscid wake of a surface-piercing plate is studied numerically using a mixed-

Eulerian-Lagrangian method. For a plate with submergence d at rest abruptly

attaining a constant horizontal velocity U, the problem is governed by a single

parameter, the Froude number F, = U//Vgd. Depending on F., three classes of

interaction dynamics (subcritical, transcritical and supercritical) are identified. For

subcritical F (<- 0.7), the free surfaces plunge on both forward and lee sides of the

plate before significant interactions with the vortex sheet occur. For transcritical

and supercritical F., interactions between the free surface and the starting vortex

result in a stretching of the vortex sheet which eventually rolls up into double-

branched spirals as a result of Kelvin-Helmholtz instabilities. In the transcritical

range (F ~ 0.7 - 1.0), the effect of the free surface on the double-branched spi-

rals remains, weak, while for supercritical F (>- 1.0), strong interactions lead to

entrainment of the double-branched spiral into the free surface resulting in large

surface features.
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Regular and chaotic motions in a wave tank

We consider the resonant excitation of surface waves inside a rectangular wave

tank of arbitrary water depth with a flap-type wavemaker on one side. Depending

on the length and width of the tank relative to the sinusoidal forcing frequency of

the wave paddle, three classes of resonant mechanisms can be identified. The first

two are the well-known synchronous, resonantly forced longitudinal standing waves,

and the subharmonic, parametrically excited transverse (cross) waves. These have

been studied by a number of investigators, notably in deep water. We rederive the

governing equations and show good comparisons with the experimental data of Lin

& Howard (1960). The third class is new and involves the simultaneous resonance

of the synchronous longitudinal and subharmonic cross waves and their internal

interactions. In this case, temporal chaotic motions are found for a broad range

of parameter values and initial conditions. These are studied by local bifurcation

and stability analyses, direct numerical simulations, estimations of the Lyapunov

exponents and power spectra, and examination of Poincare surfaces. To obtain a

global criterion for widespread chaos, the method of resonance overlap (Chirikov

1979) is adopted and found to be remarkably effective.



1. Introduction

Experiments concerning two-dimensional forced-resonant standing waves were

first conducted by Taylor (1953) using a pair of flap-type wavemakers operating

symmetrically in a short wave tank. These experiments were designed to verify the

theoretical prediction of Penny & Price (1952) for two-dimensional free standing

waves on deep water, namely that the crest angle of the highest wave is nearly 90*.

An unexpected and interesting observation in Taylor's experiments is that lateral

instabilities of the free surface which occur in the form of transverse standing waves

with crests normal to the wavemaker. Taylor's experiments involved resonantly

forced standing waves but were conducted to verify theoretical predictions for free

standing waves, so the actual forcing mechanisms were not considered.

Motivated by Taylor's work, the resonantly excited, longitudinal forced waves

and transverse cross waves (wave motions respectively perpendicular and parallel

to the wavemaker) in a short wave tank with deep water were investigated both an-

alytically and experimentally by Lin & Howard (1960). Using a method similar to

Penney & Price (1952), they looked for periodic nonlinear solutions for the resonated

longitudinal and transverse standing waves. For the longitudinal forced standing

waves, they obtained a relationship for the response amplitude versus excitation

frequency up to third order in surface displacement, a result which was largely con-

firmed by their experimental measurements. For the standing cross waves, however,

they were able to carry out the analysis only to second order. The nonlinear depen-

dence of the wave amplitude on frequency did not appear, and they were unable to

make quantitative comparisons with the experiments.

Since then, there have been two main studies of standing cross waves in a short

wave tank. Garrett (1970) was apparently the first to show that the mechanism

for the excitation of transverse cross waves is indeed a parametric resonance. Us-

ing an averaging over the longitudinal waves, Garrett obtained a Mathieu equation

governing the amplitude of cross waves. This analysis explains the occurrence of



subharmonic resonant cross waves at specific excitation frequencies but cannot pre-

dict their amplitudes, since the solution of the Mathieu equation is unbounded in

the unstable region. Recently, Miles (1988) used a Lagrangian formulation and

obtained a Hamiltonian system governing the slow modulation of the cross wave

amplitude. Miles' analysis included the nonlinear interaction between the motions

of the wavemaker and the cross wave to second order and the self-interaction of

cross waves to third order. The equation is equivalent to that governing the para-

metrically excited surface waves in a vertically oscillating tank (Miles 1984a).

Both Garrett's and Miles' studies are for the case where the longitudinal wave

is not resonantly excited by the wavemaker motion. For such a condition, the

amplitude of the longitudinal wave is of higher order than that of the resonant cross

wave. If the length of the tank is such that the longitudinal waves are also resonated

(synchronously), the amplitudes of both the longitudinal and cross waves may be of

the same order of magnitude (see, for example, the experimental measurements in

figure 7.2 of Lin & Howard 1960). In this case, the internal interactions between the

two standing waves also become important, resulting in a complicated and varied

dynamical system.

In this work, we re-examine the resonantly excited longitudinal and transverse

waves in a three-dimensional rectangular tank with a harmonically driven wave-

maker on one side. Depending on the length and width of the tank relative to the

forcing frequency and water depth, i.e., on the degree of longitudinal (synchronous)

and transverse (subharmonic) turning, the different possible orders of magnitudes

of the longitudinal and transverse wave amplitudes relative to that of the paddle

are systematically considered. Specifically, the following three sets of ordering are

identified:

wavemaker longitudinal wave transverse wave

case I O(e) 0(el/3) O(62/3)

case II O(e) O(e) O(e1/2)

case III O(e) O(el/2) O(el/2)



where e = a/L < 0(1) is the nondimensional amplitude of the wavemaker motion

normalized by the length, L, of the tank. We remark that other order-of-magnitude

orderings are in principle possible, for example, the somewhat 'obvious' choice of

O(e'/ 3 ) for both the longitudinal and cross waves for case III. With that order-

ing, however, the requisite coupling occurs only at fifth order and the interactions

between forced and parametric resonances are at higher order than the present case.

Case I corresponds to the case where the driving frequency of the wavemaker

approximates a natural frequency of the longitudinal standing waves but is not

close to twice that of a standing cross wave. The longitudinal standing wave is

synchronously forced and resonated while the cross wave is not resonant and is of

higher order in amplitude. Case II is the opposite situation where the subharmonic

cross waves only are parametrically resonated. The longitudinal waves are not close

to resonance, are of higher order, and do not affect the transverse wave motion in

this case, as shown by Garrett (1970). The relevant evolution equations governing

the amplitudes of the resonant waves for these two cases can be derived using the

method of multiple scales. The derivation and results for both cases (§§3 and 4)

are similar to a number of existing results for related problems. The results for the

more straight-forward case I appear to have been obtained in the present context

using multiple scales for the first time. For the cross waves case II, our equation

is isomorphic to that of Miles (1988) using the averaged Lagrangian method. In

order to make comparisons to experiments, we consider general finite water depth

and no approximation is used for the shape function of the wavemaker motion, in

contrast to the existing analyses of Lin & Howard (1960) and Miles (1988). In both

cases I and II, the response amplitudes of the stationary wave motions, obtained

readily from the evolution equations, compare well with the measurements of Lin

& Howard (1960). We also discuss the particular depths at which the third order

asymptotic analyses break down. To obtain uniformly valid descriptions at these

particular depths we carry out the perturbation analyses to fifth order and derive

the appropriate evolution equations in both cases.



Case III is new and represents the situation when the driving frequency ap-

proximates both a natural frequency of the directly forced longitudinal standing

wave and twice that of the standing cross wave. The forced resonant longitudinal

and parametrically resonant cross waves are of the same order of magnitude and the

internal interactions between the two orthogonal waves become significant. For a

broad range of physical parameters (water depth, wavemaker amplitude, width-to-

length ratio and frequency detuning), these interactions are shown to lead to chaotic

wave motions. We derive the evolution equations governing the amplitudes of the

longitudinal and transverse waves for such three-dimensional interactions in §5.1. In

order to account for the two resonances caused by the wavemaker, which are involved

at different orders, two long timescales are employed in the perturbation analysis.

The equilibrium states (stationary solutions) of the evolution equations and their

local stability are discussed in §5.2. Numerical simulations of the evolutions are

performed in §5.3, and sample results showing temporal chaotic motions in a num-

ber of resonance conditions are presented. The chaotic nature of the evolutions are

further confirmed through estimates of the Lyapunov characteristic exponents and

power spectra of the amplitudes.

In view of the number of physical parameters involved, and to obtain a global

criterion for the likelihood of widespread chaotic behavior, we adopt the resonance

overlap approximation of Chirikov (1979) to the present problem in §6. The method

attributes the destruction of tori and the onset of widespread chaotic motion to

what is known as the overlapping of primary resonances in Hamiltonian systems.

An estimate in terms of the physical parameters can be obtained to predict the

transition from predominantly regular to predominantly irregular (chaotic) motions

in dynamic system. This approach is shown to yield remarkably good predictions

of the global evolution behavior of the present system.



2. Formulation of the problem

We consider the fluid motion in a short rectangular wave tank with a wavemaker

at rest at x = 0, a rigid bottom at z = -H, rigid walls at x = L and y = 0, W, and

a free surface with undisturbed position at z = 0. The wavemaker is subject to a

harmonic motion given by,

X = x(z, t) = aF(z) cos wet, (2.1)

where a and we are respectively the amplitude and frequency of the wavemaker

motion, and F(z) its shape function normalized by F(0) = 1. For a flap-type

wavemaker hinged at z=-d >-H, F(z)=1+z/d for 0> z> -d, and F(z)=0

for -d > z > -H; and for a piston wavemaker, F(z) = 1.

In what follows, all physical variables are nondimensionalized by the length of

the tank L, and the time scale 2/We. The fluid is assumed to be ideal and surface

tension is ignored. For irrotational motion, the velocity potential #(x, y, z, t) and

free surface elevation C(x, y, t) are then governed by the boundary-value problem:

V24i = 0, (x < z < 1, O < Y < 1/1,

+ VC -Vp - = 0 (z

8li 1
-+V V+ 4N 2 t( = 0

- - = - + ( = =
Oz at +o5z Tz

-- = 0 (x = 1),Ox

-0 = 0
Dy

-= 0
Oz

((x, y,

(y = 0, 1/e),

(z = -h),

t) dxdy = 0,

-h < z <C)

(z=(),

(z) cos 2t),

(2.2a)

(2.2b)

(2.2c)

(2.2d)

(2.2e)

(2.2f)

(2.29)

(2.2h)



where I = L/W is the length-to-width ratio of the tank, and e = alL < 0(1)

measures the amplitude of the wave paddle motion. For convenience, N and yt are

defined respectively as N = 12/w, - 1 and yt = (nrtanhnrh)-1 = p, or the

problem of longitudinal standing waves only (case I); and N = fy2/w, ! 1/2 and

p = (IhtanhIwh)~1 _ p for the (first-mode) cross-wave problem (case II). fl,

and fl, are the linear natural frequencies of the longitudinal (x) and transverse (y)

standing waves, respectively; and n is the mode number of the longitudinal standing

wave.

We introduce perturbation expansions for 0 and (:

00 00

0 = E3eJ"#3, ( = ", (2.3a, b)
j=1 j=I

where the constant v > 0 provides the ordering depending on the problem to be

solved. For the Laplace equation and all of the linear boundary conditions in (2.2),

4# and C satisfy the same form of the equations as 0 and (. Expanding the free

surface boundary conditions (2.2b,c) in Taylor series about z = 0 and substituting

the perturbation expansions (2.3) for 0 and C, we obtain to the first three orders

the following results for the free-surface boundary conditions. For the kinematic

boundary condition (2.2b):

-- = Fj (z = 0), j = 1, 2,..., (2.4)

where
F1 = 0, (2.4a)

F2 = V(1V 1 + ( 9z 2 , (2.4b)

02 02 82!p, 490P 1 2a jF3  -V( 1 -V#2 -V( 2 -V#1 +( 1  + C2 z ) ( za (2.4c)Z2 2 -C 1.(VC1 .V(-5 )+2 ;(.4c

and for the dynamic boundary condition (2.2c):

OP L +4N 2 C, = G (z = 0), j = 1,2, ... , (2.5)



where

1 = 0, (2.5a)

09401 1
G2 = -( - V1, (2.5b)

G3 = 21 (2 021_ V41 -V4 2 +(1-V41i-V( i)--2O 4 1 . (2.5c)8t1z - Otaz Oz 2 10tOz2

The wavemaker boundary conditions for Oi are similarly obtained by expanding

(2.2d) about x = 0 and substituting (2.3a) for 0. The appearance of forcing due to

the wavemaker depends on the specific ordering of the problem. For the resonant

longitudinal standing wave only case (case I), the boundary conditions at x = 0 at

the first two orders are homogeneous:

=0 (z = 0 ), j= 1,2, (2.6a)

and an inhomogeneous forcing term appears only at third order, O(e), for 43:

003 ax
- (X = 0). (2.6b)

For the resonant cross-wave only case (case II) and for the three-dimensional motion

case (case III), the wavemaker boundary conditions for 01 and 02 are respectively

(2.6a) and (2.6b). The boundary condition for 03 for these two cases is given by:

04=3 -0x1p + -z- (X = 0). (2.6c)-x X aX2 + Z ' z



3. Synchronous resonantly forced longitudinal
standing waves

If the excitation frequency of the wavemaker is approximately equal to a natural

frequency of longitudinal standing wave in the tank (say, the nth spatial harmonic

mode), but the length-to-width ratio f is not close to an integral multiple of 1/4 (for

moderately deep water), then only the longitudinal wave is resonantly excited by

the motion of the wavemaker. The transverse waves are of higher order in amplitude

(O(e 2/3 )) compared to the longitudinal standing waves (O(eI/ 3 )) and do not interact

with the longitudinal wave motion. In this case, the appropriate choice for the long

timescale is r = E2/3t. We further define the excitation frequency as N = f./w, =

1 + e2/ 3A., where A, is the detuning parameter between the wavemaker frequency

and the linear resonance frequency of the longitudinal standing wave.

Processing the boundary-value problem at successive orders, at the leading

(O(E1/3)) and second (O(e 2/3 )) orders, the boundary conditions at the wavemaker

are homogeneous and the velocity potential 0 1 and 02 and the free surface elevation

C and C2 can be solved readily. The aim is to obtain the equation governing the

evolution of the complex amplitude envelope A(T) of the first-order motion:

- cosh ni(z + h)
01 = [A(r)e-i2t + c.c.] cosh z , (3.1)nir sinh nxrh

where c.c. stands for complex conjugate of the preceding term. At the third order,

O(e), an inhomogeneous wavemaker boundary condition appears:

003 ax -if (3.2)
S = -i(e2 - c.c.) F(z) (x = 0). (3.2)

To remove this inhomogeneous condition from the wall boundary, we decompose

the total potential 4i3 into two parts (Havelock 1929; Ursell, Dean & Yu 1959):

03 = 0 3 - i(e-2t - c.c.) V(x, z), (3.3a)

where V(z, z) satisfies the Laplace equation and homogeneous boundary conditions

on the stationary walls and the bottom, and oa/bx = F(z) on the wavemaker z = 0.

no



For a

Lin &

flap-type wavemaker hinged at z = -h, such as those in the experiments of

Howard, 'p is given by (see Appendix A)

8h 2 "" sin (2rn+x z1
p(Xlz) =-- 2h Z

i 3  I (2m + 1)3

16h 2 oo oo sin (2n+l)wz
+ 3 EI h22 cos nirx3 n=1 m=0(2m + 1)[(2m +1)2+ 4n2h2c

4h 2 
00 cos ( 2,+n)r(z +h)

M= (2m +1)4

8h 00cos (2m+)(+h) 1
n=1 [(2m +1)2[(2n +1)2 + n2h2] cos nz. (3.36)

Substituting (3.3) into the third-order free-surface boundary conditions (2.4) and

(2.5), and suppressing the secularity for 0 3 and (3, we obtain finally the evolution

equation for A(-r):

dA 1
pa dA+ i2Ap.,A + 1 S - irAA2 A* = 0,d T 4

where

8 8 nirh
6 -r- h tanh

n2 W2 0 70 h 2 (3.5a)

(3.4)

1
Ta = 32p1 (2 + 3nr 2722 + 12n 4 ir 44 - 9n6pr6 6

(3.5b)

The frequency of the longitudinal standing wave is exactly equal to the fre-

quency of the wavemaker motion and its amplitude is a function of that forcing

frequency. This is the so-called non-isochronicity property for nonlinear oscillators.

The amplitude and stability of the stationary solutions of (3.4) are readily obtained.

The amplitudes of stationary responses as a function of detuning A., are thus similar

to those of an undamped Duffing equation with a change from a 'softening-spring'

(P. > 0) to a 'hardening-spring' (Pa < 0) system as the depth h decreases through

the critical depth, h = h* (Tadjbakhsh & Keller 1960; Fultz 1962).

and



1E~

At h = h*, I. = 0, and the perturbation analysis above breaks down. For h

near h*, then, we expand 0 and ( as perturbation series in powers of e0/5, choose

N = 1 + e4 /5 A., and process the perturbation analysis to fifth order. Instead of

the cubic nonlinear equation (3.4) for A, we obtain at the fifth order, an evolution

equation with quintic nonlinearity:

dA 1 -.
1 -+ i2/ipA + -6 -iTaA3 A* = 0, (3.6a)

4

where

- 2,2 [1151 7509222 52919444 14683666
128pt. 6 - 8 n /Lz+ 48 7riz+ 24 n

6093 88 8 l10 10 + 2565 12 12 12

- '[ 8 r n 11, + 45nixp" +r 16 +1,1 2 . (3.6b)8 16

This quintic nonlinear equation is valid for Ih - h*I 0(e 2 /s) for A. 0 0(1).

When the natural frequency of an mth spatial harmonic wave becomes an

integral multiple of that of the fundamental nth harmonic (m j n) at certain values

of A, the first-order solution above becomes non-unique (Tadjbakhsh & Keller 1960).

Physically, at these depths both the nth and mth spatial harmonics are excited at

first order, and there is an internal resonance between the two waves. The coupling

interaction of such internal resonance is cubic nonlinear, and the equations governing

the evolution of these internal resonant waves can be derived in a similar manner.

Finally, we show the comparisons between the present analytic results and

Lin & Howard's (1960) experimental measurements. Figures 1 plot the frequency-

amplitude relation for the stationary resonantly forced longitudinal standing waves.

The circles represent the experimental measurements, and the solid and broken lines

are stable and unstable stationary solutions respectively of (3.4). The amplitudes of

the excitation are given by the maximum deflection, 0, of the wavemaker according

to Lin & Howard. Figure 1(a) is for tank dimension L = 18 in., H = 24 in. and

20 = 0.566*, and the resonant motion is the first mode (n=1) standing wave. The

comparisons between the theoretical and experimental results are remarkably good



U I-

for the entire range of detuning frequency. Figure 1(b) is for the case L = 29.5

in., H = 24 in., 20 = 0.935*, and the resonant standing wave is the second mode

(n=2). The comparisons are fairly good except for large detuning values where the

total response is small and other modes may have begun to participate. For the

present case, Lin & Howard (1960) also obtained theoretical results using a direct

perturbation expansion similar to that of Penney & Price (1952). The resulting

analysis was fairly involved and they were only able to obtain results for the first-

mode (n = 1) resonance and for deep water. Because of this, and possibly also

due to algebraic errors, their comparison to the n = 1 case (figure 1a) was not as

satisfactory.
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4. Subharmonic parametrically resonant transverse
standing waves

When the wavemaker excitation is close to twice the frequency of a cross-tank

standing wave but the length of the tank is such that the longitudinal standing wave

is not resonant, the former is resonantly excited and the latter is of higher order

in amplitude. Following the experiments and analysis of Lin & Howard (1960) for

the problem, Garrett (1970) showed that the mechanism for cross-wave excitation

is indeed one of parametric resonance characterized by forcing terms which appear

as coefficients of the differential equation.

For this problem, we consider the 1/2 subharmonic parametric-resonant cross

waves, choose the long timescale r = et and define the transverse detuning A, as

N = fl,/w, = 1/2 + eAy. The length-to-width ratio I is assumed to be far from

integral multiples of 1/4 so that the longitudinal wave is not resonantly excited.

Since the longitudinal wave is of higher order, at leading order, O(e 1 /2 ), the velocity

potential #1 is independent of x:

01 = -[B(r)e~it + c.c.] cos ery cosh. ,(z+h) (4.1)2 l sinh ewh

where B(r) is the complex amplitude envelope of the cross wave. At the next order,

02 satisfies the inhomogeneous wavemaker boundary condition (3.2) at z = 0. The

same procedure as (3.3) is applied and the second order 02 and (2 can be solved

accordingly. Note that there is a mean set-up of h(ei 2t + c.c.)/4 in the second-

order free-surface elevation which is equal to the fluid volume displaced by the

wavemaker, f0h ((z, t)dz. This mean free-surface elevation is the only contribution

from the wavemaker at this order (O(e)) which causes a secularity at the next order

(O(e 3 /2 )) through its interaction with the transverse wave.

At third order, O(e 3 / 2 ), the inhomogeneous wavemaker boundary condition is

843 _x 
0 O 1i--- = ---- (X = 0). (4.2)OX OZ oz



From (4.2), we see that the resonant excitation of the cross wave is caused directly

by the interaction between the wavemaker motion and the transverse wave without

involving the longitudinal waves. Again, we transform the inhomogeneous boundary

condition by the substitution

4 = 03 + (B*e ' + Be~i 3 t + c.c.) 9(z, z) cos ery, (4.3a)

where

O(,Z)~ =cosh wh - 1 [sin mirz (1 2 * cos nrx
l(izr=g4h2 sinh irh E 2m +1 12 +m M2 7 +M2 + n2

M[(-1) coshxrh -1] cos m 2 r(z + h)
27r h2 sinh &rh P 12 + m2

/10 2 csnr

X 1 + 2 cos nz , (4.3b)
12 + M2 E J2 + M2 + n2

and mi = (2m + 1)/2h, m 2 = m/h. Combining the kinematic and dynamic free-

surface boundary conditions for 03 and applying the solvability condition yields the

evolution equation for B(r):

dB
py d + i2AytB - i#B* - irb B 2B* =0, (

where

# 1 (1 + t272 IL2)(fo - do)-

1
=6 (2 + 3p2j2

fo + Pf o+ go - 90,+ 2 4 4

+ 12y e4 r4 -91 6.r)

h

f 0= ,2 fI = 1,

11 '7rh
+ tanh-go = 2 2742 h P7r3h2 tanh 2

1 eirh
9 = 1 - tanhfirh tanh .90 2 IL2 2

(4.5a)

(4.5b)

(4.5c, d, e)

(4.5f)

(4.5g)

(4.4)

h 2
f 2=4',



The coefficient # of B* in (4.4) represents the parametric resonance and is negative

for all depths. Note that the f-terms in # come from the first-order wavemaker

boundary condition, and are equivalent to those of Garrett's linear results obtained

by averaging the longitudinal motions. The 9-terms in # correspond to the second-

order wavemaker boundary condition representing the direct interaction between

the motions of the wavemaker and the cross wave. The primes on f and g denote

respectively derivatives with respect to z of p(x, z) and O(x, z); and the zero sub-

scripts mean that only the constant terms in the series contribute to resonance. For

example, g' is the contribution coining from the constant terms of &p/oz at z = 0.

Equation (4.4) is isomorphic to equation (5.1) of Miles (1988) after a -r/4 phase

shift of his complex amplitude. Such type of equation also governs the evolution of

1/2-subharmonic free-surface resonance in a vertically oscillatory basin i.e., Faraday

problem (Faraday 1831). In Appendix B, the Faraday problem for the interface of a

two-layer stratified flow is considered and the details of the phase-plane trajectories

and stability analysis of the stationary solutions of (4.4) are also given. For the

stable response, the free surface is flat when the wavemaker reaches its outermost

position; while for the unstable response the free surface is flat when the wavemaker

is in its innermost position. This phase relation was also observed in Lin & Howard's

experiments. Note that since 3 is negative in the whole range of water depth, the

phase-plane trajectories of (4.4) correspond to a -r/2 rotation of those in figures 17 of

Appendix B. For periodic solutions, the evolution equation (4.4) can be integrated

in closed form in terms of elliptic integrals. The details of solving the evolution

equation governing parametric resonance are given in Appendix C.

Again, we note that there exists a depth h = h** where Ib(h**) = 0, and the

perturbation analysis above breaks down. To obtain a uniformly valid description

near that depth, we expand 0 and (in powers of e1/4, and carry out the perturbation

analysis to fifth order, O(e/4). The final evolution equation is

dB 2

p4Y + +i2,YIIB - ip3B* - ifbB'B* = 0, (4.6a)



where

= 1 2 W2 [1151 -- 7509122 2 529194 7r4 P + 146830866

1024pv [ 6 8 48 Y + 24 W 11Y

6093,888 + 45P1%10 102526112 1212] (46b)
8 p+5* 16 1

Finally, we compare the present results to the measurements of Lin & Howard

(1960). Figures 2 show these comparisons for the frequency-amplitude relation of

the stationary resonant cross waves. The dimensional parameters are L = 7 in.,
20 = 0.287* (figure 2a) and L = 8.75 in., 20 = 0.279* (figure 2b) respectively, with

H = 24 in. and W = 24.1875 in. in both cases. The present results are in reasonably

good agreement with the experimental data but with a slight overprediction of the

response amplitudes which may be due to the absence of dissipation in the present

theoretical model.
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Figure 2. Comparisons of the frequency-response relationship for stationary cross

waves between the present analytic results (solid lines for stable and broken lines

for unstable responses) and Lin & Howard's (1960) experimental measurements

(circles) for H = 24 in., W = 24.1875 in. and (a) L = 7 in., 20 = 0.2870; and (b)

L = 8.75 in., 20 = 0.279*.



5. Interaction between resonant longitudinal and
transverse standing waves

5.1. Evolution equations

When the excitation frequency of the wavemaker is approximately equal to the

natural frequency of the longitudinal nth harmonic standing wave and the length-

to-width ratio I is close to n/4 (for first-mode cross-waves), the longitudinal wave

is directly resonated by the wavemaker while the transverse wave is parametrically

excited. Both waves are now of the same order of magnitude, 0(C1/ 2 ), and internal

interactions must be included. To account for the two resonances which are involved

at different orders, two long timescales are introduced: ri = e1 /2 t and - 2 = et. The

relative degree of resonance between the wavemaker motion and the longitudinal

and transverse standing waves are measured by fly/w, = 1/2 +61/ 2A and ./fl, =

2+ C1/2y, where A and -y are the detuning parameters.

The first-order velocity potential for this case of three-dimensional motion is

#1 = [A(rir 2)ei(2+y)t + c.c.] cos nra cosh nr(z + h)
nr sinh nrh

1 -i- cosnry cosh lr(z + h)
+- [B(r1,r 2 )e~" c.c.] cossinh (.12 Ix smnh 1wh

At the second order, O(e), the inhomogeneous wavemaker boundary condition (3.2)

results in a secular forcing which gives the following solvability condition for 02:

O A
y + i2Ap(2 + -ye1 2 )A + (1 + 7C1/ 2 ) Sei = 0, (5.2a)

and
OB

p-- + i2ApB = 0, (5.2)

where i = p = 4t. and S is given in (3.5a). The higher order terms in the

coefficients of (5.2a) come from expressing p. and py in terms of the common

y and are retained to be consistent at the next order. Note that because of

NMI



the detuning between the natural frequencies of the longitudinal and cross waves,

py/pLZ = (1Z/12Y) 2 = 4 + O(e1/2), the corresponding error in the evolution equa-

tion at third order will be O(e 1 / 2 ) if we replace p. by py /4 in the sequel. Applying

(5.2a) and (5.2b) to the second-order boundary-value problem, we can solve for 02

and (2 (see Appendix D).

At third order, O(e3/2), the inhomogeneous wavemaker boundary condition

(2.6c) appears. Since the first term of the forcing in (2.6c) does not cause resonant

secularity, only the form of the boundary condition (4.2) needs to be considered and

the same substitution as (4.3a) is used for 03. Combining the free-surface bound-

ary conditions, sorting out the secular forcing terms and invoking the solvability

condition for #3, we obtain the evolution equations with modulation time scale r2:

p - + i4A2
X pA + ASeirr, - iW A2 A* - iZEABB* = 0, (5.3a)

87r2

and
89B
-+ i2A2 pB - iI3B* - iFbB2 B* iEbBAA* = 0, (5.3b)

Tr2

where 6 is given by (3.5a), # by (4.5a), Ta is four times the expression of (3.5b),

and Pb is the same as (4.5b). The coefficients Ea and Eb governing the nonlinear

coupling between the longitudinal and transverse waves are given by

1 n 2  2 2 b + 1(2 _ 22-1 ! _ !
E = az 1- ( I + W ,2pp + b2 2- (-),2 + 22 -2 2 - 44

(5.4a)

Eb -L (5.4b)
2

where the coefficients a2 , b2 , a2 and b2 are given in Appendix D.

Equations (5.2) and (5.3) respectively govern the evolution of the first-order

amplitudes with respect to r 1 and r2 , and A and B in general varies over both r

and T2 (see figures 7 for some sample evolutions). Since r, appears explicitly in

(5.3a), it is more convenient to consider A and B as functions of r1 (only), and

combine (5.2a, b) and (5.3a, b) into a single pair of equations. Defining r1 =T for

convenience, recalling the chain rule (1/1i) + C1/2(0/0-2 ) -+ (0/Or), and factoring



out the modulation of the forcing in (5.2a) and (5.3a) by letting A - V/AeircT, we

obtain the final result:

p +iYA + S - iaA 2 A* - iZABB* = 0, (5.5a)

and
dB

p + i-bB - if3B* - iT B* - ibBAA* = 0. (5.5b)

where

7= p[4A + -f + 2c 1 / 2 (A-y + 2A 2 )], yfb = 2p[A + 61/2A 2], (5.6a, b)

= [1 + 61/2(7 + A)], / e1/ 2#l, (5.6c, d)

Pa = 2e 1/ 2 _ / , b (5.6e, f)

5= / = 21/2 E b = 5d /5 (5.6g)

The evolution equation (5.5a) reduces to that of (3.4) for the longitudinal wave

amplitude in the absence of the transverse wave, and the transverse wave equation

(5.5b) reduces to that of (4.4) if the longitudinal motions are small.

If we write A - Ca + iDa and B = Cb + iDb, (5.5a, b) can be represented as an

autonomous Hamiltonian system with the Hamiltonian W given by

11- 1(2 2 '(2 2 1P )i =- [SDa + #(C- - D ) -'Y(C + Da) + Fa(C2 + Di)2

(2+ b~ b~c D2  1- 4 a

-7b(Cb + D) + (C + D 2)2 + 5(C + D')(C2 + D ) (5.7)21\ b 4 b + 2 aabI

The conjugate variables, Ca, Da and Cb, Db satisfy the Hamiltonian equations

dCa,b _ B an dD ab _ __

dr DR and - C.a (5.8a, b)

The Hamiltonian system (5.8) is invariant under the reflection (Cb, Db) -+ -(Cb, Db)

by virtue of symmetry with respect to the centreplane of the wave tank y = W/2.

The coefficients ab and Ea,b of the cubic nonlinear terms in the evolution

equations, which govern the self and internal interactions respectively, are functions



10 -

5

0

-5

-10
0.5

Figure 3. Parameters

I = 0.248062.

I./pu and Z./p plotted against water depth h for n = 1 and

of the length-to-width ratio f, longitudinal wave number n, and water depth h. Fig-

ure 3 shows P./p and E./p as the functions of h for n = 1 and I = 6.0/24.1875^:

0.248062 (a value corresponding to that of RUN 101 in Lin and Howard's exper-

iment). For shallow depths, the magnitudes of P. and Z. become much larger

than 0(1) and the present perturbation analysis becomes invalid. For deep water,

Pa is 0(1) while E, approaches a small value, and the interaction between the

longitudinal and cross waves becomes weak. The internal interaction is strongest

around intermediate depths, where the magnitudes of T. and Z. are comparable.

For higher n with the corresponding i, the coefficients of the nonlinear terms have

behavior similar to that for the n = 1 mode.
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5.2. Stationary solutions and bifurcation diagrams

The stationary solutions of the evolution equations (5.8a, b) are obtained by solving

a system of cubic equations, and are given by:

{CaO = 0, C 0 = 0, Dbo = 0,
PaD3 0o - aDao + 0, (5.9a)

Cao = 0, Dbo = 0,

Da + - Da -:a : a(7b I = 0,
&-dab nab (5.9b)

(7Y - ) -$D
CbO=k -b a

Cao = 0, Cbo= 0,

[.P'-7a - S.a(7Y6 + A}| 8F l'
DaO + +..,Dao - -::- = 0,

-4ab Zab (5.9c)

(Yb+/#) - 5±bDa
Dbob

where dab ZaE b - Pab. The solutions (5.9a) correspond to the two-dimensional

longitudinal waves of §3, while (5.9b, c) are the stationary three-dimensional wave

solutions arising from the coupling between the forced longitudinal wave and the

parametrically excited transverse wave.

Stability of these stationary solutions are determined by the real parts of all

the eigenvalues w of the equation

F(w) = | M(X.= _Xo) - ptwl| = 0, (5.10)

where X = (Ca, Da, Cb, Db), M O_/OX, S Vx'X, and I is the unit matrix.

One property of (5.10) is that if w is an eigenvalue, so is -w. Therefore a stationary

solution is stable if, and only if, the eigenvalue w is pure imaginary.



For the two-dimensional solution (5.9a), the eigenvalue equation (5.10) can be

simplified as

F(w) = [p12 W 2+(3fPaD O - 47 .FaD20 + 72)]

x [p 2W2 + (5bD o - 27b bD + 7 2 _ 2)] = 0. (5.11)

The stationary solution is stable if, and only if, (3afDio - 47 f.D2 0 +72) > 0 and

(+7t -#2) > 0. The first condition determines the stability of the

stationary longitudinal wave subject to perturbations in the longitudinal direction.

This type of bifurcation corresponds to the turning point. The second inequal-

ity refers to the stability of the stationary longitudinal wave subject to transverse

perturbations. This is the so-called pitchfork bifurcation which determines the in-

cidence of three-dimensional wave motions. The bifurcation of the two-dimensional

transverse wave in §4 is a special case of this kind of bifurcation which bifurcates

from the state DaO = 0.

For the three-dimensional stationary waves (5.9b) and (5.9c), (5.10) becomes

F(w) = p w4 + F2 u2 w2 + F0 = 0, (5.12)

where

F2 =D40 (2 + 3 -2) + ( O)(5) + 3P2) + D20(4Ps ± + 4f5

+ Do(-275b5b - 47tar.) + ( ) [-27f.5 - (47b i 21)Fb]

2 + #2, (5.13a)+-a + 7b '(51)

and

Fo = ± 2/(FaD20 + 5aC - 7a) {7a(7b -FT)

+ Di 0 (-3a5b) + (o) (-3a) + (bO)D o(3a5 - 9'aFb)

+ Do [7Ya5b + (37b - 31)1a] + ( ) [(7b -F )5a + 37ab] . (5.13b)



The upper and lower expressions in (5.13a) and (5.13b) correspond to the stationary

solutions (5.9b) and (5.9c), respectively. The necessary and sufficient conditions for

(5.12) to have pure imaginary solutions w, i.e. for the critical points to be stable,

are F2 > 0, FO > 0 and F2 - 4FO > 0.

The system (5.8) has a total of five parameters: h, I, A, e and n. For a given

tank dimension and wavemaker amplitude, h, I, c and n are constant. We thus

perform the bifurcation analysis of codimension-one in terms of the detuning A of

the excitation frequency. Figures 4 show the bifurcation diagram of the amplitude

of the stationary solution, [(C20 + D20 ) + 0.5(C2% + D20 )]" 2 , as a function of the

detuning parameter A, for i = 0.248062, n = 1, e = 0.009072 and different water

depths, h = 1.5, 1.6, 1.7, 1.9, 2.2, 4.0. The solid and broken lines in the figures

represent respectively the stable centers and unstable saddle points of the stationary

solutions. The branches labelled (a), (b), and (c) correspond to the families (5.9a),

(5.9b) and (5.9c) respectively.

The features of the bifurcation diagrams change abruptly around the inter-

mediate depths, h = 1.5 - 1.9. For h greater than 2.5, the bifurcation diagrams

are qualitatively similar to that of the h = 4.0 case. For h = 1.5 and 1.6, a three-

dimensional wave family, branch (b), bifurcates from the family of two-dimensional

longitudinal waves (a 3 ). Along this three-dimensional family, both longitudinal and

transverse components grow with increasing detuning A, but the transverse wave

increases at a faster rate. Stability of this three-dimensional wave is lost when the

transverse wave grows to about one order of magnitude greater than the longitudi-

nal wave, and the wave motion becomes essentially that of a two-dimensional cross

wave.

Figure 5 shows the real and imaginary parts of the eigenvalue W along the

branch (b3 ) for h = 1.6. The branch starts at the pitchfork bifurcation point

A = A, where a pair of pure imaginary eigenvalues separate into two pairs along the

imaginary w axis. These two pairs of w coalesce in pairs again along the imaginary

axis at A = A2 and then split into two complex conjugate pairs leaving the imaginary
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Figure 5. Variations of the real and imaginary parts of the eigenvalue w along

branch (b) in figure 4(b) for h = 1.6. Pitchfork bifurcation occurs at A = A, and

Hamiltonian-Hopf bifurcation occurs at A = A2 .

axis. This kind of bifurcation at A = A2 is known as Hamiltonian-Hopf bifurcation.

It corresponds to the Benjamin-Feir instability (Benjamin & Feir 1967) for two-

dimensional steady progressive waves (Zufiria 1988). Continuing along the branch

(b), the two pairs of conjugate complex eigenvalues coalesce on the real w axis at

A = A3 , and then split into another two pairs of real eigenvalues along the real w

axis. It should be mentioned that at the bifurcation point A = A2 , where the three-

dimensional wave becomes unstable, the amplitude of the transverse wave is not the

maximum along the entire branch (b). The amplitude of the cross wave continues to

increase until A = A3 and then deceases to zero at A = A4 where the family of three-

dimensional waves ends. Branch (cl) is another family of stable three-dimensional

waves which bifurcates from the two-dimensional longitudinal wave family (a,) in



the reverse direction of branch (b3). Two inverse pitchfork bifurcations, branch (bi)

bifurcating from (a,), and (c3 ) from (a3 ) are all unstable wave families.

Figures 4(c) and 4(d) are bifurcation diagrams for h = 1.7 and 1.9. Similar

to the cases of h = 1.5 and 1.6, the stable three-dimensional family bifurcates

from branch (a 3 ) and ends at branch (ai). Hamiltonian-Hopf bifurcation occurs on

the (b3) branch where the three-dimensional wave becomes unstable. Unlike the

case of h = 1.5 and 1.6, however, the branch (bi) which bifurcates from the (a,)

longitudinal wave is stable for the present depths. All the families of the stationary

solution (5.9c) are unstable.

For the deep water case h = 4.0 (figure 4f), both three-dimensional wave fam-

ilies (5.9b) and (5.9c) bifurcate from the (a,) branch of longitudinal waves. On the

stable branch (bi), both the longitudinal and transverse waves grow monotonically

with increasing detuning parameter A. The transverse wave grows faster than the

longitudinal wave near the bifurcation, and then reaches the same growth rate as A

increases. The amplitude of the transverse wave finally increases to about 2.7 times

that of the longitudinal wave. The other two solutions of (5.9b), one stable and

one unstable branch, which are separated by a turning point, make up the family

(b2 ). On the stable branch, starting from the turning point, the amplitude of the

longitudinal wave decreases while the amplitude of the transverse wave increases

and dominates the three-dimensional wave motion. It is possible that some of the

steady-state cross waves observed by Lin & Howard are on this stable wave family

which is more visible physically than the first stable branch (bi).

Bifurcation diagram figure 4(e) is the transition between the cases of interme-

diate depths (figures 4a - d) and deep water (figure 4f). The three branches of both

the families (5.9b) and (5.9c) are indistinguishable in the figures. As in the case of

h = 4.0, branch (bi) of family (5.9b) bifurcates from branch (a,) of the longitudinal

wave. On the other hand, the three unstable branches (c1, c2 , c3 ) of family (5.9c)

bifurcate from branches (a,, a2 , a3 ) respectively, similar to the case of h = 1.8.

Through a careful and difficult bifurcation analysis, it may, in principle, be



possible to identify regions of the frequency parameter in figures 4 for which more

complex motions are likely to occur. In the present case, at least one stable solution

exists for any value of A and it is not immediately evident where chaotic solutions

are most probable. From later Poincare section plots (figures 12 for A = 0.1 and

figures 13 for A = 0.2), chaotic motions appear to be more widespread near A = 0.2

than A = 0.1 corresponding to the somewhat more complex stationary solution

picture near the higher frequency in figure 4(b). A more quantitative prediction

based on bifurcation analyses may not be possible.

The comparison between the theoretical results and Lin & Howard's experimen-

tal data for the transverse stationary wave amplitude are shown in figures 6 for the

cases of L = 6 in., W = 24.1875 in., H = 24 in., t = 0.248062 a 1/4, 20 = 0.279*

(figure 6a), and L = 12 in., W = 24.1875 in., H = 20 in., t = 0.496124 2 1/2,

20 = 0.990* (figure 6b) respectively. For the f 2 1/4 case, both longitudinal and

transverse waves are first spatial harmonic modes, while for I = 1/2, the oscillation

of the first mode transverse wave is associated with the second mode longitudinal

wave. The solid and broken lines represent respectively the stable and unstable

analytic results which consider the parametric resonance only (§4). The chain line

is for the amplitude of the stable transverse wave response for which the interac-

tion between resonant longitudinal and transverse waves is included. Similar to

figures 2 but somewhat less satisfactory, the figures again show overpredictions of

the theoretical response amplitude for both comparisons. One explanation for the

discrepancy is the difficulty of separating the longitudinal and transverse wave com-

ponents from the wave gauge measurements which was done graphically by Lin &

Howard. The possible importance of dissipation again can not be ruled out.
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Figure 6. Comparisons of the frequency-response relationship for stationary trans-

verse waves between the present analytic results and Lin & Howard's (1960) exper-

imental measurements (circles) for (a) L = 6 in., W = 24.1875 in., H = 24 in.,

20 = 0.279*; and (b) L = 12 in., W = 24.1875 in., H = 20 in., 20 = 0.990*. The

solid and broken lines are stable and unstable stationary solutions of (4.4). The

chain line is the stable cross-wave stationary solution (5.9b).



5.3. Regular and chaotic behavior

To obtain some understanding of the nonlinear evolutions, (5.5), or equivalently

(5.8), are integrated numerically. A fourth-order Runge-Kutta time integration

scheme with a typical time step Ar = 0.005 is used for the numerical simulations.

For all the numerical results, the value of the Hamiltonian is conserved to nine

decimal places. Depending on the parameters selected, and the initial conditions,

the simulated temporal trajectories may exhibit either regular (periodic and quasi-

periodic) or chaotic behavior.

Figures 7 and 8 show the temporal evolutions for the case of h = 1.6, A =

0.2, e = 0.248062, e = 0.009072, but with initial conditions (CaDaCbDb) =

(0, -4.1373221, 0, 6) and (0, -4.5269170, 4, 0) respectively. Both sets of initial con-

ditions have the same Hamiltonian 'U = 9.0. For the first set of initial conditions,

the temporal evolutions in figure 7 are regular (quasi-periodic). Since the two time

scales rI and T2 are combined into the shorter scale r1 , the transverse wave modu-

lates over a longer time scale than the longitudinal wave. The interactions between

the two are relatively weak. When the initial conditions are changed (figure 8),

the resulting evolution becomes aperiodic and chaotic. The resonant interactions

between the longitudinal and transverse waves are quite apparent.

For the chaotic evolution, two solutions with slightly different initial conditions

in general depart from each other at an exponential rate, and the differences in the

initial conditions are manifested at a later time by vastly different dynamical states.

Such a characteristic of sensitivity to initial conditions can be quantified in terms

of Lyapunov characteristic exponents which measure the mean rate of exponential

separation of neighboring evolution trajectories. For numerical calculations, we

adopt a renormalization scheme suggested by Beneltin, Galgani & Strelcyn (1976)

to compute the maximum Lyapunov exponent. Figure 9 shows the variation of

the maximum Lyapunov exponent a for the parameter values and the different

initial conditions of figures 7 and 8. For the regular evolution (figure 7), it is seen
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that o (triangles) decreases and eventually vanishes in the limit of large r. For the

chaotic motion of figure 8, however, o (rectangles) approaches a positive finite value

measuring the exponential divergence of neighboring trajectories.

Another characterization for regular and chaotic behavior is the power spec-

trum of the evolution amplitude. From the numerical solution of the evolution over

a time interval NAr, the power spectrum of a time series amplitude E(r) can be

estimated using fast Fourier transform according to

2A-r N-1 n) 2 -514
P(fn) = E E(rk)w(rk) exp(i2r ) 2 (5.14)

k=O

where -rh = kAr is the discrete time, f,, = n/(NA'r) is the discrete frequency,



and w(rk) = (2/3)1/2[1 - cos(2-rk/N)] is the Hamming window function employed.

The power spectra P, and Pb of the modulus ||Ai and |IBII for two sets of initial

conditions of figures 7 and 8 are shown in figures 10 and 11. For the regular

evolution, the power spectrum (figures 10) consists of a finite series of discrete

spikes which corresponds to multiharmonic motions in the quasi-periodic evolution.

For the chaotic evolution (figure 11) the spectrum exhibits broad-band features

characteristics of such motions.

To understand the global behavior of the Hamiltonian system in phase space,

we construct the two-dimensional first return map on the hypersurface En of

codimension-one. Such a hypersurface is known as a Poincard surface of section

which we choose for our problem to be defined by

E' = (C., Da, Cb, Db): Ca = 0, d >, = (Ca, Cb, Da, Db; A, h, t, n)}.

(5.15)

On the Poincard section, a fixed point corresponds to a periodic trajectory, points

lying on smooth curves (invariant curves) belong to a quasi-periodic orbit, while

those belonging to a chaotic orbit will appear to fill a region.

Figures 12 show the Poincar6 sections for the same geometric parameters as

those for figures 7 and 8 but with A=0.1 and for Hamiltonian values ?i=2.0, 4.0

and 6.0 respectively. For the lowest energy level W=2.0, the phase portrait figure

12(a) appears completely regular: an elliptic fixed point at the origin surrounded

by a nested sequence of invariant curves. As the energy level increases, for example

figure 12(b) for lH=4.0, a chaotic region is seen between the inner and outer regular

phase space. When the energy level is further raised, the outermost energy surface

shrinks in the phase space and regular motions become predominant again as shown

in figure 12(c) for ?i=6.0. We call this scenario the 'banded-energy' phenomenon

since chaotic motions appear to be limited to an interval (or band) of energy values.

Completely different pictures emerge as one or more of the other physical pa-

rameters are altered. For illustration, we keep the same geometry and detuning

value of A = 0.2 as figures 7 and 8, and consider the Poincare sections for energy
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levels corresponding to W = 8.0, 9.0, 10.0 and 11.968215 respectively. The fourth

value of W is the Hamiltonian of the two-dimensional longitudinal stationary wave

(branch a1 in figure 4a) with a perturbation of 0.001(SDaO). The phase portraits

in figure 13(a) for Xi = 8.0 are completely regular. For somewhat higher energies,

say I = 9.0, we see that the elliptic fixed point at the origin loses its stability,

becoming hyperbolic and gives rise to two elliptic fixed points (figure 13b). Note

that the simulations of figures 7 and 8 correspond to this case and the resulting

regular and chaotic evolutions starting from the two different initial conditions are

evident from figure 13(b). As the energy level is further increased, a large chaotic

zone occupies most of the energy surface while the region of regular orbits shrinks

as shown in figure 13(c) for 71 10.0. When U reaches close to its maximum

value, for example for XU = 11.968215 in figure 13(d), the elliptic fixed point at the

origin reappears and the outermost energy surface forms a shell-like shape occupied

mostly by chaotic orbits surrounded by a small layer of regular orbits. We refer to

this as the 'critical-energy' phenomenon because there seems to be a critical energy

level beyond which chaotic orbits dominate the phase space.

As we have seen, the present nonlinear dynamical system possesses remarkably

rich and varied solution features depending in subtle ways on the physical parame-

ters, h, e, n, A and e, the total energy, 7t, as well as the specific initial phases of the

motions. Given the large number of variables, a more global understanding of the

problem, for example a criterion for the onset of widespread chaos, would be most

useful.
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6. Resonance overlap criterion for the onset of
widespread chaos

In the preceding chapter we characterize the dynamical features (regular and

chaotic) of the Hamiltonian system (5.8) by the Lyapunov characteristic exponent

and power spectrum of the evolutions. Both of these only identify and quantify the

local nature of the dynamical system. The global behavior of the two degrees of

freedom Hamiltonian system almost always exhibit a divided phase space: for some

regimes the evolutions are regular and for others chaotic, as shown for example in

figures 12 and 13. To explore the global dynamic behavior of the system directly in

the large parameter space of h, e, A, e, n and 'W plus the relative phases is clearly

difficult if not prohibitive. It would be valuable to obtain an estimate in terms of

the physical parameters the likelihood, say, of chaotic motions without resorting to

detailed time-consuming numerical simulations in the entire phase and parameter

space.

One approximate but effective technique for giving estimates of the onset of

chaos for a large class of Hamiltonian systems is the method of resonance over-

lap due to Chirikov (see Chirikov 1979). The basic supposition of the method is

that the destruction of tori and the appearance of widespread chaos can be at-

tributed to the overlapping of the primary nonlinear resonances. According to

the Kolmogorov-Arnol'd-Moser (KAM) theorem (Arnol'd 1978), for an integrable

system, those invariant curves with sufficiently incommensurate winding numbers

persist under small perturbations. As the strength of the perturbation increases,

neighboring resonance zones will interact and chaotic motion is confined to a narrow

regime around the separatrices bounding the resonance zones. As two resonance

zones grow and eventually overlap, invariant curves between them will be destroyed,

resulting in the onset of widespread chaos. The method of resonance overlap pos-

tulates that the last invariant curve between the two lowest-order resonances is

destroyed when the sum of the half widths equals the distance between the reso-



nance centers. A major approximation is that the width of each resonance zone

can be calculated independently of all the others. This simple criterion results in a

conservative estimate, i.e. a sufficient condition, for the onset of widespread chaos

because chaotic motion may result from interactions of the secondary resonances

lying between the two primary resonances before the two primary resonance zones

actually touch. Nevertheless the criterion yields a practical estimate for the critical

parameters governing the transition to widespread chaos.

Applying the canonical transformation:

Z = iVI exp(W.), B = iVf2Ibexp(i~b),

where I.,b and 64, are action and angle variables, the Hamiltonian (5.7) takes the

new form:

W = 'Ho + 74 X, (6.1a)

1
Wo = -- (-I -7bb + I'2 + b'b2 + 2Ia IA), (6.1b)

Ha =-!iA cos Oa, 7 4 = '8 Ibcos 20. (6.1c, d)

The new form of the Hamiltonian consists of an integrable part Wo and two noninte-

grable perturbations X1 and Hb responsible for the two primary resonances caused

by the forced and parametric resonances respectively. The strategy is to calculate

the resonance conditions and the widths of the resonance zones of WA = WO + 14

and HB = Wo + 14 independently, and find the perturbation strength at which

these two primary resonances touch. That the calculation can be done for each

resonance in isolation is clearly a major approximation in the method of resonance

overlap.

For a general Hamiltonian W(L, 2), where I and _ are the vectors of action and

angle variables, a resonance arises at those values of I = I' where the frequencies are

commensurate. That is, there exists a vector k with irreducible integer components

such that

k - T(I') = k - [VA(I)] = 0, (6.2)



where k is called the resonance vector. In general, for a Hamiltonian system of N

degrees of freedom, each resonance vector defines an (N - 1)-dimensional resonance

surface in the N-dimensional action variables space. For the Hamiltonian HA, the

resonance vector k = (1,0), which gives the resonance condition

2FI,, + 2EI[ - 7a = 0. (6.3)

Similarly for the Hamiltonian XB with resonance vector k = (0,2), the resonance

condition is

2EI.' + 2FbIb - Yb = 0. (6.4)

The next step is to transform the Hamiltonians XUA and XH into canonical

pendulum Hamiltonians. We proceed by introducing the generating function

F(j,) = (IrT + J -) - 6 T, (6.5)

where J is the new vector of action variables and p is a constant matrix. The new

angle variables are then given by

_ = p T-, (6.6)

where the kth element is the resonant phase Ok = k . 6T, and is slow relative to

the other phases. Following Tabor (1981), we choose the constant matrix y in

such a way that -0i = 0, for j j4 k. The new angle variables Oj = 0,, j j4 k

therefore are linearly independent and are fast relative to the resonant phase 4fA.

For the Hamiltonian WA, the transformation between the original and new action

and angle variables are

I+ J- IrT , (6.7a)

and

.T. . O b J. (6.7b)



Transforming the Hamiltonian WA to the new action and angle variables, averaging

the Hamiltonian over the fast variables ib1, j $ k, and expanding Wo(I.,I) about

the resonant actions I = _I = (Ixr, I) yields

W A Wo 0(II*s) - -x7 cos 0.
AIar

+ [Ja + Jb + 1 j. 2 0'+ J J + J b2 .(6.8)
II I"2 ggg 2

Dropping the constant term Wo(Ia,Ib) and applying the resonance condition

&XOl/la = 0, WA becomes

7L4 2 - Pa1Ja2 _ /cosf

[Jb O 0  + JJ + 1 0Jb2  . (6.9)

The next approximation of the method of resonance overlap is to assume that

the net contribution from the last three terms is small, and we finally obtain the

pendulum form of the resonant Hamiltonian as

A- J IL 2 cos'.. (6.10)
y P

The resonance half-width is then given by

(23 12 (2.)/4.( 1)

From this we can obtain the vector of resonance widths in the original action vari-

ables as

AIT = A = kT  -AJ (23/a)/ 2(2I/ }.)1/4 (6.12)

Similarly, for the Hamiltonian WB, the corresponding canonical pendulum res-

onant Hamiltonian is

Xi' =- Jb2 -I cOS 0b,I (6.13)
pL p



and the resonance half-width is

Ai J IT (6.14)

which gives the width of resonance in the original action variable as

(-2plIb/fb)1/2 (6.15)

The above analysis can be applied graphically to determine the value of the

Hamiltonian at which resonance overlap occurs and hence provide an estimate for

the onset of widespread chaos. In figures 14 we plot in the space of the original

action variables (I.,Ib) the resonance conditions (6.3) and (6.4) (curves (ai) and

(bi)), the boundaries of resonance zone (6.12) and (6.15) (curves (a 2 ) and (62 )),
and the curves of constant WO for the cases of h=1.6, 1=0.248062, e=0.009072 and

A=0.1, 0.15, 0.2, 0.3. Superposing the two resonance zones, we obtain the overlap

region as shown by the shaded areas in the figures. The global behavior of the

Poincare sections in figures 12 and 13 can be completely explained in terms of these

resonance overlap diagrams.

From figure 14(a) for A = 0.1, we see that the level curve of Wo ' H = 2.0

does not intersect the resonance overlap zone. This suggests that isolated resonance

zones dominate at this low energy and we should see only regular motions as figure

12(a) shows, As Xo is increased, part of the level curves sweep across the interior of

the resonance overlap regime, indicating the onset of chaotic motion. Figure 12(b)
shows the Poincare section of such an energy level, W=4.0, where a chaotic region

is seen between the inner and outer regular phase portraits. As the energy level is

further raised, the level curves no longer intersect the overlap region and regular

motions become predominant again in the phase space as shown in figure 12(c) for

W=6.0. This explains the so called banded-energy phenomenon.

The critical-energy phenomenon for A = 0.2 with the energy levels of Wo 7-X =

8.0, 9.0, 10.0 and 11.968215 as presented in figures 13 can also be predicted according

to the resonance overlap diagram figure 14(c). That the phase portraits in figure
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13(a) are completely regular can be seen from figure 14(c) where the level curve of

Xo C i = 8.0 is away from the overlap zone. As the energy level is raised beyond

a critical value the level curves never leave the overlap region once they are inside.

This corresponds to the critical-energy phenomenon we have seen in the numerical

experiments. The phase space will be dominated by chaotic trajectories as indicated

in figures 13(b - d) for energy levels greater than the critical value.

Since the physical parameters are related in a very complicated way to the

coefficients in the Hamiltonian system, the resonance overlap diagrams suggest an

effective way to search the space of the parameters. One important information

of the resonance overlap diagram is the area of the overlap zone which gives a

measure of the degree or likelihood of chaotic motions for the specific set of physical

parameters. Thus we simply plot the areas of the overlap zone as a function of the

changing parameters. As an illustration, we show the variation of the overlap area

with the excitation frequency detuning parameter A for 1=0.248062, e=0.009072 and

three different depths h=1.6, 1.8 and 2.2 in figure 15. For h=2.2, the overlap area

increases monotonically with increasing detuning A. For the intermediate depths,

h=1.6 and 1.8, however, the overlap areas increase to a maximum and then fall off

as A is further increased. The effect of the excitation amplitude e on the degree

of chaos can likewise be examined. Figure 16 shows the change of overlap area

with e for the cases 1=0.248062, h=1.6 and A=0.1, 0.15, 0.2 and 0.3. Surprisingly,

the overlap area increases rapidly first for increasing excitation amplitude and then

decreases for larger amplitudes so that the most widespread chaotic responses need

not be associated with the largest driving amplitudes.
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7. Concluding remarks

In recent years, the generic two-degree-of-freedom internally resonant system

of weakly nonlinear gravity waves in a (rectangular or circular) cylinder subject

to either horizontal (directly forced) or vertical (parametrically resonant) excita-

tion has been widely studied primarily for the weakly dissipative system. These

include, for example, Keolian et al. (1981), Gollub & Meyer (1983), Ciliberto &

Gollub (1984, 1985a,b), Meron & Procaccia (1986a,b, 1987), Nayfeh (1987), Umeki

& Kambe (1989) for the vertically oscillated circular cylinder; Gu & Sethna (1987),
Feng & Sethna (1989), Simonelli & Gollub (1989) for the vertically oscillated square

cylinder; and Miles (1984b), Funakoshi & Inoue (1987, 1988) for the horizontally

oscillated circular cylinder. As pointed out earlier, the present cases I and II differ

mainly in detail and in providing direct comparisons to the measurements of Lin &

Howard (1960). The dynamic system of case III, however, is new and differs from

the above problems in the incorporation of both direct and parametric excitations

simultaneously.

We have not considered dissipation in this work although it is known that such

effects play a role in the physical problem ( e.g. Shemer & Kit 1988). For numerical

studies, a small phenomenological linear damping term can be readily included in

the dynamical system (e.g. Miles 1984b). At present, studies of the onset of chaos

in dissipative dynamical systems are yet in an infant stage and much of the work to

predict global properties still relies on numerical simulations. Although the method

of resonance overlap is strictly applicable only to conservative systems, it is a useful

analysis tool for some weakly dissipative problems by providing a global predic-

tion to the corresponding Hamiltonian system with the dissipation terms neglected.

Some of our preliminary simulation results indicate that for weakly dissipative sys-

tems, Hamiltonian chaos is preserved. Given the uncertainty of the actual phe-

nomenological damping to use, the sensitive dependence of the resulting evolutions

on the damping, and the lack of mature methodologies for analyzing dissipative



dynamical systems, it is hoped that the present study of the conservative system

would facilitate the understanding of the physical problem and provide an analytic

basis for examining the global behaviors. Clearly, much further work remains for

the study of dissipative systems.



Appendix A. Treatment of the inhomogeneous
wavemaker boundary conditions

We expand the shape function F(z) = 1+z/h in the inhomogeneous wavemaker

boundary condition (3.2) in terms of a Fourier series:

2 *0 sin (2na 3 z 4 * [cos (2nm+1 (z + h)
F(z) = -- .h- (A.1)

-x E [(2m + 1) r2 [ (2m + 1)2

The potential p(z, z) in (3.3) which satisfies the Laplace equation, homogeneous

boundary conditions on the walls and the bottom, and op/8x = F(z) at z = 0 can

then be written as

4h * [ sin (2m+l)w z cosh (2mn+l)w( - 1)
2hx z) =x -1)22Sz) = ;2 m (2rn + 1)2 sinh 2n+l) J

M=0 -2h

4hw[ cos (2m+l) (z + h) cosh (2 mn+)w( - 1)
+ -N E h(m 13h X 1)(A.2)

mn=O (2m+)sinh (2m+0) '

Expanding the hyperbolic cosine terms in (A.2) into Fourier cosine series and after

some manipulation we obtain the expression (3.3b) for V(z, z). The terms which

appear in the free-surface boundary conditions (2.4c) and (2.5c) are V and its first

and second z derivatives evaluated at z = 0. These can be further simplified from

(3.3b) as
h2  1 1 2 n7rh

(1- tanh ) cosnix, (A.3a)24 x n nrh 2
n=1

__ h 1 n* 1
( z) =- + - tanhn-h cos naz, (A.3b)

82 V 2 c 1 nxrh
Oz 2 (X z) 1 + ;h- tanh 2 cos n7rx, (A.3c)

z=O n2

where the results involving generalized functions (Oberhettinger 1973) are used in

the summation of the Fourier series for the second derivative (A.3c). The constant

terms in (A.3) correspond to fo, fo and fo' in the expression of # in (4.5a), and the

coefficients of cos nrz are designated as fn, f' and f', respectively.

-A



For the inhomogeneous wavemaker boundary condition (4.2), we write

= (B*e-it + Be-i3t + c.c.) cos try G(z), ,.. -(A.4a)

where
sinh tI(z + h) (A.4b)

G(z) = 4h sinh (rh

Again, we expand G(z) into a Fourier series and after some manipulation obtain

the expression (4.3b) for (z, z) which satisfies the Laplace equation, and the inho-

mogeneous boundary condition (A.4a). The contributions O(x, 0) and 86/z J,=o

can be further simplified and expressed as

00

6(x, 0) = go + Z gcos n7rx,
n=1

00

(x, z) =go + g cos nx,
I Z=O n=1

where go and g' are given by (4.5fg).

(A.5a)

(A.5b)



Appendix B. Two-dimensional Faraday problem for
stratified two-layer flow

We consider the resonant motion of a stratified two-layer fluid in a two-

dimensional rectangular basin subject to a vertical oscillation -a, cos wet. The

densities of the lower and upper fluids are p' and p" respectively, with the lower

layer heavier than the upper layer (p' > p"). For convenience, in what follows, all

physical variables are non-dimensionalized by the half length of the basin L, and

the timescale 2/w,. A coordinate system fixed with the basin is chosen so that the

origin and z-axis are in the undisturbed interface, z is positive upwards, the side

walls of the basin are at x = i1, and the lower bottom and the upper lid are at

z = -h' and z = h" respectively. For ideal, incompressible and irrotational fluids,

the velocity potentials of lower and upper flows, d'(x, z, i) and li"(z, z, t), satisfy

the Laplace equations with the solid boundary conditions on the side walls, bottom

and lid. The kinematic boundary conditions on the interface z = C(x, t) are

-c + - - -P - = 0 (B.1a)S ox ax" oz '

=0 + -- - -= 0 (B.1b)of ax jx_ oaz
and the dynamic boundary condition is

( 8 ' 1 
'

8 -+1VV" VV' + 4(N 2 p + e cos 2t)(

p 0 + 1 " V4V " + 4(N2IL + cos2t)(j, (B.2)

where the density ration p=p"/p' <1, the nondimensional amplitude of excitation

e = a,/L < 0(1), p = (i' + pp")/(1 - p), p' = (mirtanhmirh')-1, and P" =

(mir tanh m7rh")-l. We consider here the 1/2-subharmonic resonance of the mth-

mode standing wave, so that N = l/we = 1/2 + Ae, where (2 = (g/(Lp))'/ 2 is the

dimensional natural frequency of the mth-mode internal standing wave, and A is

the detuning parameter.



Multiple-scale analysis of the boundary value problem is processed with the

same long timescale r and the same asymptotic expansions of V', 0" and C as for

the cross-wave case (§4). At the leading order, O(C1/2), the velocity potentials 0'

and 4', are

, 1 ((r)eit+ c.c.] Coskz cosh k(z + h')
2 k sinh kh' (B.3a)

1 c o cosh k(z - h")
2'i =-[B(r)e~ t + c.c.] cos kx . ,,n ,~h (B.3b)

where k = mir. The solvability condition at the third order (O(e 2 /3 )) yields the

evolution equation for B(r) as

dB2
p-+ i2piA B - iI3B* - iF B2B* = 0, (B.4)

where

# (' - p") (B.5a, b)

, _ 2 (k2a, 2 + k2,_ _) P2(k2/y, -1)
8 y 1 4

+ L2(k211.' + 1) + (p'k-2p), (B.5c)
4 6

" = (k2nU1 2 
-2 it+ 1) + P2(k2,IPn ±1)

- (k2 ,t _ 1) _ G"n + p), (B.5d)
4 64

S- 3k4'I"(pt"2 - , 2) + k 2(1 - Ot,,I," Ao
P2 16(ppa' + p", (B.5e)

k2(p,, 2 _ 1,2) + (p - 1)
8 (pps" + p') (B.5f)

, 3k 1 I"(pys2 _ ,2 ) + k 2, [(3 - p)It" + 2pp']
P2 8(p + p)(B.5g)

I= 3k4P1'1 "(pI" 2 _ ,2) + k2"[( - 3p)p' - 2p"]
P2= -ja' (B.5h)8( p" + pp')



The evolution equation (B.4) has the same form as that of the cross wave,
equation (4.4) in §4, or oscillations of a pendulum under parametric excitation

(Struble 1963). The limiting case, p = 0, of (B.4) corresponds to the equation of

free surface Faraday wave as in Ockendon & Ockendon (1973) and Miles (1984a).

The stationary solutions and the linear stability analyses of (B.4) have been given in

Ockendon & Ockendon (1973) and Miles (1984a). For the sake of later discussions,
the phase-plane trajectories B(r) = C(r) + iD(r) for p = 0, h' = oo, F = /8

and pA = -1, 0, 1 respectively are shown in figures 17(a - c). Note that pA =

3/2 and -3/2 correspond to sub- (super-) and supercritical (subcritical) pitchfork

bifurcation points for F > 0 (P < 0). For 1A < -#3/2 when F > 0 (figure 17a),
and 1A > #/2 when F < 0, the only critical point is a stable center at C = 0,
D = 0. For |tA| < P/2, the zero solution C = 0, D = 0 becomes an unstable

saddle point and the stable centers are at C = 0, D = ±[(21A + sgn(1)#)/F]'/ 2 ,
as shown in figure 17(b). The equations of the two separatrices are C2 + D 2 ±

2([PCD - piA(C 2 + D 2 )1/F} 1/2 = 0. For pA > #/2 when F > 0 (figure 17c),
and jA < -#8/2 when F < 0, there are three stable centers: C = 0, D = 0

and C = 0, D = ±[(21A + sgn(F)3)/F]1/ 2 ; and two unstable saddle points: C =

i[(2pA - sgn(F)#3)/1FJ/ 2 D = 0. For this case, the two separatrices are the circles

given by C2 + [D2 ± (/3/F)' 2] 2 = 2pA/F.

In figure 18, the stationary solutions are compared with the experimental re-

sults of Skalak & Yarymovych (1962) for free surface Faraday problem (p = 0) with

deep water (h = oo). The maximum free surface displacement zo is defined as the

maximum vertical distance between the trough and the crest of the free surface, and

the response frequency a = W/fO. The comparison between the present results and

measurements is remarkably close and is much better than that of the perturbation

theory of Skalak & Yarymovych (1962).

For the stratified Faraday problem, the stationary (harmonic) responses of

the present analysis are compared with the experimental measurements of Sekerzh-

Zen'kovich & Kalinichenko (1979). Note that the experiments were carried out with



a free surface on the upper lid, but the free surface was not perturbed within the

range of excitation frequency as indicated in Sekerzh-Zen'kovich & Kalinichenko

(1979). The rectangular tank, with width 2L=11.2 cm, was filled with distilled

water (p=1 g/cm3 ) in lower layer and kerosene (p=0. 7 82 g/cm 3 ) in upper layer,

each with equal thickness (6.8 cm). In figure 18, the dimensional amplitudes of

harmonic responses (cm) are plotted versus the excitation frequency (Hz) for m = 1,

3/2 and 2 internal standing-wave modes. The comparisons are fairly good for the

first-mode (m = 1) wave, but for higher modes the theoretical results overpredict

the responses.
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Figure 17. Phase-plane solutions of the evolution (B.4) for p = 0, h = oo, and pA =
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Appendix C. Periodic solutions of the evolution
equation governing parametric resonance

Periodic solutions of the evolution equation (B.4) (or 4.4) can be obtained

analytically. Representing the complex amplitude B(r) as

B(r) = C(r) + iD(r) _ a(cos -y + i sin -y), (C.1)

where a and - are functions of r, (B.4) can now be written as

p = -2pA + P2a +3 cos 27, (C.2a)

and
da

p = a3 sin 2 -t. (C.2b)
d-r

Combining (C.2a, b) and eliminating r, we obtain

dy # 3cos 27 - 2pA + r 2 a

da a# sin 27(

Equation (C.3) is an exact integral and upon integration we have

2a 2 (I cos 2- - 2pA) + a4 = E, (C.4)

where E is an integration constant. Equations (C.2b) and (C.4) can be further

combined as

y da - E-7a 4 2

a dr 2a2

which gives

y Ida 2
Ir = i-+i (C.5)

2 a4#0, - (2ptAa2+ IE - }Pra4)22 2 a)

Thus, the slow time r is expressed as an elliptic integral of the square of the ampli-

tude a. At any specified r, a2 is given in terms of an elliptic function of -r, and the

phase angle y can be obtained from (C.4).



IF
The period of the modulation, T, may be expressed in a more explicit form. For

simplicity, we classify the phase-plane trajectories of figures 17 in Appendix B into

three different types: (i) All the trajectories in figures 17(a, b) which are outside

the separatrix, and the trajectories in figure 17(c) which are outside the trajectory

with E = 0 (this trajectory is outside the separatrix). Each of these trajectories

has a different positive integration constant E. (ii) Trajectories in figures 17(b, c)

which are inside the upper and lower separatrices forming two nested sets about

the centers C = ±[(21pA - #)/PTJ1/2, D = 0. Each pair of trajectories which are

symmetric about the C axis share the same negative E value. (iii) Trajectories in

figure 17(c) which are inside the inner separatrix and those which are outside the

upper and lower separatrices but inside the E = 0 trajectory, forming two nested

sets about the stable center C = 0, D = 0. For each trajectory in the first set with a

given negative integration constant E, there is a trajectory of the other set sharing

the same constant.

We rewrite (C.5) in the form:

I.-r = 7 i (C.6)
S V(si- s)(s - S2)(8- S3)(aS- 84)

where a = a 2 g', and 81,32, S3, 34 are the zeros of the denominator in (0.5).

For type (i) trajectories, only two of the zeros are real, which correspond to

the intercepts of the trajectories with the C and D axes according to (C.4). From

(C.6), the period for the type (i) trajectories is given by

F a2  (au - s)(s - a~m)[(s - bi)2 + al] ]C7

where au and am are respectively the maximum and minimum of the amplitude,

and Ia[ 1

= - 2 + am) (C.7c)



Equations (0.7) can be further reduced into the standard form of a complete elliptic

integral (Byrd & Friedman 1954):

4pg~ ir/2 dO 4pT yg -O 42  K(k 2 ), (C.8a)
T vil - k2 sin2 0

where
2g= ,2 (C.8b)

k 1 (am a2) - (A - B)2C.c
k 2=/2 A), (C.8c)

A = (a2- bi) 2 + a,, (C.8d)

B = (a - bi) 2 + af , (C.8e)

and K is the complete elliptic integral of the first kind (Abramowitz & Stegun 1965).

For type (ii) modulations, the periods of the upper and lower loops are equal and

given by half times the expression (C.8a).

For type (iii) trajectories, the inner and outer loops associated with the same

constant E have equal periods even though the motions are quite different. From

(C.6), the period T can be represented as

T ds(C.9)
2- s)(i2 - s)(a2 - s)(s - a(

where -m and Wm are respectively the maximum and minimum of the outer trajec-

tory, and am and am the corresponding values for the inner trajectories. Reducing

to standard form, (0.9) becomes (Byrd & Friedman 1954):

T = 4LK(k2), (C.10a)

where
2

9 = ,(C.10b)

(3g- ay)(gim - am)



(a -_ d2)(a -a )
k= .- a (C.10c)

(d2 -- a)(d2- t

The preceding results for the period of the slowly-varying modulations are

plotted in figure 20 as a function of the amplitude on the positive D axis for p = 0,
h = oo and jpA = -1, 0, 1 respectively. Note that the periods are discontinuous

across the separatrices and saddle points.
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Appendix D. Second-order solutions for the internal
interaction system

The solutions 02 and (2 for the second-order boundary-value problem of the

internal interaction case are

02 = i(e-i2t - c.c.) [> dm cos nirx cosh mr(z +
n

+ i[A2e-i(4+2feL/ 2)t - c.c.] 1ao

+ i [B 2 e-i 2 t - c.c.] [bo + b, cos

+ a,

2iry

h) - V(x, z)]

cos 2nrz cosh 2n(z + h)
2nr sinh 2nrh

cosh 21r(z + h)
21r sinh 2trh I

+ i[(ABe-i (3+ye1 / 2 )t - c.c.)a 2 + (AB*e-1+7e/ 2 )t - c.c.)b2 ]

x cos mirx cos lry

+ (AA*)a 3t + (BB*)b3 t,

cosh( v/n2 +t
v'n2 +2w sinh(

(D.1)

and

2 = - ( + c.c.) dm cos mzrx cosh mirh - V(x, 0)

m~wa

1 (--2t + c.c.)(fn - -f') cosmz

- iA [Ae--2+ye/2)t - c.c.] cos mirx - iA(Be-" - c.c.) cos try

- [A2e-i(4+2e1/2)t + c.c.]ii cos 2nrx - [B 2 e- 2 t + c.c.]11 cos 21ry

- [(ABe(3+yel/2 )t + c.c.)a 2 + (AB*e-i(1+,Ve'/ 2)t + c.c.)12] cos nrx cos try

- (AA*)&s cos 2nrx - (BB*)b cos2try, (D.2)

ao = - i (2 ,2 It2 + 48),a 256

bo - (3 + p12 12r2 ),

ai = (3n2r2Y2 - 48),256

bi = - p 2r2 (1 - L 2 2W2 ),

where

4(z + h))_
v/n2 +144r)I



(n 2 + 212 )7r2/L2 - 42
a2 = 7f- 172# - 8p1'

b2 (212 - n 2 )lr2Y2 +6
8A - 8p '

a3 = (6- n2ir2 ,t2 ),

b3  8 A(1

=2 i22r3 22 A 16),2
1

= -(1 (1 - r2
16

a2 = (1 

d2 = (2( 2 - n2 1)Ir2 
14 + 6

63 -= 3(n~2 + 2e2)7r2 /4i 14

- ~ 8 - 8y8!
b3 = - (1 + /1 2 2 ),

24 8
4 + mlrs, tanh mih - 8 tanh h

dm 2 2(M ~ w

dm mwr(mr sinh mih - 4 cosh mih)'

and
11

v(n2 + 2/2)7r_ 14Vf
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II

Interactions between a free surface and

a shed vortex sheet

The nonlinear interactions between a free surface and a shed vortex shear layer

in the inviscid wake of a surface-piercing plate is studied numerically using mixed-

Eulerian-Lagrangian method. For the plate with initial submergence d and moves

abruptly from rest to a constant horizontal velocity U, the problem is governed

by a single parameter, the Froude number F, = U/g, where g is the gravita-

tional acceleration. Depending on the Froude number, three classes of interaction

dynamics (subcritical, transcritical and supercritical) are identified in the wake of

the plate. The early stage of the free surface and vortex sheet evolutions are similar

for the three cases: the shed vortex sheet quickly rolls up into a single-branched

spiral and the forward side of free surface rapidly forms a thin jet. For subcritical

Froude numbers (F. <- 0.7), the free surfaces begin to plunge on both forward

and lee sides of the plate before significant interactions with the vortex sheet occur.

For both transcritical and supercritical Froude numbers, the depressed deformation

of the free surface behind the plate stretches the vortex sheet and finite-amplitude

Kelvin-Helmholtz instabilities arise which roll up into double-branched spirals. In

the transcritical range (F, ~ 0.7 - 1.0), the interaction between the free surface

and the Kelvin-Helmholtz instabilities remains weak, which allows the latter to

roll up continuously into a series of double-branched spirals. For supercritical case

(F, >- 1.0), the double-branched spiral grows and entrains into the free surface

resulting in large surface deformations, and the lee side free surface near the plate

moves downward continuously which eventually sluices from the lower tip of the

plate.



1. Introduction

The fundamental problem of free surface and shear layer interaction attracted

increasing attention in recent years motivated by the observation of persistent ob-

servable features in the ship wake. Considerable progress in both experimental

investigation and numerical simulation of such phenomena has been made with em-

phasis on the interaction dynamics between the free surface and a given vortical

flow. An example is the recent work of Yu & Tryggvason (1990), who studied nu-

merically the interaction of two-dimensional vortex flows with a free surface. The

vorticity is modeled as point vortices, vortex sheets and vortex patches. They found

that distinct free surface motions are generated depending on the initial vortex con-

figuration.

Another recent numerical experiment is that of Dimas (1991) in which a shear

flow with a mean velocity profile in the vertical direction is used to simulate the

wake behind a two-dimensional submerged body. An Euler equation subject to free-

surface boundary conditions is solved numerically. It is found that for a sufficiently

large submergence, the interaction between the shear layer and the free surface is

suppressed, and the flow reaches a quasi-steady state. For a smaller submergence,

vortices form very near the free surface causing breaking surface waves. The mech-

anisms involved in the interaction dynamics between the free surface and vorticity

flow, however, were not completely identified. Moreover, no quantification of the

interaction features with respect to the submergence and velocity of the body was

carried out.

The primary goal of this research is to identify and quantify, through careful

numerical simulations, the basic mechanisms of the fully nonlinear body-vortex-free

surface interactions including generation, evolution and the coupled dynamics. Of

special interest is the understanding and quantification of the critical role of the

Froude number.

To reach these objectives, we consider h anonical problem of a thin vertical

4



surface-piercing plate of initial submergence d, moving abruptly from rest to a

constant horizontal velocity U. The free surface rises sharply on the forward face

and is drawn down on the rearward face into close proximity of the trailing vortex

sheet shed from the lower edge of the strut. The resulting interaction dynamics

among the body, free surface and the vortex sheet in an actual wake are extremely

complex and are heretofore not completely understood. Significantly, the present

problem is governed by only a single parameter, the Froude number F' = U/V/g~W,

where 9 is the gravitational acceleration, so that a systematic study varying this

parameter allows us to reach a complete understanding and quantification of the

underlying mechanisms.

One important distinction between this and previous computational studies in

which the strengths and positions of the vorticity are prescribed as initial conditions,

is that the vortex shear layer here is shed by the strut under the influence of the

free surface and vorticity flow, i.e., in the actual wake of the body. While the

problem is simplified by a body possessing a sharp edge for which simple models for

vortex generation can be used, the problem includes all the important interaction

dynamics of vortex-body-free surface flows. Indeed, from a computational point

of view, the present model is the most general and in fact the most difficult of all

two-dimensional vortex-free surface interaction problems. Aside from fundamental

scientific interests, the present problem is of practical importance in the analysis

of damping of shallow-draft bodies, the performance of lifting surfaces near a free

surface, as well as the wave resistance and disturbances generated by the operation

of such surfaces.

In the present work, the fluid is assumed to be inviscid and the free shear layer

confined in an infinitesimal vortex sheet, outside of which the flow is irrotational.

Thus the characteristics of real, high Reynolds number flows are approximated by

assuming the effects of viscosity to be confined to infinitesimally-thin boundary

and shear layers. The validity of such discrete-vortex approximations has been

controversial, and is the subject of vigorous debate since the pioneering work of



Rosenhead (1931) and its subsequent criticism by Birkhoff & Fisher (1959). A

comprehensive review of the various vortex methods and their practical applications

can been found in Sarpkaya (1989), which also includes an extensive bibliography

of these and related work.

For an infinitesimal vortex sheet, it is well known that the rate of growth of

Kelvin-Helmholtz instabilities increases with the wavenumber of the disturbance

(e.g., Lamb 1932). For initial conditions which are not smooth, then, the resulting

evolution develops into singularities within finite time (cf., Moore 1979), and the

problem is strictly not well posed. In practice, such singularities manifest them-

selves in the form of numerical instabilities such as saw-tooth oscillations (Longuet-

Higgins & Cokelet 1976) on the free surface and irregular motions on a thin vortex

sheet (Moore 1981). In the physical problem, such singularities are absent due to

the presence of (a small amount of) viscosity. By introducing a small degree of

numerical filtering (or damping) of the highest wavenumbers, the singularity of the

mathematical problem is likewise removed in the computational problem. It should

be point out that such filtering/damping of short waves is essential in any inviscid

model, since the presence of strong nonlinear interactions will inevitably cause en-

ergy to transfer to and ultimately accumulate at the highest wavenumber modes

represented.

There have been a number of successful filtering/damping techniques for direct

simulation of vortex (and free-surface) flows. These include smoothing (Longuet-

Higgins & Cokelet 1976), rediscretization (Fink & Soh 1974) and regularization

methods (Chorin & Bernard 1973), which modify or stabilize the numerical scheme.

A common feature of these techniques is the effective introduction of damping into

the dynamical system, or of a filter which suppresses the unstable modes.

A common criticism of all these techniques is that the precise relationship

between the computational results and the 'exact' mathematical solution and ulti-

mately the actual physical problem is unclear. Our view is that with the limitations

of the mathematical formulation in representing the physical model, and with the



complexity of the physical system itself, there is much to be gained by accurate

simulation and quantification of the global features despite the inevitable use of

stabilizing techniques. The alternative of adopting full viscous free-surface codes is

prohibitive in most cases. We are especially encouraged by the promising results

of Vinje & Brevig (1981) for simulation of nonlinear free surface motions, and by

Faltinsen & Pettersen (1982) for vortex sheet shed from a moving body. Our goal

is that, by performing accurate numerical simulations and systematic convergence

tests especially with respect to the regularization parameters, a reliable description

of the fundamental physical processes can be obtained.

Mathematical formulation of the mixed first- and second-kind Cauchy integra-

tion equations which describe the initial-boundary-value problem is given in §2. The

mixed-Eulerian-Lagrangian method we employ and the detailed numerical imple-

mentation are described in §3. Of special importance is the use of cubic smoothing

splines and an adaptive curvature-controlled rediscretization algorithm to suppress

spurious short-wavelength instabilities, and to optimize the resolution and efficiency

of the simulations. Extensive numerical tests to validate the accuracy and show the

convergence of the numerical scheme are also presented. Detailed simulation re-

sults for the entire range of interest of the Froude number are given in §4. Three

critical ranges of Froude number - subcritical, transcritical and supercritical -

are identified based on the features of interaction between the free surface and the

shed vortex sheet which are described in detail. Finally, physical properties of the

motions which characterize the Froude number dependence are presented.



2. Mathematical formulation

2.1. Mixed first- and second-kinds integral equation

We consider as a canonical problem the abrupt starting from rest to horizontal veloc-

ity U of an infinitesimally thin vertical surface-piercing strut of initial submergence

d. A thin shear layer is shed from the edge of the submerged strut continuously as

time proceeds. The fluids, excluding the shear layer, are assumed to be inviscid,

incompressible and irrotational which imply the existence of an analytic velocity

potential #(z, y, t) and stream function O(x, y, t). We define Cartesian coordinates

with the origin at the interaction point of the undisturbed free surface (y = 0)

and the rest position of the plate (X = 0), with y positive up. Significantly, for

deep water, this problem is governed by only one parameter, the Froude number

F, = U//gd, where g is the gravitational acceleration. In the following, length and

time units are chosen so that d, g=1. The computational domain is enclosed by

imposing periodic boundary conditions on the upstream (X = f/2) and downstream

(X = -1/2) vertical boundaries. The contour of the domain consists of the free

surface (Cf), the plate with fluid on one side (C,), the submerged portion of plate

(C.) and the vortex sheet (C,,).

Since the complex potential #(z, t) = 4(z, y, t) + ifk(x, y, t) is analytical inside

the fluid domain, where z = x + iy, Cauchy's integral theorem gives for each time

instant t:

#(zk, t) = - (z, t)K(z; zk )dz+ J [q(z,t)]K(z;zA)dz+i2#.(t); (2.1)
C/u0, C~uC,

when zk E Cf and C,, and

p(z&, t) = .- (z, 1)]

+4- 3(z, t)K(z; z )dz + 4- [4(z,t)]K(z;zk)dz+ijo(t)(2.2)
i2 uc 1 2x

C/ UC, C,.00,



when zk E C, and C.; where [4(z, )] = 0+ - 4- is the potential jump across C,

and C., and &.() is a complex constant resulting from contour integration along

z = [-/2 - ioo, e/2 - ioo]. The kernel function,

K(z; zk) = (i) cot[(C )(z - zt)], (2.3)

is the complex potential which satisfies the Laplace's equation inside the fluid do-

main excluding z = zk and with periodic boundary condition at x = ±t/2. We

define the direction of contour integration in the anticlockwise sense such that

wind/lee side of the plate and shear layer are the positive/negative side of the

contour. Taking the imaginary and real parts of (2.1) for zk E Cf and C, respec-

tively, we obtain second-kind Fredholm integral equations for lb on C1 and 4 on C,.

The imaginary part of (2.2) when zk E C, gives first-kind integral equations for the

potential jump [41 on C,. To avoid a weak singularity at the intersection point we

specify the known # at both upper (C1 n C,) and lower (Cf n C, n C.) intersection

points (Lin 1984).



2.2. Boundary and initial conditions

On the plate surfaces C, and both sides (+/-) of C., the prescribed uniform hori-

zontal velocity gives the Neumann boundary condition in term of the stream func-

tion as

0(X = ty,t) = y (z E C, U C,). (2.4)

On the free surface Cf, the kinematic boundary condition is

Dz 8#*
= w*(z E Cf), (2.5)

where D/Dtis the material time derivative, and w*(z, t) = u(z, y, t)+iv(z, y, t) is the

conjugate of complex velocity. From Bernoulli's equation, the dynamic boundary

condition for zero atmospheric pressure on the free surface Cf gives

D WW* - 122(z) (z E Cf). (2.6)
n

The vortex sheet C, is a material surface with zero pressure jump across the

shear layer and is convected according to

Dz =(w+ + w~) (z E Cv). (2.7)

The unsteady Kutta condition at the separation point is that the flow leaves the

trailing edge tangentially to the surface of the strut. Such a condition ensures that

at the trailing edge the velocity is finite and the pressure jump vanishes. Applying

this Kutta condition to the unsteady Bernoulli's equation gives the rate of shear

strength shedding at the tip of the plate as

D[4S] 1..
D[ = 2 (++- W+W+) (z = t + i). (2.8)

The initial conditions at t = 0 are specified with the free surface quiescent

= 0 and 2 (z) = 0) and a starting point vortex shed out according to the

similarity solution (e.g., Graham 1983) with the strength and position given.



2.3. Unsteady force and energy

The unsteady horizontal force F. acting on the plate can be calculated by integrating

the pressure distributions on both sides of the plate. An alternative formulation

of F., which inferred from the conservation of momentum as shown in Newman

(1977), can be derived for the present flow motion in nondimensional form as

Fx d-_dt 1 f
F,=-, ] n, da d [4]n, ds - 2 y n ds, (2.9)

o;uC, CjuC, CtUC,

where n, is the horizontal component of the unit outward-pointing normal vector.

The third integral vanishes in the present formulation due to the periodic conditions

on the up- and downstream boundaries. The first two integrals in the unsteady force

formulation (2.9) also give the nondimensional work W done on the fluids by the

forced plate motion.

The nondimensional total energy of the flow motions is

E =4 d + [4] d + 1 2 n, ds, (2.10)
C1 UC, C'uC, C

where n. is the component of the unit outward-pointing normal in the vertical

direction. The first and second integrals correspond to the kinetic energies of the

free surface and vortex sheet motions respectively. The third integral represents the

potential energy of the free surface. The inviscid flow formulation of the problem

guarantees that the conservation of energy as W = E.



3. Numerical implementation

3.1. Mixed-Eulerian-Lagrangian method

The initial-boundary-value problem of (2.1) - (2.8) in §2, including the motions of

the free surface, shear layer and moving plate, is solved using a mixed-Eulerian-

Lagrangian approach. In order to solve the mixed first- and second-kind integral

equations, contour integrations in (2.1) and (2.2) are approximated by representing

the contour boundaries by piecewise-linear segments and piecewise-linear distribu-

tions of # and [4] along the segments. The discrete forms of the mixed first- and

second-kind integral equations are then solved by evaluating the integrations at suit-

able collocation points zk. For the second-kind integral equations, the collocation

points are on the nodes of the line segments. For the first-kind equations, the zk

are placed at the midpoints of the segments. In order to obtain two more equations

for the complex constant p.(t), we also collocate at the upper intersection point

and at the midpoint of the segment above the lower intersection point. Details

of the numerical implementation in discretizing the integral equations are given in

appendix A.

The evolutions of the free surface position and potential are updated by inte-

grating in time the kinematic and dynamic free surface boundary conditions (2.5)

and (2.6), where the complex velocities w(z, t) = 03(z, t)/Oz are calculated using

three-point Lagrange formulae. The velocities at the intersection points are ob-

tained by differentiating the values of 3 at nodes on the plate next to the intersec-

tion points. The explicit fourth-order Runge-Kutta scheme, which is conditionally

stable for the linearized free surface boundary conditions, is used to carry out the

time integration.

The potential jump at the separation point of the plate is updated according

to (2.8), where the velocities w± are calculated by differentiating the values of

pi1 at the midpoints of segments on the submerged plate next to the separation

Now



point using three-point Lagrange formulae. A new shear layer segment is shed out

continuously at each time step. The new segment has an updated potential jump

at the adjacent to the separation point, and has the previous time step potential

jump at the other end which is convected from the separation point. The vortex

shear layer, which is a material surface, is convected numerically by a fourth-order

Runge-Kutta integrating scheme according to the evolution equation (2.7).



3.2. Adaptive rediscretization algorithm

In order to control the growth of short-wavelength instabilities and to 'optimize the

computation efficiency, we use a rediscretizing algorithm based on cubic smooth-

ing spline and mesh-function-controlled node adjustment schemes. After the La-

grangian boundaries (Cf and C.) are updated, smoothing cubic splines are cal-

culated in the least square sense to fit the nodes of meshes (e.g., de Boor 1978;

Lancaster & galkauskas 1990). The free surface and the shear layer are then re-

discretized based on equidisdistribution of the mesh function (Hyman & Naughton

1985) on each segment. The details of the adaptive rediscretization algorithm are

described in appendix B. Through all of the computations, we found such adaptive

rediscretization algorithm performs much more robustly and efficiently than apply-

ing smoothing formula (Longuet-Higgins & Cokelet 1976) or using equal-segment

regridding for mixed-Eulerian-Lagrangian method. As a test and a demonstration,

the adaptive rediscretization algorithm is applied to the motions of a plunging free

surface and the periodic double-branched spiral roll-up, both with abrupt geometric

changes and drastic evolutions. The results are shown by systematically changing

the four parameters governing the rediscretization algorithm: smoothing parameter

A, mesh function increment I, maximal and minimal segment sizes hm:. and hmin.

A plunging breaker is generated by imposing a linear, sinusoid free-surface wave

with 0.1 steepness and unit periodic wavelength as the initial condition. Figure 1

shows the profiles of the plunging breaker at t = 1.0,1.2,1.4 and 1.5 for different

values of smoothing parameter: A = 106, 10', 108 and oo with 80 segments per

wavelength. Smoothing spline fitting without nodal redistribution is applied to

the free surface position and the potential at every fifth time step. The infinite A

corresponds to the situation where no smoothing effect is applied. The free surface

profiles, except near the tips of the plunger, are indistinguishable for the range

of A. The profile of the plunger quickly converges to the nonsmoothing one with

increasing A. The absolute error of volume conservation and the total energy loss
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Figure 1. Free surface profiles of plunging breaker at t = 1.0, 1.2, 1.4 and 1.5 for

different values of smoothing parameter: A = 106, 107, 108 and oo.

(%) at i = 1.2,1.4 and 1.5 for different A are summarized in Table 1. The volume

error is less than 4 digits and the energy loss is less than 1% of the total energy up to

t = 1.5 right before the reentry of the plunger. The effect of changing the maximal

segment size hmax and the mesh function increment I, are shown in Table 2 for the

volume error and energy loss at t = 1.4 with A = 101", I. = 27r/30, hmin = 0.001

hma, =0.04, 0.035, 0.03, 0.025 and 0.02; and A = 1010, hma. = 0.025, hmin =

0.001, Ir = 27r/10, 2r/15, 27r/20, 2w/25 and 2r/30 respectively. Both volume

error and energy loss decrease with decreasing hma.. The energy loss reduces when

I,, decreases (finer grid), whereas the volume conservation changes from losing to

gaining error. The minimal segment size hmin, which controls the highest resolution

of discretization is found to have only negligible effect on the simulation results.



F
t = 1.2 1.4 1.5

Energy loss (%)

t = 1.2 1.4 1.5

1

1I

1

0' 0.000383

07  0.000343

08  0.000340

040 0.000340

00 0.000340

Table 1. Absolute error of volume conservation and total

plunging free-surface simulation at t = 1.2, 1.4 and 1.5

parameter A.

energy loss (%) for the

with varied smoothing

hm.. Volume error

0.040

0.035

0.030

0.025

0.020

0.000386

0.000276

0.000254

0.000133

0.000049

Energy loss(%)

3.0828

2.4477

1.6191,

1.3357

0.9918

IK Volume error Energy loss(%)

2w/10

2r/15

2r/20

2,x/25

2w/30

-0.000265

-0.000065

0.000065

0.000095

0.000133

3.2012

2.3279

1.7173

1.5451

1.3357

Table 2. Absolute error of volume conservation and total energy loss (%) for the

plunging free-surface simulation at t = 1.4, with varied maximal segment size hmax

and mesh-function increment I,.

Volume error

0.000480

0.000407

0.000401

0.000401

0.000401

0.000510

0.000414

0.000406

0.000405

0.000405

0.3395

0.4101

0.4090

0.4082

0.4082

0.6793

0.8005

0.8045

0.8047

0.8047

0.9415

1.1014

1.1130

1.1153

1.1153



The adaptive rediscretization algorithm is also applied to the roll-up of a peri-

odic vortex sheet with constant strength and a small amplitude perturbation as in

Krasny (1986). We plot in figure 2 the vortex roll-up at t = 2.0 with hma = 0.1,

hms = 0.0025, 1. = /10 and A = 104*, 1010 and 108. The inner spiral of the roll-

up is amalgamated into a point vortex, as described in the next section, with 27r

cut-off winding angle. The results show very little difference in the vortex sheet roll-

up between the strong smoothing (A = 106) and the nonsmoothing case (A = 1040).

Also plotted in figure 2 are the results using the vortex-blob method (Krasny 1986)

with the blob radius 6 = 0.12 and 500 vortex blobs. The comparison between the

solutions by the present scheme and the vortex blob method is very close for the

outer spiral turns demonstrating the accuracy of the present result and also the

minor effect of amalgamation on the global motions. Figure 3 shows the roll-up

at t = 2.0 for different mesh-function increments I. = r/15, -r/10 and r/5. The

resolution within the roll-up spiral is improved as expected with increasing I,. The

effect of varying the maximal segment size hma on vortex sheet roll-up is shown in

figure 4. The vortex sheets are very close in the roll-up region with the exception

of near the braid for different values of hma. The results also demonstrate the in-

fluence of initial discretization on vortex roll-up since initially all segment sizes are

approximately equal to hm... Unlike the free-surface case in which the result con-

verges with decreasing hma., here reducing segment size means introducing modes

with higher growing rates. Nevertheless, the global features of the roll-ups are the

same with the same embedded initial perturbation.
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Figure 2. Double-branched spiral roll-up of periodic vortex sheet at i = 2.0 for

different values of smoothing parameter: A = 10' 1010 and 1040; and by vortex blob

method with radius of blob 6 = 0.12 and 500 vortex blobs.
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Figure 3. Double-branched spiral roll-up of periodic vortex sheet at t = 2.0 for

different values of mesh-function increment: I,, = 7r/15, r/10 and -r/5.
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Figure 4. Double-branched spiral roll-up of periodic vortex sheet at t = 2.0 with

different maximal segment size: hma. 0.1, 0.08 and 0.06.



3.3. Amalgamation of single- and double-branched spirals

To eliminate the numerical difficulties in simulating the asymptotically tightened

and infinitely wound spiral roll-up, the spiral (single- and double-branched) vortex

sheet is approximated by a single core vortex bounded by a finite winding number

vortex spiral (e.g., Pullin & Phillips 1981; Hoeijmakers & Vaatstra 1983). For single-

branched spiral roll-up the core vortex corresponds to the starting vortex shed at

t = 0. As the vortex sheet continuously rolls up into a spiral and the winding angle

exceeds the prescribed value, the excess portion of the shear layer is amalgamated

into the core vortex. For double-branched roll-up, which results from steepening

of circulation distribution along the shear layer, amalgamation starts whenever the

inner spiral's roll up exceeds the given winding turns. The amalgamation forms a

core vortex which approximates the steep circulation distribution by a step function.

The strength and position of the amalgamated vortex are determined according to

the conservation of circulation and linear moment of vorticity. Figure 5 shows

single-branched spirals with different cut-off winding angles 0 = ir, 27r, and 3r,
for the roll-up of vortex sheet shed by a steadily moving plate with 7r/2 angle of

attack. Double-branched spiral roll-up of a periodic vortex sheet with various cut-off

winding angles 0 = 7r, 27r, and 31r for one branch are shown in figure 6. Application

of amalgamation is found to have only negligible effects on the motions outside the

outermost turn of both single- and double-branched spirals.
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Figure 5. Single-branched spiral roll-up at i = 5.0 shed by a steadily moving plate

in infinite flow with different cut-off winding angle of amalgamation: 0 = ir, 2ir and

37r.
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Figure 6. Double-branched spiral roll-up of periodic vortex sheet at t = 2.0 with

various cut-off winding angle of amalgamation: 6 = ir, 27r and 37r.



3.4. Accuracy of numerical time integration

As shown in Dommermuth et al. (1988), the explicit fourth-order Runge-Kutta time

integration for linearized free surface boundary conditions is conditionally stable

and mildly dissipative. The Courant condition for the stability of the Runge-Kutta

method is: At 2 < 8Fn 2Az/Ir, where At is the time step of integration and Ax is

the segment size on the free surface. For the computations of our final simulation,

the typical minimal free-surface segment is 0.01 and the time step used is 0.005

which is much less than required by the Courant condition.

The accuracy and convergence of the time-stepping procedure for vortex sheet

tracing and shedding at the separation point are checked by systematically reducing

the time step of the Runge-Kutta scheme for the calculations of spiral roll-up shed

by the plate in infinite flow. The vortex tracing results of the spiral roll-up at t = 4.0

with different integrating time steps (At = 0.04, 0.02, 0.01 and 0.008) are shown in

figure 7. The results show convergence of our vortex shedding and tracing scheme

with reducing time integration step.
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Figure 7. Single-branched spiral roll-up at t = 4.0 shed by a plate in infinite flow

with different integrating time steps: At = 0.04, 0.02, 0.01 and 0.008.
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3.5. Effects of grid spacing on the plate

The discretization of the plate segment affects both the motions of the intersection

points and vortex shedding at the separation point. Careful studies were carried

out by Lin (1984) regarding the grid spacing near the intersection point. It was

concluded from the numerical experiments that the sizes of the segments at the

intersection point corner should be comparable, and a denser grid spacing near the

intersection results in very high thin jet shoot-up but little effect on the global

free-surface motion.

The grid spacing near the separation point, however, affects not only the vortex

shedding but also the later motions since the vortex sheet is convected from the

separation point. Effects with respect to grid spacing near the separation point

are tested by using both cosine and uniform spacing with different segment sizes as

shown in figure 8 for a shed single-branched spiral at t = 4.0. The uniform spacing

is arranged such that finer segments (hep=1/40 and 1/60) are distributed within a

quarter length of the half plate from the separation point, and the rest of the plate

is discretized with uniform segments size h=1/28. Two cosine spacing grids with

total segment number N,,.9=40, and 48 are also shown in figure 8. The segment size

next to the separation point is approximately equal 0.002 for the finer cosine spacing

which is much smaller than the 0.025 segment size uniform spacing. The results

show virtually indistinguishable profiles for cosine spacing shedding. Whereas the

uniform spacing shedding converges quickly with finer gridding to cosine spacing

results. For the surface-piercing plate, whose submergence (plate length) changes

with time, we therefore use uniform spacing along the plate with fixed and finer

discretization near the separation point and uniformly rediscretize the rest of plate

at each time step.

102



0.0

-0.5

-1.0

-1.5

.l ..... .........

2.0 3.0 4.0

x

Figure 8. Single-branched spiral roll-up at t = 4.0 shed by a steadily moving plate

in infinite flow with various uniform and cosine spacing segments on the plate.
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4. Computational results

4.1 Critical Froude number for surface/vortex interactions

We perform a complete study of the free surface and shed vortex sheet interaction

problem by systematically varying the Froude number F over the entire range

of interest. From our numerical simulations, three qualitatively different classes

of interactions can be identified, depending on F., as subcritical (F. <- 0.7),

transcritical (F, ~ 0.7 - 1.0), and supercritical (F >- 1.0). The characteristic

features for the three classes of interaction dynamics within the near wake of the

plate are:

* Subcritical interaction. Free surface breaks before significant interaction with

the starting single-branched spiral vortex happens.

e Transcritical interaction. Backwards propagating free-surface setdown pushes

backwards the single-branched spiral and stretches the vortex sheet. The

stretched vortex sheet rolls up into series of double-branched spirals without

significant interaction with the free surface.

* Supercritical interaction. In contrast to the transcritical case, the double-

branched spirals form near the free surface and cause large free-surface de-

formation.

Two global conditions which may affect the interaction features are: the length

between up- and downstream periodic boundaries, and the initial motion of the

plate. In §4.3 the effect of periodic boundaries is studied by changing the length of

computational domain. The possible effect of the impulsive start of plate motion is

studied in §4.4 by using a smooth startup motion as initial condition. It is concluded

that these two boundary and initial conditions do not change the characteristic

features of the interaction dynamics.

For all of the computational results shown in the following, we choose the time

step of the Runge-Kutta time integration At = 0.005 and the length between pe-
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riodic boundaries I = 10. The discretization on the plate is uniform spacing with

fixed segment size Ah,p = 1/60 on the portion within one tenth of the initial sub-

mergence (=1) from the separation point, and with segment size Ah approximately

equal to 0.04 for the rest of the plate which is uniformly rediscretized at every time

step. Adaptive rediscretization is applied to the free surface every five time steps

with the parameters chosen as A = 10', I. = 7r/10, hmax = 0.06, hmin = 0.01, and

is applied to the vortex sheet every time step with A = 108, 1. = 7r/11, hma. = 0.06,

hmin = 0.008. In all of our computations, the total energy and the fluid volume are

monitored to ensure the accuracy of the computations. For all the results shown

below, the total energy (compared to work done) is conserved to within 4%, and

the fluid volume to at least 3 decimal places.
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4.1.1. Subcritical Froude number

Figures 9 and 10 show representative evolutions of subcritical Froude number mo-

tions (Fn <~- 0.7) at Fn = 0.5 and 0.6. At the early stage, a vortex sheet is shed

from the separation point which quickly rolls up into a single-branched spiral. Due

to the impulsive motion of the plate, the free surface on the forward side of the plate

shoots up rapidly in the form of a thin jet. Difficulties associated with simulating

a very thin film on the forward face are avoided by cutting that portion of the film

whose thickness is less than a small fraction (we use 2%) of the local segment length,

and a new intersection point is specified. In contrast, the intersection point on the

lee side is drawn down and meets the plate at a finite contact angle.

As time proceeds, the single-branched spiral grows in size and the vortex sheet

continuously rolls into the spiral center. A free surface disturbance propagates away

from the forward face of the plate eventually forming a plunging breaker. On the

lee side of the plate, a smaller backward propagating wave front is formed near the

plate which ultimately also breaks. Consistent with and similar to the infinite fluid

(F, = 0, e.g., figure 5) case, the single-branched spiral remains attached to the plate.

The center of roll-up, however, becomes shallower as it grows, resulting in a small

deformation of the free surface. The free-surface and vortex sheet evolutions for this

range of Froude numbers are thus characterized by negligible to weak interactions

between the two.
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Figure 9. Evolution of the free surface and vortex sheet for subcritical Froude

number F = 0.5.
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Evolution of the free surface and vortex sheet for subcritical Froude

number F, = 0.6.
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4.1.2. Transcritical Froude number

The early stages of the free surface and vortex sheet evolutions are similar for the

three classes. While for transcritical and supercritical Froude number (F. >- 0.7),

different but significant interactions are observed after the single-branched spiral

fully develops. Figures 11, 13 and 15 show the evolution of the free surface and

vortex sheet for F = 0.7, 0.8 and 1.0 respectively, illustrating the transcritical

interaction mechanisms. Details of the vortex sheet motions in the wake of the plate

at various time instances are also shown in figures 12, 14 and 16. The depression

of the free surface on the lee side of the plate pushes the single-branched vortex

spiral downstream causing the vortex sheet to stretch between the single-branched

roll-up and the separation point. At this stage, the rate of vortex shedding at the

separation point decreases to a small value (figure 23) and finite-amplitude Kelvin-

Helmholtz instabilities develop on the stretched portion of the vortex sheet. As

time proceeds, these instabilities grow and roll up into double-branched spirals as

shown in figure 12 at t > 2.45 for F, = 0.7, figure 14 at t > 1.9 for F = 0.8, and

figure 16 at i > 1.8 for F,. = 1.0.

The incidence of Kelvin-Helmholtz instabilities is demonstrated for the F =

0.9 case in figure 17 which plots the velocity fields in the wake of the plate at t = 0.9,

1.7, 2.1 and 2.2. At the initial stage, t = 0.9, the wake flow is mainly influenced

by the rolled-up starting vortex which has developed to a considerable size. As the

large free-surface depression associated with the plate starting motion propagates

backward, it prevents the vortex spiral from rising and pushes it further downstream

creating a stretched flat vortex sheet between the separation point and the rolled-up

spiral (t = 1.7). Due to flows in opposite directions on the upper and lower sides

of the stretched vortex sheet, a strong shear strain develops which amplifies the

initial growth of instabilities on the stretched vortex sheet. These instabilities then

quickly roll up into double-branched spirals starting from the portion of shear layer

near the single-branched spiral (t= 2.1 and 2.2).
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The main difference between the transcritical and supercritical cases is in the

strength of the interactions between the free surface waves and the Kelvin-Helmholtz

instabilities on the vortex sheet. For transcritical Froude numbers, the double-

branched spirals form well below the free surface. The interactions between the

free-surface and Kelvin-Helmholtz waves are consequently weak and allow the in-

stabilities on the stretched vortex sheet to roll up continuously, forming a series of

double-branched spirals. For substantially higher Froude numbers in transcritical

range, as e.g, F = 1.0, t = 2.15 in figure 16, the double-branched spirals begin

interacting with each other and may eventually merge into a single vortex spiral.

The free-surface depression behind the plate continues to develop, the backward

facing surface steepens and eventually plunges backward. The intersection point on

the lee side of the plate moves downward with time, reaching a constant depth

asymptotically (see figure 20).
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Figure 11. Evolution of the free surface and vortex sheet for transcritical Froude

number F,, = 0.7.
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Figure 12. Evolution of the free surface and vortex sheet in the wake of plate for

F,., = 0.7 at t = 1.0, 1.8, 2.3, 2.45, 2.5 and 2.53.
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Figure 13. Evolution of the free surface and vortex sheet for transcritical Froude

number F, = 0.8.
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Figure 15. Evolution of the free surface and vortex sheet for transcritical Froude

number F = 1.0.
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Figure 16. Evolution of the free surface and vortex sheet in the wake of plate for

F = 1.0 at t = 1.25, 1.65, 1.8, 1.95, 2.05 and 2.15
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4.1.3. Supercritical Froude number

The features of the free surface/vortex interactions at later stage for the supercriti-

cal Froude number are quite different from those of the transcritical case, as shown

in figures 15 and 16 for F = 1.2 and 1.5 respectively. As in the transcritical Froude

number cases, the initial and quick free-surface set-down in the wake of the plate

pushes the single-branched spiral downward and forms a stretched, unstable vortex

sheet. As the Kelvin-Helmholtz instability grows, a single double-branched spiral

forms on the perturbed, stretched vortex sheet beneath the sloping side of the de-

pressed free surface. Unlike the transcritical cases, such a solitary double-branched

spiral in the supercritical Froude number class grows in size and approaches and

eventually becomes entrained into the free surface. The free-surface deformation is

strongly affected by the rising double-branched spiral, developing a sharp depression

between the single- and double-branched spirals.

In these cases, the movement of the plate almost follows the propagation of the

free surface disturbance on the front side of the plate. The free surface jet is pushed

forward and keeps rising in the range of computation. The lower intersection point

on the lee side of the plate moves downward continuously (figure 20) and the free

surface eventually sluices from the lower tip of the plate.
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Figure 18. Evolution of the free surface and vortex sheet for supercritical Froude

number F,, = 1.2.
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Figure 19. Evolution of the free surface and vortex

F,, = 1.2 at t = 1.25, 1.405, 1.7, 1.75, 2.0 and 2.3.
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Figure 20. Evolution of the free surface and vortex sheet for supercritical Froude

number F,, = 1.5.
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Figure 21. Evolution of the free surface and
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4.2. Time evolution of characteristic properties

It is instructive to compare the time evolution of some physical properties which

characterize the Froude number dependence of interaction features. We first show

the properties of vortex shedding at the separation point for various Froude num-

bers. Figures 22 and 23 show time evolution of the circulation [0],,p and the rate of

vortex shedding d[4],,p/dt at the separation point. Unlike the vortex shedding in

infinite flow which increase monocinically at later stages, for finite Froude number

cases the rates of shedding decrease after a certain time.

To demonstrate the free surface effects on the motions of single-branched spi-

rals, in figure 24 we plot the paths of spiral centers: (XSC -t) versus y,c. As indicated

above, for subcritical Froude number cases the spiral approaches the free surface

as it grows. The backward movement of the vortex is due to the growth of roll-up

but not the free surface motion. As Froude number increases, the free surface de-

pression in the wake begins washing the spiral downstream which causes stretching

of the shear layer between roll-up and separation point. For supercritical Froude

numbers (F. = 1.1 - 1.5), the free surface even pushes the single-branched spiral

deeper beneath the free surface while stretching the vortex sheet.

The vertical movement of the lower intersection point (C1 n CF n C.) with time

is shown in figure 25 where the vertical position yli versus time t is plotted. For

both the subcritical and transcritical Froude number cases (F -< 1.0), the lower

intersection point moves downward first and then oscillates. While for the super-

critical Froude number class, the intersection points move downward continuously

which eventually causes sluicing.

The energy evolutions of fluid system (E) can be calculated according to (2.10)

and are shown in figure 26. Also plotted in the figure is the kinetic energy com-

ponent due to the vortex sheet (Ev). The total energy increases in time for all

Froude numbers since the motion of the plate keeps putting energy into the fluids.

Nevertheless, the kinetic energy of the vortex sheet increases faster for the sub-
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critical Froude number (F = 0.5,0.6,0.7) than for those in the transcritical and

supercritical range.

The history of unsteady horizontal force acting on the plate (F.), which equals

the rate of work input or equivalently the rate of total energy change, is plotted

in figure 27. Time evolution of the force component due to the vortex sheet (F.)

is also shown in figure 28. Interestingly, for subcritical Froude number, the total

force first increases with time and then decreases rapidly. In the time when the

total force decreases the component due to the vortex sheet increases rapidly, and

contributes to most of the total force. For the transcritical and supercritical cases,

the total force variation is more gradual. At later stage, the force due to the vortex

sheet decreases to a small amount.
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Figure 22. Time evolution of the circulation [01].,, at the separation point for various

Froude numbers.
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Figure 23. Time evolution of the rate of vortex shedding d[4],,p/dt at the separation

point for various Froude numbers.
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Figure 24. Paths of single-branched spiral center for various Froude numbers.
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Figure 25. Time evolution of the vertical position of lower intersection point yui for

various Froude numbers.

126



E 2.0 Fn-0.5

0.

E"0

E 1.5

1.0

0.0 -
0.0 0.5 1.0 1.5 2.0 2.5

Figure 26. Time evolution of the total energy E and the energy component due to

vortex sheet E" for various Froude numbers.
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Figure 27. Time evolution of the total horizontal force F. for various Froude num-

bers.
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Figure 28. Time evolution of the force component due to vortex sheet F.0 for various

Froude numbers.

128



4.3. Effect of periodic boundaries

Periodic conditions, imposed on the up- and downstream boundaries, are used to

enclose the computational domain. Although such boundaries interfere with the

free surface and vortex sheet motions, the interest in the present study is the fluid

interactions within the near wake of the plate. We check the effect of such finite

boundaries by increasing the length of computational domain. Figure 29 compares

two simulation results with different lengths between periodic boundaries (I = 10

and 20) for F, = 0.8 at i = 2.15 and 2.6. The major difference, as expected, is on

the forward side of free surface near the boundary. For a narrower domain (I = 10)

the plunging free-surface disturbance certainly reaches the boundary. However,

the free surface plungers and the vortex shear layers, which are very sensitive to

perturbations, have only minor differences between t = 10 and 20. Figure 30

shows the comparison of free surface and vortex profiles between I = 10 and 20 for

F, = 1.5. Again, the essential features of the dynamics are not changed by the

positions of periodic boundaries up to the final stage of interaction (vortex entrains

into free surface). It is therefore concluded that the interaction features between the

free surfaces and shear layers are accurately simulated within finite computational

domains.
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Figure 29. Profiles of free surface and vortex sheet at (a) t = 2.15 and (b) t = 2.6

for F, = 0.8 and with length between periodic boundaries 1 = 10 and 20.
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Figure 30. Profiles of free surface and vortex sheet at (a) t = 2.0 and (b) I = 2.45

for F = 1.5 and with length between periodic boundaries 1= 10 and 20.
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4.4. Effect of impulsive plate motion

As mentioned in §1, to reduce the governing parameters of the interaction dynamics

to a single parameter - Froude number, we have used an impulsive acceleration

of the plate. The nondimensionalized velocity distribution of such an impulsive

motion is described by the Heaviside step function U(t). It is clearly difficult if not

prohibitive to move the plate impulsively in the real experiment. In addition, it

is not obvious if the critical role of Froude number and the characteristic features

of the interaction dynamics depend on the initial motion of the plate. The effect

of impulsive plate motion compared to a smooth startup of the plate is studied by

using a velocity distribution tanh(t/St), where St is the parameter governing the

duration of transition from rest to steady motion. We have used St = 0.1 which

approximately equals 5% of the typical time period of the entire simulation.

One of the major effects of the transient starting motion compared to the im-

pulsive motion is the delay of formation and growth of the starting single-branched

spiral. For the subcritical Froude number range, the single-branched spiral vortex

forms well below the free surface and the free surface breaks without any significant

surface-vortex interaction. The dynamics features of the subcritical class therefore

are not affected by the initial plate motion.

The effect of transient starting motion on the interaction dynamics for the

transcritical Froude number class is shown in figure 31 for F, = 0.8. The plate

positions of t = 1.075, 1.975, 2.275, 2.425, 2.625 and 2.675 in figure 31 are ap-

proximately equal to t = 1.0, 1.9, 2.2, 2.35, 2.55 and 2.6 respectively in figure 14

for the impulsive plate motion. The delay of formation and growth of the single-

branched spiral can be seen by comparing figures 14 and 31. Because of such delay

the stretching mechanism of the vortex sheet is postponed and so is the onset of

Kelvin-Helmholtz instabilities and the formation of double-branched spirals. As

in the impulsive starting motion, the double-branched spirals form well below the

free surface and do not interact with the free surface. The transient starting plate
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motion therefore only delays the stages of interaction features for the transcritical

Froude number range.

Figure 32 shows the evolution of vortex and free surface in the wake of plate for

F = 1.5 (supercritical Froude number) with smooth startup of the plate. The plate

positions of t = 1.075, 1.725 and 2.075 in figure 32 are approximately equal to those

of t = 1.0, 1.65 and 2.0 respectively in figure 21 for impulsive plate motion. For the

supercritical Froude number case, the delayed formation and growth of the single-

branched spiral results in a noticeably different effect on the interaction dynamics

from the transcritical class. As in the transcritical class, the delayed single-branched

spiral growth postpones the stretching of the vortex sheet and also the propagation

of the free-surface depression. Such a delay of set-down propagation accelerates the

downward motion of the depressed free surface and consequently the approach of

the stretched vortex sheet to the free surface (compare t = 1.725 in figure 32 and

t = 1.65 in figure 21). The onset of Kelvin-Helmholtz instability on the stretched

vortex sheet and the roll-up of the double-branched spiral are expedited in contrast

to the transcritical interaction (compare t = 2.075 in figure 32 and t = 2.0 in figure

21). The delay of the backward propagation of the free-surface depression and the

entrainment of the double-branched spiral into the free surface speed up the collapse

of the free surface as t = 2.125 in figure 32 shows.

Although the transient startup of the plate either delays or accelerates the

interaction processes depending on the Froude number range, the essential stages

of the vortex-free surface interaction are not changed. We therefore conclude that

the critical role of Froude number and the characteristic features of the interaction

dynamics are independent of the initial plate motion.
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5. Conclusion

In this study the complexity of the vortex-free surface interaction in the wake

of a moving body is clarified and quantified by considering the motion of a surface-

piercing plate. Three classes of interaction dynamics are identified, based on the

Froude number, as subcritical, transcritical and supercritical interactions. For sub-

critical Froude number (F,, <~ 0.7), the free surface breaks on both forward and

backward faces before significant interactions with the shed vortex sheet occur. In

the higher Froude number range (F, >- 1.0), the strong drawn-down deformation

of the free surface on the rearward face stretches the trailing vortex sheet and causes

finite-amplitude Kelvin-Helmholtz instabilities. For the transcritical Froude number

case (F ~ 0.7-1.0), these instabilities form sufficiently deep below the free surface

and allow them to continuously roll up into double-branched spirals. While for the

supercritical Froude number range (F >- 1.0), the instabilities entrain the free

surface and cause significant free surface deformation. The underlying mechanism

and the basic features of vortex-free surface dynamics, such as free surface breaking,

vortex entrainment, detachment of starting vortex, stretching of shed vortex sheet,

and single- and double-branched spiral roll-ups, are clarified through the numerical

simulations.

A robust numerical scheme based on the mixed-Eulerian-Lagrangian approach

and incorporating smoothing spline fitting, mesh-function-controlled rediscretiza-

tion and spiral amalgamation is developed. Detailed accuracy and convergence

validation of the numerical scheme has been carried out. Such a numerical scheme

can be extended to other vortex-free surface interaction problems such as: damp-

ing of floating body due to vortex shedding from the sharp corners, operation of

hydrofoil near the free surface and vortical flow over bottom topology.

This study is our first step in an effort to understand the intricate features in the

wake of a surface-piercing body. While the flows considered in the present study is

two-dimensional and inviscid, considerable insight has been provided into the com-
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plex interaction dynamics. Clearly, many questions still remain to be resolved, such

as vortex break-down and free surface turbulence. The look into three-dimensional

and viscous flows is naturally inevitable.
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Appendix A. Numerical evaluation of the discretized
integral equations

The integral equations (2.1) and (2.2) are discretized by approximating the

contour boundaries by piecewise linear segments, and # and [4] by piecewise linear

distributions along the segments. Evaluating at suitable collocation points, the

discretized integral equations then take the form of a system of linear equations as:

--

9 or R #3 Tj/ +
zECIUC,

>3[4]1 j - 2xr/o] = 0;
zxECUC,

when zA E Cf (imaginary part equations); zk E C, (real part equations), and

z [ E3 BiFjk +
ZjECfUCp

when z& E C,. The influence function TI' is

T I 

>3 [.bjIjk - 27roo = -2x2k;
z j E C.UC,

and the tent function Ti(z) is defined as

T,(z) =

zj-zj+ 1 ,)

zj-1 < z < zj

zj < z < zj+1 .

The integration in the influence function Tk,j which cannot be carried out

explicitly is evaluated by subtracting a simple pole 1/(z - zk + Sjl) from the kernel

K(zj; zk) as:

DX z m I ~ AZ

Tk =I - Z'+ dz + Tj(z) - cot (Z - zk) - dz,
(A.5)

where 6jt = 1 when R(zi - zk) < -t/2, 5jk = -1 when R(z1 - zk) > e/2, and

6jk = 0 otherwise. The first integral can be evaluated analytically as in Vinje
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(A.2)

Tj(z)K(zi; zA)dz, (A.3)

(A.4)



& Brevig (1981). Representing the kernel of the second integral by a multipole

expansion up to second order and evaluating the integration gives,

jk - zj_1 - S3In zj - zk + Sikt zk - zi+1 - SIn zj - Zk + 6 jkI
Zj - Zj-1 zj_1 - Zk + Ojk 1  zj - zj+l Zjp+ - Zk + Ojk1

1r x x
+ (zj+1 - zj-1 ) cot -(zj - zk) - - 1

2 ~~~ 2 i zk i

+ -(2xj - zj_1 - zj+1)(() esc2 -(zj - za:) - Z-ZkSl2
Z + z-z(-.k

(A.6)
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Appendix B. Adaptive rediscretization algorithm

Given a set of N nodes on the contour boundary

fj = {(xj, yj) |1 < j N}, (B.1)

a fitting smoothing spline

S = {X(s),y(s) I Sa 5 S Sb}, (B.2)

is solved by minimizing the functional

Sb N
KA(S) = [S( 2 )(s)] 2 ds + A Z[S(sj) - fj]2, (B.3)

is a j=1

with natural boundary conditions at s = sa and ab (see de Boor (1978) or Lancaster

& Salkauskas (1990) for details). The weighting parameter A measures the compro-

mise between the smoothness or fitting (decreasing A) and accuracy or interpolating

(increasing A) of the spline functions.

After the smoothing spline is calculated, the contour is rediscretized based on

equidistribution of the "mesh function" n(s) (Hyman & Naughton 1985) along the

contour such that the new node discretization has the a priori prescribed value of

/j+1 ds
I9= n(s). pdj, (B.)

on the j-th segment between nodes j and j + 1, where s is the are length of the

boundary. In the present work we choose the curvature of the contour as the mesh

function n. To guarantee a minimal a priori accuracy and to prevent the size of

segments from decreasing too rapidly, a constraint is imposed in rediscretizing for

the size of the j-th segment h1 :

hm;n :5 hj < hmaz, (B.5)

where hma and hmin are upper and lower limits of the segment sizes. The choice of

hmin also guarantees the suppression of instabilities with wavelengths shorter than
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2 hmin. In summary, the controlling parameters for adjusting the rediscretization

are the weighting parameter for smoothing cubic spline fitting A, the integration

of the mesh function on each segment IK, and the maximal and minimal limits of

segment size hma, and hmin.
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