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ABSTRACT

We present the newly developed code, GPU-accelerated Adaptive-MEsh-Refinement code (GAMER), which adopts
a novel approach in improving the performance of adaptive-mesh-refinement (AMR) astrophysical simulations by
a large factor with the use of the graphic processing unit (GPU). The AMR implementation is based on a hierarchy
of grid patches with an oct-tree data structure. We adopt a three-dimensional relaxing total variation diminishing
scheme for the hydrodynamic solver and a multi-level relaxation scheme for the Poisson solver. Both solvers have
been implemented in GPU, by which hundreds of patches can be advanced in parallel. The computational overhead
associated with the data transfer between the CPU and GPU is carefully reduced by utilizing the capability of
asynchronous memory copies in GPU, and the computing time of the ghost-zone values for each patch is diminished
by overlapping it with the GPU computations. We demonstrate the accuracy of the code by performing several
standard test problems in astrophysics. GAMER is a parallel code that can be run in a multi-GPU cluster system.
We measure the performance of the code by performing purely baryonic cosmological simulations in different
hardware implementations, in which detailed timing analyses provide comparison between the computations
with and without GPU(s) acceleration. Maximum speed-up factors of 12.19 and 10.47 are demonstrated
using one GPU with 40963 effective resolution and 16 GPUs with 81923 effective resolution, respectively.
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1. INTRODUCTION

Numerical simulations have played an indispensable role in
modern astrophysics. They serve as powerful tools to probe the
fully nonlinear evolutions in various problems, and provide con-
nections between theoretical analyses and observation results.
Moreover, thanks to the rapid development of the parallel com-
puting techniques (e.g., the Beowulf clusters, Cell Broadband
Engines, and graphic processing units (GPU)), the spatial and
mass resolutions as well as computing performance have highly
improved in the last decade.

The most essential ingredients in astrophysical simulations
are the Newtonian gravity and hydrodynamics. In the last five
decades, many studies have been devoted to improving both
the accuracy and efficiency of numerical schemes. One of the
simplest approaches is to discretize the simulation domain into
a fixed number of grid cells, each of which occupies a fixed
volume and position. The cell-averaged physical attributes are
defined in each cell. The gravitational potential can be evalu-
ated by several different schemes, for instance, the relaxation
method, conjugate gradient method, and fast Fourier transform
(FFT). As for hydrodynamic evolution, it can be described by
the modern high-resolution shock-capturing algorithms, rang-
ing from the first-order Godunov scheme (Godunov 1959), the
second-order monotone upwind schemes for conservation laws
(MUSCL; van Leer 1979), to the third-order piecewise parabolic
method (PPM; Colella & Woodward 1984). In addition, for
cosmological simulations, the particle-mesh (PM) scheme (e.g.,
Klypin & Shandarin 1983; Merz et al. 2005) is often adopted,
in which the dark matter is treated as collisionless particles, and
the mass density in each grid cell is estimated by the cloud-

in-cell (CIC) technique. Although this uniform-mesh method is
relatively easy to implement, it suffers from the enormous mem-
ory and computing time requirements when the simulation size
increases. Consequently, with the PM method, one must com-
promise between the size of simulation domain and the spatial
resolution.

The Lagrangian particle-based approaches, in which both the
collisionless dark matter and the collisional gaseous components
are simulated using particles, are alternatives to the uniform-
mesh method. The hydrodynamic evolution is generally solved
by the smoothed particle hydrodynamics (SPH; Gingold &
Monaghan 1977; Lucy 1977), and numerous algorithms have
been adopted for solving the gravitational acceleration. The
most straightforward scheme is the direct N-body method, in
which all pairwise interactions are calculated. This method,
while accurate, is extremely time consuming when the number
of particles involved (denoted as N) is too large, owing to
its O(N2) scaling. Consequently, it is not suitable for the
simulations with a large number of particles.

Several approximate algorithms have been developed to im-
prove the computational performance of the gravitational force
calculation for particle-based approaches. For example, the
particle-particle/particle-mesh (P3M) method (e.g., Hockney &
Eastwood 1981; Efstathiou et al. 1985) improves the spatial
resolution by calculating the short-range force with direct sum-
mation and adding the long-range PM force. The adaptive P3M
(AP3M) method (e.g., Couchman 1991) further improves the
efficiency of force calculation by adding hierarchically refined
submeshes in regions of interest and using the P3M method lo-
cally to replace the direct pair summation. By contrast, the hier-
archical tree algorithm (e.g., Barnes & Hut 1986; Springel et al.
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2001) reduces the computational workload by utilizing multi-
pole expansion. The force exerted by distant particles is calcu-
lated using low-order multi-pole moment, and the O(N log N )
scaling is demonstrated. The tree-PM hybrid scheme (e.g., Xu
1995; Bagla 2002; Dubinski et al. 2004; Springel 2005) serves
as a further optimization to the tree algorithm. The gravitational
potentials are divided into long-range and short-range terms,
evaluated by the PM and tree methods, respectively. Since the
tree method is applied only locally, the total workload is greatly
reduced.

The particle-based approaches offer high computational per-
formance as well as large dynamical range, owing to the
Lagrangian nature. However, the main disadvantage of these
approaches is their relatively poor capability for simulating hy-
drodynamics using the SPH method. The resolution is relatively
low in high-gradient regions, e.g., around the shock wave in the
shock-tube test (Tasker et al. 2008). It also offers poor resolu-
tion in the low-density region where the number of particles is
insufficient. In addition, the SPH method suffers from artificial
viscosity and the inability to accurately capture the hydrody-
namic instabilities in certain circumstances (Agertz et al. 2007).

The adaptive-mesh-refinement (AMR) scheme provides a
promising approach to combine the accurate shock-capturing
property of the uniform-mesh method and the high-resolution,
large-dynamical-range property of the Lagrangian particle-
based method. The simulation domain is first covered by uni-
formly distributed meshes (at the “root” level) with a relatively
low spatial resolution, and hierarchies of nested refined meshes
(at the “refinement” levels) with decreasing grid sizes are then
allocated in regions of interest to provide the desired resolution.
The gravitational potential can be computed by the multi-grid
methods so that a high force resolution can be achieved in the
dense region, and the grid-based shock-capturing algorithms
can be applied to grids at different refinement levels to preserve
the accuracy of hydrodynamic evolution. Since the simulation
domain is only locally and adaptively refined, both the mem-
ory consumption and the computation time are highly reduced
compared to the uniform-mesh method with the same effective
resolution.

Detailed comparisons between the AMR and SPH methods
have been addressed by several authors (e.g., Regan et al.
2007; Trac et al. 2007; Tasker et al. 2008; Mitchell et al.
2009). It is beyond the scope of this work. In cosmological
simulations, the main drawback of the AMR method is, however,
the requirement of sufficiently fine grids at the root level in
order to provide adequate force resolution at the early epoch.
Consequently, the memory consumption and the computation
time can be larger than the Lagrangian particle-based method
(O’Shea et al. 2005). Nevertheless, the superior capability of
handling hydrodynamic properties and the better description
for low-density regions make the AMR method a promising and
competitive tool in astrophysical simulations, and it has been
successfully adopted for large-scale cosmological simulations
(e.g., Hallman et al. 2009; Teyssier et al. 2009). More recently,
a moving-mesh scheme has been proposed by Springel (2010),
aiming at integrating both the advantages of the AMR and
particle-based methods.

Several approaches have been developed for the AMR im-
plementations. The most commonly adopted approach is the
block-structured AMR, which was first proposed by Berger &
Oliger (1984) and Berger & Colella (1989). It has been im-
plemented by many astrophysical codes, e.g., Enzo (Bryan &
Norman 1997), AMRA (Plewa & Müller 2001), and CHARM

(Miniati & Colella 2007b). In this approach, the refined sub-
domains (often referred as the mesh “patches”) are restricted to
be geometrically rectangular, and hence reduce the complexity
associated with the discontinuity of resolution across different
refinement levels. The size of each patch is variable and adapt-
able, and patches at the same refinement level can be combined
or bisected to fit the local flow geometry. However, the variable
patch size also leads to difficulty in parallelizing the code effi-
ciently and to sophisticated data management. In addition, the
large patch size can increase the cache-miss rate and thus lower
the computational performance.

An alternative approach has been implemented in, for exam-
ple, the Adaptive Refinement Tree (ART) code (Kravtsov et al.
1997), MLAPM (Knebe et al. 2001), and RAMSES (Teyssier
2002). In this approach, instead of using the rectangular patches
as the basic refinement units, the refinement is performed on
a cell-by-cell basis. Compared to the block-structured AMR,
it features a more efficient refinement configuration related to
the local flow geometry, especially in the regions with complex
geometry of structures. However, the main drawback of this
method lies in the more sophisticated data management, ow-
ing to its irregular shape of domain refinement. The interface
profiles between cells with different zone spacings are complex,
and spatial interpolations must be frequently used to provide the
boundary conditions for each cell. Moreover, since the size of
the stencils required by the hydrodynamic and Poisson solvers
for each cell is generally much larger than a single cell, the com-
putational overhead is large and can lead to serious performance
deterioration.

The FLASH code (Fryxell et al. 2000), which uses the
PARAMESH AMR library (MacNeice et al. 2000), and the
NIRVANA code (Ziegler 2005) have adopted a third approach
for the AMR implementation. In this approach, the domain
refinement is based on a hierarchy of mesh patches similar to the
block-structured AMR, whereas each patch is restricted to have
the same number of cells. The typically adopted patch sizes are
83 in FLASH and 43 in NIRVANA. Although this restriction
will certainly impose the inflexibility of domain refinement
and result in a relatively large refined volume compared to
the two methods described above, it features several important
advantages. First, the data structure and the interfaces between
neighboring patches are considerably simplified, which can
lead to significant improvements of performance and parallel
efficiency. Second, since the additional buffer zones (often
referred as the “ghost zones”) for finite-difference stencils
are only needed for each patch instead of each cell, the
computational overhead associated with the preparation of
the ghost-zone data is greatly reduced compared to the cell-
based refinement strategy. Finally, fixing the patch size allows
for easier optimization of performance and also increases the
cache-hit rate. All these features are essential for developing
a high-performance code, especially for parallel computing
such as using GPUs. Accordingly, in the GPU-accelerated
Adaptive-MEsh-Refinement code (GAMER), we have adopted
this approach as the refinement strategy.

Novel use of modern GPU for acceleration of numerical
calculations has becoming a widely adopted technique in the
past three years. The original purpose of GPU is to serve as an
accelerator for computer graphics. It is designed to work with
the Single Instruction, Multiple Data (SIMD) architecture, and
processes multiple vertex and fragment data in parallel. The
modern GPU, e.g., the NVIDIA Tesla C1060, has 240 scalar
processor cores working at 1.3 GHz clock rate. It delivers a
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peak performance of 933 Giga Floating Operations Per Second
(GFLOPS), which is about an order of magnitude higher than
the modern CPU. In addition, it has a 4 GB GDDR3 internal
memory with memory bandwidth of 102 GB s−1. The 240 scalar
processor cores are grouped into 30 multiprocessors, each of
which consists of 8 scalar processor cores and shares a 16 KB on-
chip data cache. The NVIDIA Tesla S1070 computing system
further combines four Tesla C1060 GPUs and offers nearly
4 TFLOPS computing power. Given the natural capability of
parallel computing and the enormous computational power of
GPU, using GPU for general-purpose computations (GPGPU5)
have become an active area of research.

The traditional scheme in GPGPU works by using the high-
level shading languages, which are designed for graphic render-
ing and require familiarity with computer graphics. It is there-
fore difficult and unsuitable for general-purpose computations.
In 2006, the NVIDIA Corporation released a new computing
architecture in GPU, the Compute Unified Device Architec-
ture (CUDA; NVIDIA 2008). It was designed for a general-
purpose usage and greatly lowers the threshold of using GPU
for non-graphic computations. In CUDA, GPU is regarded as a
multi-threaded coprocessor to CPU with a standard C language
interface. To define the computational task for GPU, program-
mers should provide a C-like function called “kernel,” which
can be executed by multiple “CUDA threads” in parallel. A
unique thread ID is given to each thread in order to distinguish
between different threads.

As an illustration, we consider the sum of two vectors, each
of which has M elements. In CUDA, instead of writing a loop
to perform M summation operations sequentially, we define a
single summation operation in a kernel and use M threads. These
M threads will execute the same kernel in parallel but perform
the single summation operation on different vector elements. In
this example, the thread ID may be used to define the targeted
vector element for each thread.

Note that this scenario is analogous to the parallel computing
in a Beowulf cluster using the message passing interface (MPI),
in which a single program is simultaneously executed by
multiple processors, and each process is given a unique ID
(“MPI rank”). However, performance optimization in GPU is
not straightforward and requires elaborate numerical algorithms
dedicated to the GPU specifications. Especially, note that CUDA
threads are further grouped into multiple “thread blocks.”
Threads belonging to the same thread block are executed by
one multiprocessor and can share data through an on-chip data
cache (referred as the “shared memory”). This data cache is very
small (typically only 16 KB per multiprocessor) but has much
lower memory latency than the off-chip DRAMS (referred as
the “global memory”). Accordingly, the numerical algorithms
must be carefully designed to store common and frequently used
data in this fast shared memory so that the memory bandwidth
bottleneck may be removed.

Nowadays, the most successful approach to utilize the GPU
computing power in astrophysical simulations is the direct N-
body calculation (e.g., Belleman et al. 2008; Schive et al. 2008;
Gaburov et al. 2009). Schive et al. (2008) have built a multi-
GPU computing cluster named GraCCA (Graphic-Card Cluster
for Astrophysics), and have demonstrated its capability for di-
rect N-body simulations in terms of both high computational
performance and high parallel efficiency. The direct calcula-
tion of all N2 pairwise interactions is extremely computational
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intensive, and thus is relatively straightforward to obtain high
performance in GPU. However, the direct N-body simulations
can address only a limited range of problems. Aubert et al.
(2009) have proposed a GPU-accelerated PM integrator using
a single GPU. It remains considerably challenging and unclear
whether the performance of other kinds of astrophysical simula-
tions with complex data structure and relatively low arithmetic
intensity, such as the AMR simulations, can be highly improved
by using GPUs, especially in a multi-GPU system.

In this paper, we present the first GPU-accelerated, AMR,
astrophysics-dedicated, and parallelized code, named GAMER.
We give a detailed description of the numerical algorithms
adopted in this code, especially focusing on the GPU implemen-
tations. The accuracy of the code is demonstrated by performing
various test problems. Detailed timing analyses of individual
GPU solvers as well as the complete program are conducted
with different hardware implementations. In each timing test,
we further compare the performances of runs with and without
GPU(s) acceleration.

The paper is organized as follows. In Section 2, we describe
the numerical schemes adopted in GAMER, including the AMR
method, both the hydrodynamic scheme and the Poisson solver,
and the parallelization strategy. We then focus on the GPU
implementations of different parts in the code, along with
individual performance measurements in Section 3. In Section 4,
we present the simulation results of several test problems
to demonstrate the accuracy. Detailed timing analyses of the
complete program in purely baryonic cosmological simulations
are presented in Section 5. Finally, we summarize the work and
discuss the future outlooks in Section 6.

2. NUMERICAL SCHEME

In this section, we describe in detail the numerical schemes
adopted in GAMER, including the AMR implementation, the
algorithms of both hydrodynamics and self-gravity, and the par-
allelization strategy. To provide a more comprehensible descrip-
tion, here we focus on the generic algorithms that are unrelated to
the hardware implementation. Important features related to the
GPU implementation will be emphasized and a more detailed
description will be given in Section 3.

2.1. Adaptive Mesh Refinement

The AMR scheme implemented in GAMER is similar to
that adopted by FLASH, in which the computational domain
is covered by a hierarchy of grid patches with similar shape but
different spatial resolutions. In GAMER, a grid patch is defined
to have a fixed number of grid cells in each spatial direction. The
computational domain is first covered by root patches with the
lowest spatial resolution. Then, according to the user-defined
refinement criteria, each root patch may be refined into eight
child patches with a spatial resolution twice that of their parent
patch. The same refinement operation may further be applied
to all patches in different refinement levels, in which a patch at
level � has a spatial resolution 2� times higher than that of a root
patch at level zero. Accordingly, a hierarchy of grid patches with
oct-tree data structure is dynamically and adaptively constructed
during the simulation. In Figure 1, we show a two-dimensional
example of the refinement map.

Patches are the basic units in GAMER. Owing to the oct-tree
data structure, eight patches are always allocated or deallocated
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Figure 1. Two-dimensional example of the refinement map. Each patch is
composed of 8 × 8 cells. The borders of patches are highlighted by bold lines.
One patch may be refined into four child patches with a spatial resolution twice
that of their parent patch. A jump of more than one refinement level between
nearby patches is forbidden (even in the diagonal direction).

simultaneously. The data stored in each patch include its own
physical variables, the absolute coordinates in the computational
domain, the indices of the parent, child, and 26 sibling patches,
the pointers of flux arrays corresponding to six patch boundary
surfaces, and the flag recording its refinement status.

Restricting all patches to be geometrically similar to each
other greatly simplifies the AMR framework, with respect to
both the structure of the program and the GPU implementation.
A single GPU kernel can be applied to all patches, even in
different refinement levels. Moreover, since the amount of
computation workload of each patch is the same, there will be no
synchronization overhead when multiple patches are evolved in
parallel by GPU. However, it does impose certain inflexibility
of spatial refinement. The region being refined will be larger
than necessary, especially when the volume of a single patch is
too large. On the other hand, having a small-volume patch will
introduce higher computational overhead associated with the
preparation of the ghost-zone data. In GAMER, the optimized
size of a single patch is set to 83. It will be demonstrated
in Sections 3 and 5 that by exploiting the feature of parallel
execution between CPU and GPU, the ghost-zone filling time
can be overlapped with the execution time of the GPU solvers,
and yields considerable performance enhancement.

GAMER can be used as either a purely hydrodynamic or a
coupled self-gravity and hydrodynamic code. When only the
hydrodynamic module is activated, the code supports both the
uniform and individual time step algorithms. The time step of
level � may be either equal to or twice smaller than that of level
� − 1. However, when the gravity module is also activated, the
code currently only supports the uniform time step algorithm.
The same time step is applied to all levels, and the evolution of
patches at level � proceeds in the steps as follows:

1. Update physical quantities for all patches at level �.
2. Begin the evolution of the next refinement level if there are

patches at level � + 1.

3. Correct the physical quantities at level � by using the
updated results at level � + 1.

4. Rebuild the refinement map at level �.

Since the fine-grid values are presumably more accurate than
the coarse-grid values, there are two cases where the data of
a coarse patch require further correction in the step 3. First, if
a coarse patch is overlaid by its child patches, its values are
simply replaced by the spatial average of the fine-grid values.
Second, if the border of a coarse patch is near the boundary
of refinement, the flux correction operation (Berger & Colella
1989) is applied. Then, a corresponding flux array is allocated.
This array will store the difference between the coarse-grid
flux and the fine-grid flux across the coarse–fine boundary, and
will be used to correct the coarse-grid values adjacent to this
boundary. This flux correction operation ensures that the flux
out of the coarse-grid patch is equal to the flux into the fine-grid
patch, and therefore the conservation of hydrodynamic variables
is preserved (assuming no self-gravity).

Rebuilding the refinement map in step 4 takes two sub-steps:
a flag step, followed by a refinement step. A patch is flagged for
refinement if any cell inside the patch satisfies the refinement
criteria. In GAMER, both the hydrodynamic variables and their
gradients can be taken as the refinement criteria. There is
however a situation requiring special treatment during the flag
step. Since the refinement map is always rebuilt from finer levels
to coarser levels, a patch at level � may not be flagged even if its
child patches at level �+1 have already been flagged. In this case,
the patch at level � is also flagged to ensure that the fine-grid
data are preserved. Finally, a proper-nesting constraint is applied
to all patches. It prohibits the spatial refinement from jumping
more than one level across two adjacent patches. Patches failing
to satisfy this constraint are unflagged.

In the refinement step, eight child patches at level � + 1 are
constructed for each flagged patch at level �. The hydrodynamic
data of child patches are either directly inherited from existing
data or filled via conservation-preserving interpolation from
their parent patches. The Min-Mod limiter is used to ensure the
monotonicity of interpolation. The indices of parent, child, and
sibling patches are stored, and null values are assigned to them if
the corresponding child or sibling patches do not exist. Finally,
the flux arrays are properly allocated for patches adjacent to the
coarse–fine boundaries.

The frequency of rebuilding the refinement map is also a
free parameter provided by users. The guideline is that the
refinement map must be rebuilt before the regions of interest
propagate away from fine-grid patches into coarse-grid patches.
Although in the extreme case we may rebuild the refinement
map in every step, it is too expensive in time and not practical in
general situations. Therefore, in order to reduce the frequency
of performing the refinement operation, we follow the scheme
suggested by Berger & Colella (1989). A free parameter Nb is
provided to define the size of the flag buffer. If a cell exceeds
the refinement threshold during the flag check, (1 + 2Nb)3 − 1
cells surrounding this cell are regarded as the flag buffers. If
any of these flag buffers extends across the patch border, the
corresponding sibling patch is also flagged for refinement (as
long as it satisfies the proper-nesting condition). Figure 2 shows
an example of the refinement result with Nb = 3. The extreme
case is to have Nb equal to the size of a single patch, in which
case all 26 sibling patches will always be flagged if the central
patch is flagged. Generally speaking, the larger the number Nb,
the longer the period adopted between two refinement steps
might be.
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Figure 2. Two-dimensional example of the flag operation. The size of the flag
buffer (Nb) is set to 3. The borders of the patches are highlighted by bold lines.
The filled circles represent the cells satisfying the refinement criteria, and the
open circles represent their corresponding flag buffers. The numbers at the center
of each patch stand for the patch indices. In this example, although there are no
cells fulfilling the refinement criteria in patches 1–3, they are stilled flagged due
to the extension of the flag buffers.

The procedure of patch construction during the initialization
is different from that during the simulation. As illustrated by the
evolution procedure described previously, the patch construction
during the simulation is always performed from finer levels to
coarser levels. It ensures that the fine-grid data are predominant
of patch refinement. By contrast, the spatial resolution of the
initial condition is solely provided by users. Accordingly, in
GAMER, three kinds of initialization methods are supported.

First, a user-defined initialization function can be applied
to set the initial value of each physical quantity. The patch
construction starts from level 0 up to the maximum level. If
any patch at level � satisfies the refinement criteria, eight child
patches at level � + 1 are allocated and initialized by the same
initialization function. After patch construction, a restriction
operation is performed, starting from the maximum level down
to the root level, in order to ensure that the physical quantities
of a cell at level � is always equal to the spatial average of its
eight child cells at level � + 1.

Second, the code can load an array storing the uniform-mesh
data as the initial condition. Assuming that the input data have
spatial resolution equal to the refinement level �, patches at
level � are first constructed. After that, a restriction operation is
performed from level � down to level 0 to construct patches of
levels < �. Any patch failing to satisfy the refinement criteria
at the current level will be removed. Since we assume that the
input uniform-mesh data possess the highest resolution during
the initialization, no patch at level > � is allocated at this stage.
However, patches of higher resolution can still be constructed
during the run, and hence the highest resolution is not limited
by the initial input data.

The third initialization procedure loads any of the previous
data dumps as the restart file. It is essential when the program is
terminated unexpectedly, and it also provides an efficient way
for tuning parameters and analyzing simulation results.

2.2. Hydrodynamics

In GAMER, the Euler equations are solved in conservative
forms:

∂ρ

∂t
+

∂

∂xj

(ρvj ) = 0, (1)

∂(ρvi)

∂t
+

∂

∂xj

(ρvivj + Pδij ) = −ρ
∂φ

∂xi

, (2)

∂e

∂t
+

∂

∂xj

[(e + P )vj ] = −ρvj

∂φ

∂xj

, (3)

where ρ is the mass density, v is the flow velocity, P is the
thermal pressure, e is the total energy density, and φ is the
gravitational potential. The relation between pressure P and
total energy density e is given by

e = 1

2
ρv2 + ε, (4)

P = (γ − 1)ε, (5)

where ε is the internal thermal energy density and γ is the
ratio of specific heats. The self-gravity is included in the Euler
equations as a source term, and will be addressed in more detail
in the following subsection.

The hydrodynamic scheme adopted in GAMER is based on the
algorithm proposed by Trac & Pen (2003). It is a second-order
accurate relaxing total variation diminishing (TVD) scheme (Jin
& Xin 1995), which has been implemented and well tested
in both the hydrodynamic simulation (Trac & Pen 2003) and
the magnetohydrodynamic simulation (Pen et al. 2003). In
the following, we first review the one-dimensional relaxing
TVD scheme, and then follow the generalization to the three-
dimensional case.

Consider the one-dimensional Euler equation in the vector
form:

∂u
∂t

+
∂F(u)

∂x
= 0, (6)

where u = (ρ, ρv, e) is the flow-variable vector and F(u) =
(ρv, ρv2 + P, ev + Pv) is the corresponding flux vector. First, a
free positive function c(x,t), which is referred to as the freezing
speed, is evaluated, and an auxiliary vector is defined by w ≡
F(u)/c. To guarantee the TVD condition, the freezing speed c
must be greater than the speed of information propagation. For
the one-dimensional Euler equation, this requirement is satisfied
by having c(x, t) = |v(x, t)| + cs(x, t), where cs is the sound
speed.

The flux term in Equation (6) is then decomposed into two
terms,

∂u
∂t

+
∂FR

∂x
− ∂FL

∂x
= 0, (7)

where

FR ≡ c
(u + w

2

)
and FL ≡ c

(
u − w

2

)
(8)

are referred to as the right-moving and left-moving fluxes with
advection speed c, respectively. Since these two fluxes have
well-defined directions, the MUSCL scheme can be applied
straightforwardly. Let ut

n denote the cell-centered value of the
cell n at time t, and Ft

n denote the corresponding cell-center
flux. To integrate Equation (7) in a conservative form, the fluxes
FR,t

n±1/2 and FL,t
n±1/2 defined at the boundaries of the cell n must

be evaluated. In the following, we describe the algorithm to
evaluate FR,t

n+1/2 as an illustration. FR,t
n−1/2 and FL,t

n±1/2 can be
derived in a similar way.

In the first step, the upwind scheme is used to assign a
value to the boundary flux as a first-order approximation. Since
FR,t

n+1/2 has a positive advection velocity, we can simply set

FR,t
n+1/2 = Ft

n. The second-order correction �FTVD,t
n+1/2 satisfying



462 SCHIVE, TSAI, & CHIUEH Vol. 186

the TVD condition is obtained by applying a flux limiter φ to
two second-order flux corrections,

�FTVD,t
n+1/2 = φ

(�F(1),t
n+1/2,�F(2),t

n+1/2

)
, (9)

where

�F(1),t
n+1/2 = Ft

n − Ft
n−1

2
and �F(2),t

n+1/2 = Ft
n+1 − Ft

n

2
. (10)

The flux limiter adopted in the current implementation is the van
Leer limiter (van Leer 1974), which takes the harmonic average
of two second-order flux corrections:

φvanLeer(�F(1),�F(2)) =

⎧⎪⎪⎨
⎪⎪⎩

2�F(1)�F(2)

�F(1) + �F(2)
, if �F(1)�F(2) >0,

0, if �F(1)�F(2) � 0.

(11)

Note that, as indicated by Equation (11), no second-order
correction is applied to FR,t

n+1/2 if Ft
n assumes a local extreme

value, and hence the hydrodynamic scheme is locally reduced
to only first-order accurate.

Finally, the second-order accurate right-moving flux is given
by

FR,t
n+1/2 = Ft

n + �FTVD,t
n+1/2 . (12)

FR,t
n−1/2 and FL,t

n±1/2 can be evaluated in the way similar to
Equation (12).

To achieve second-order accuracy in time as well, the
second-order Runge–Kutta method (also known as the midpoint
method) is adopted for the time integration. First, the temporal
midpoint value ut+�t/2

n is evaluated by

ut+�t/2
n = ut

n −
(

Ft
n+1/2 − Ft

n−1/2

�x

)
�t

2
, (13)

where Ft
n+1/2 = FR,t

n+1/2 − FL,t
n+1/2 is computed by the first-

order upwind scheme. The midpoint fluxes Ft+�t/2 are then
computed by applying the second-order TVD scheme to ut+�t/2.
Eventually, the full-step value ut+�t

n is given by

ut+�t
n = ut

n −
(

Ft+�t/2
n+1/2 − Ft+�t/2

n−1/2

�x

)
�t. (14)

It is straightforward to generalize the one-dimensional TVD
scheme described above to three dimensions by applying
the dimensional-splitting method (Strang 1968). The three-
dimensional Euler equations are solved by first applying a for-
ward sweep in the order xyz and following a backward sweep
in the order zyx. The same time step must be employed by
these two sweeps to maintain the second-order accuracy. The
dimensional spitting method also makes it easy to parallelize
the computation of the three-dimensional Euler equations, as
addressed by Trac & Pen (2003). By taking advantage of this
feature, a high-performance GPU hydrodynamic solver based
on the above TVD scheme has been implemented in GAMER.
It will be described in detail in Section 3.1.

The one-dimensional TVD scheme uses a seven-point sten-
cil (one cell on each side for evaluating the midpoint values
by the upwind scheme plus two cells on each side for evaluat-
ing the full-step values by the TVD scheme). Therefore, three

ghost zones are required on each side in each spatial direction to
update the hydrodynamic variables in a single patch. The ghost-
zone values are filled in two ways. If a desired sibling patch
exists, they are filled by a direct memory copy. Otherwise, they
are filled by linear interpolation with the Min-Mod limiter from
patches one level coarser. Since the proper-nesting condition
is fulfilled everywhere in the simulation domain, interpolation
from patches two (or more) levels coarser is prevented. Note
that computing the ghost-zone values can lead to a significant
computational overhead in almost all kinds of AMR implemen-
tations. Nevertheless, this issue is well handled in GAMER and
will be addressed in Sections 3 and 5.

GAMER can work in both the physical coordinates and the
comoving coordinates. For the cosmological hydrodynamic
simulation, the forms of Euler equations (Equations (1)–(3))
may remain unchanged by applying the following changes of
variables:

x̃ = x
a
, dt̃ = dt

a2
, ρ̃ = a3ρ, (15)

ṽ = a(v − Hx), P̃ = a5P, φ̃ = a2(φ − φb), (16)

where a is the cosmological scale factor, H is the Hubble
parameter, and φb is the gravitational potential related to the
background density (here, we have assumed that the ratio of
specific heats γ = 5/3). It makes the GAMER code more
flexible and hence can be applied to different aspects of
astrophysical applications.

2.3. Self-gravity

The gravitational potential is evaluated via solving the Pois-
son equation

∇2φ(x) = 4πGρ(x), (17)

where G is the gravitational constant. In its discrete form, the
Laplacian operator ∇2 can be replaced by a seven-point finite
difference operator:

1

�h2
�

(
φ

t,�
i+1,j,k + φ

t,�
i,j+1,k + φ

t,�
i,j,k+1 + φ

t,�
i−1,j,k + φ

t,�
i,j−1,k

+ φ
t,�
i,j,k−1 − 6φ

t,�
i,j,k

) = 4πGρ
t,�
i,j,k, (18)

where �h� is the zone spacing at level �.
In GAMER, two numerical methods have been implemented

to solve Equation (18). At the root level, where the coarsest
patches always cover the entire computational domain, we adopt
the standard FFT method. A Green’s function associated with
the discretized Laplacian operator is used, and the periodic
boundary condition is assumed. At the refined levels, where
in general the computational domain is only partially refined
and hence Equation (18) cannot be solved globally, we adopt
the successive overrelaxation method (SOR; Press et al. 2007)
with the Dirichlet boundary condition. Only one ghost zone is
required on each side in each spatial direction to evaluate the
potential in a single patch, and the ghost-zone values are filled
by interpolation from the patches one level coarser.

The SOR scheme starts with evaluating the residual of each
cell by

R�
i,j,k = (

φ
old,�
i+1,j,k + φ

old,�
i,j+1,k + φ

old,�
i,j,k+1 + φ

old,�
i−1,j,k + φ

old,�
i,j−1,k

+ φ
old,�
i,j,k−1 − 6φ

old,�
i,j,k

) − 4πGρ�
i,j,k�h2

�, (19)
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where the superscript “old” indicates the values at a previous
step. The updated values are then given by

φ
new,�
i,j,k = φ

old,�
i,j,k +

1

6
ωR�

i,j,k, (20)

where ω is the overrelaxation parameter. Equations (19) and
(20) are solved iteratively until the 1-norm of the residual has
been diminished to the floating-point precision limit (compared
to the source term 4πGρ�h2) to ensure the solution of potential
has converged.

The odd–even ordering is adopted to determine the order in
which different cells in a patch are updated by Equations (19)
and (20). A cell with position indices (i, j, k) is regarded as an
“even” cell if i + j + k is even, and an “odd” cell if i + j + k is
odd. This scheme is also referred as the “red–black ordering”
since the odd and even cells are defined in the way just like the
red and black squares of a checkerboard in the two-dimensional
case. During one iteration, the even cells are first updated, and
then these updated values are used to update the odd cells.
As can be seen from Equation (19), the updates of even cells
depend only on the odd cells, and vice versa. Therefore, by
exploiting the odd–even ordering, all even cells can be calculated
independently at the first half-step (hereafter referred to as the
even step), and all odd cells can also be calculated independently
at the second half-step (hereafter referred to as the odd step).
The independent operations reveal the possibility of parallel
computing. This property plays a crucial role in the development
of an efficient and memory-saving GPU kernel for the SOR
scheme.

In real astrophysical simulations, generally the number of
root-level patches takes only a small fraction (< 10%) of the
total number of patches in all levels, and hence the execution
time of the root level is much less than the total simulation time.
Accordingly, for the root-level Poisson solver, we execute on
the CPU the free available package FFTW (Frigo & Johnson
1998), which is a highly optimized, parallelized, and portable
package for solving the discrete Fourier transform (DFT). On the
contrary, for the refinement levels where the Poisson equation is
solved via the SOR scheme, a high-performance GPU Poisson
solver has been implemented in GAMER. It will be described in
detail in Section 3.2.

Solving the Poisson equation in an AMR framework requires
additional attention. The primary issue is that the boundary
condition for a fine-grid patch is always obtained by interpo-
lation from the coarse-grid values. The potential is continuous
across the coarse–fine interface; however, the normal derivative
of the potential is not necessarily so. The discontinuity in nor-
mal derivative of the potential acts as a pseudomass sheet on
the coarse–fine interface, and will eventually contaminate the
solution of potential in finer levels.

Several methods have been proposed to improve the solution
of the Poisson equation in adaptively refined meshes (e.g.,
Martin & Cartwright 1996; Huang & Greengard 2000; Ricker
2008). In GAMER, the two-level potential correction is in work
with the following procedure. First, we estimate the pseudomass
sheet on all interfaces between a parent patch and each of
its eight child patches. A two-dimensional example of the
mesh structure adjacent to a coarse–fine interface is shown
in Figure 3, in which φc

ic,jc
denotes a coarse-grid potential

to the left of the interface, and φ
f

if ,jf
and φ

f

if ,jf +1 denote the
corresponding two fine-grid potentials (defined in the ghost

Figure 3. Two-dimensional example of the mesh structure adjacent to a coarse–
fine interface. The filled triangles represent the coarse-grid potentials, the filled
circles represent the fine-grid potentials, and the open circles represent the fine-
grid potentials in the ghost zones. The values used for approximating the normal
derivatives of potentials are connected by two-way arrows.

zones). The pseudomass sheet ξ is then defined as

ξ (x) = 1

4πG�hc

(
∂φ

∂n

∣∣∣∣
ε−

− ∂φ

∂n

∣∣∣∣
ε+

)
, (21)

in which the normal derivatives of potentials are approximated
by

∂φ

∂n

∣∣∣∣
ε−

= φc
ic,jc

− φc
ic+1,jc

�hc
(22)

on the coarse-grid side and

∂φ

∂n

∣∣∣∣
ε+

=
(
φ

f

if ,jf
+ φ

f

if ,jf +1 − φ
f

if +1,jf
− φ

f

if +1,jf +1

)
/2

�hf
(23)

on the fine-grid side.
To compensate the mass-sheet potentials, we first place the

negative of the pseudomass sheet in the coarse meshes adjacent
to the coarse–fine boundary, and evaluate the correction to the
coarse-grid potential (denoted as ζ c) by solving the correction
equation

∇2ζ (x) = −4πGξ (x). (24)

Afterward, the fine-grid correction can also be solved by
Equation (24), in which the boundary condition is provided
through the interpolation of the coarse-grid correction. Finally,
the corrected potentials in both coarse and fine grids are obtained
by

φcorrected(x) = φuncorrected(x) + ζ (x). (25)

Note that for AMR implementations that demand patches in
every refinement level to have identical shape (e.g., the FLASH
and GAMER codes), the Poisson equation is solved on a patch-
by-patch basis in order to diminish the data transfer between ad-
jacent patches (Ricker 2008). Consequently, similar numerical
errors are also introduced from the interfaces between patches at
the same refinement level. Nevertheless, since Equations (21)–
(23) are used at all interfaces of a parent patch and each of its
eight child patches, this numerical error can be made diminished
in Equation (25).

To further improve the solution across the inter-patch bound-
aries, a sibling relaxation step is employed immediately after
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solving Equations (17) and (24). In this step, instead of using
the interpolated values as the fine-grid boundary conditions,
we exchange the values near the inter-patch boundaries be-
tween neighboring patches, store them in the corresponding
ghost zones, and apply another SOR iteration. Finally, when
necessary, a few times of the sibling relaxation steps may
also be employed after Equation (25). Nevertheless, it only
gives rise to minor corrections to the final results. In GAMER,
typically we apply one sibling relaxation step after solving
Equations (17) and (24), and two to four sibling relaxation steps
after Equation (25).

The procedure of the two-level solution described above can
be straightforwardly generalized to the multi-level case. It works
in the steps as follows.

1. In each level � from the root level (� = 0) up to the
maximum level �max, evaluate the uncorrected potential
φuncorrected by solving Equation (17). Immediately after that,
perform one sibling relaxation step.

2. In each level � from level �max −1 down to level 0, evaluate
the pseudomass sheet ξ via Equations (21)–(23), and add
up with the pseudomass sheet derived from patches at level
� + 1.

3. In each level � from level 0 up to level �max, evaluate the
correction ζ by solving Equation (24). Immediately after
that, perform one sibling relaxation step.

4. For each level � from level 0 up to level �max, obtain the
corrected potential φcorrected by Equation (25). Afterward, if
necessary, perform a few times of sibling relaxation steps.

Note that this multi-level procedure is similar to the scheme
proposed by Ricker (2008). However, instead of using the
residuals as the source function to solve the potential correction
(as applied in Ricker’s scheme), our method evaluates the
potential correction via estimating the pseudomass sheet and
features the conservation of mass. This feature is described
below in more detail.

The potential correction scheme adopted in GAMER has
two important nice features. First, since the Poisson equation
is solved in individual patches with inhomogeneous Dirichlet
boundary conditions, the inter-patch communication is mini-
mized, and all patches at a given level can be solved indepen-
dently. By taking advantage of this feature, we can implement
a high-performance GPU Poisson solver, in which hundreds of
patches can be solved in parallel. The second and most critical
feature is the conservation of mass. Since the pseudomass sheet
is defined by the jump of the normal derivative of potential,
our scheme enforces the summation of local pseudomass sheet
introduced by the interface between a parent patch and a child
patch to be zero (to the machine precision).

The feature of mass conservation can easily be seen from the
fact that both the coarse-grid and fine-grid potentials satisfy the
Poisson equation. Therefore, the Gauss’s theorem states that∮

Γ

(
∂φ

∂n

∣∣∣∣
ε−

)
ds = 4πGMc and

∮
Γ

(
∂φ

∂n

∣∣∣∣
ε+

)
ds = 4πGMf ,

(26)
where Γ is the closed boundary surface of a child patch, and
Mc and Mf are the total coarse-grid mass and fine-grid mass
enclosed by Γ, respectively. Now, in GAMER, we always have
Mc = Mf thanks to the constrained operation, and hence∮

Γ
ξ (x)ds = 1

4πG�hc

∮
Γ

(
∂φ

∂n

∣∣∣∣
ε−

− ∂φ

∂n

∣∣∣∣
ε+

)
ds = 0. (27)

Clearly, Equations (26) and (27) still hold in their discrete forms,
in which the normal derivatives of potentials are approximated
by Equations (22) and (23).

The physical picture for reinforcing the summation of the
local pseudomass sheet to vanish is as follows. Beside the
truncation error in Equation (18), the numerical error in the fine-
grid region is caused by the insufficiently accurate boundary
condition, which is obtained by interpolation on the coarse-
grid values. In other words, even though the refined region can
provide higher resolution, it does not contribute to the coarse-
grid solution. The absence of local density distribution in the
fine-grid region when evaluating the coarse-grid potential can
only provide the coarse-grid resolution, and the numerical error
will propagate into the solution of fine-grid potential through
the setting of fine-grid boundary condition (even with high-
order interpolation). It is the reason why we want to estimate
the pseudomass sheet to correct the coarse-grid potential, and
thereby provide a more accurate boundary condition for solving
the fine-grid potential. However, since in GAMER the total mass
within a given volume is the same in different refinement levels,
there should be no mass monopole correction for the coarse-
grid potential. Therefore, the total pseudomass introduced by
the coarse–fine interface between a parent patch and a child
patch is zero.

Finally, the cell-centered gravitational accelerations are eval-
uated by the three-point finite difference approximation of the
gradient operator. The flow variables are advanced by solving
Equations (2) and (3), in which the flux terms are ignored.
By utilizing the same operator-splitting method described in
Section 2.2, the Euler equations with self-gravity can be solved
in the order xyzGGzyx (Trac & Pen 2003), in which the op-
erator xyz represents the order of directions to update flow
variables by the flux differences, and the operator G represents
the updating of flow variables by gravity. Note that the continu-
ity equation (Equation (1)) has no self-gravity term. Therefore,
the two successive self-gravity operators GG can be combined
together with a twice larger time step.

In cosmological simulations, the Poisson equation can be
rewritten as

∇̃2φ̃(x̃) = 4πGa[ρ̃(x̃) − ρ̃b(x̃)], (28)

where each comoving variable is defined in Equations (15) and
(16), and the subscript b indicates the background density. The
gravitational constant G can be replaced by

G = 3H 2
0 Ωm,0

8πρb,0
, (29)

where Ωm,0 is the matter density and the subscript 0 indicates
the values at the present time.

2.4. Parallelization

For astrophysical simulations, the spatial resolutions are
generally limited by the amount of total memory. It is therefore
essential to develop a parallel code that distributes the workload
to multiple processors. Accordingly, GAMER is developed to
work in a multi-CPU system with multi-GPU acceleration. Each
CPU manages one GPU, and the data transfer between different
CPUs is accomplished by using the MPI library.

Developing a parallel GPU-accelerated program requires
elaborate treatments. First of all, even though the computation
time may be highly reduced by using GPUs, the communication
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Figure 4. Two-dimensional example of the allocation of buffer patches with
two refinement levels. The left panel shows the refinement map within a
fixed domain. Each grid represents a patch, and the bold contour represents
the boundaries of a sub-domain. The right panel shows the patches actually
allocated to the processor in charge of the sub-domain. The solid and dashed
lines represent the real patches and buffer patches, respectively. The crosses
indicate the patches that do not require to store physical quantities.

time is not reduced at all. The network bandwidth may easily
become the performance bottleneck, and results in a limited
overall performance improvement. Moreover, since the perfor-
mance of the GPU solver also relies on the massively parallel
architecture inside GPU, our parallel algorithm must preserve
this capability.

In GAMER, the parallelism is based on a rectangular domain
decomposition. All patches within a rectangular sub-domain
are calculated by one CPU/GPU combination. These patches
are referred to as the real patches. Boundary conditions of
each sub-domain are provided by allocating the buffer patches
surrounding the sub-domain. Figure 4 shows a two-dimensional
example of the allocation of buffer patches. The physical data
stored in each buffer patch are always filled by transferring data
between processors. Note that each buffer patch also stores the
correct indices of the parent, child, and 26 sibling patches, and
a null value is assigned if the corresponding patch does not
exist. Accordingly, all coarse–fine boundaries can be correctly
identified even if they coincide with the sub-domain boundaries.
Moreover, by doing so, we do not need to store all the oct-tree
data structure redundantly in all processors.

To avoid the bottleneck of network communication, the
amount of data transfer between different CPUs is carefully
minimized in GAMER. For the hydrodynamic solver, since the
TVD scheme requires three ghost-zone values, only a three-
cell-wide array is transferred and stored in each buffer patch.
The data stored in the buffer patches at level � are used to set
the ghost-zone values for both the patches at level � via direct
memory copy and the patches at level �+1 via interpolation. If a
coarse–fine interface coincides with the sub-domain boundaries,
the corresponding flux data are also transferred for the flux
correction operation. For the Poisson solver, since it requires
only one ghost-zone value, a two-cell-wide array is transferred
for setting the boundary conditions via interpolation, and a one-
cell-wide array is transferred for the sibling relaxation step.

We note that not all buffer patches are necessary to be filled
with the hydrodynamic and potential data. To be more precise, a
buffer patch is required to receive data only if any of its 26 sibling
patches corresponds to a real patch. A two-dimensional example
is also illustrated in Figure 4, in which the buffer patches marked
with a cross are not required to store physical quantities and are
used only to provide the correct oct-tree data structure for real
patches adjacent to the sub-domain boundaries. Also note that
the additional memory overhead associated with the allocation

of buffer patches is generally negligible as long as the number
of real patches is sufficiently large.

Adopting the FFTW library as the root-level Poisson solver
requires additional works. The parallelization strategy of FFTW
is based on the slab decomposition, which is incompatible with
the rectangle decomposition adopted by GAMER. Therefore, a
rectangle-to-slab transformation must be performed before the
root-level Poisson solver, and a slab-to-rectangle transformation
must be performed after the root-level Poisson solver. Both these
two operations require global communications. However, since
in general the amount of data in the root level is much less
than that in higher levels, this additional communication time is
usually negligible.

The parallelization algorithm described above requires a
recurrent search for all patches within the sub-domain. It can also
be time consuming in a large-scale simulation, especially when
the performance of single-patch solvers is highly improved by
using GPUs. In GAMER, we get around this problem by first
constructing a table recording the indices of root-level border
patches, which is defined as the real patches adjacent to each
side of the sub-domain boundaries. The table recording the
indices of “higher-level” border patches can then be constructed
hierarchically, as a consequence of the fact that a border patch
at level � must be the child patch of a border patch at level �−1.
After that, the table listing the indices of patches to send and
to receive data can be built by only searching over the border-
patch table. Therefore, the global search is performed only at
the root level, at which the number of patches is much smaller
than that of higher levels. Also note that these tables are only
re-constructed every time after rebuilding the refinement map;
afterward they can be reused until the next domain refinement.

As the number of processors increases, applying the rectan-
gular domain decomposition in the AMR implementation can
lead to an issue of load unbalance, where different comput-
ing nodes have different loads. Generally, this issue is solved
by adopting the method of a space-filling curve (e.g., Campbell
et al. 2003) to redistribute the computing loads. This is currently
being implemented into the GAMER code. Note that the concept
of allocating the buffer patches should still be adopted, as long
as we impose the constraint that each child patch is placed in
the same node (more precisely, the same MPI rank) as its parent
patch. Preliminary tests have shown that this constraint results
in only a minor influence of the load balance. The unbalance
is found to be less than 2% in a purely baryonic cosmological
simulation with 32 CPU/GPUs.

3. GPU IMPLEMENTATION

In GAMER, the GPU implementation is inspired by the two
parallelism levels naturally embedded inside the AMR structure.
First, each mesh patch can be calculated independently as long
as its ghost-zone values are provided. Therefore, we can use
one thread block to calculate one patch. Second, all cells inside
a patch can be calculated in parallel as long as there is a
synchronization mechanism to coordinate the data update of
each cell. This can be accomplished by using multiple CUDA
threads to calculate different cells within the same patch, and
store the updated results in the shared memory. In the following,
we describe in detail the GPU implementations of different parts
in the code, and give the results of timing analyses.

3.1. GPU Hydrodynamic Solver

The GPU hydrodynamic solver implemented in GAMER
involves three basic steps as follows.
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1. Send the input array, which stores mass density, momentum
density, and energy density, downstream from the CPU
memory to the GPU global memory.

2. Invoke the GPU hydrodynamic kernel to advance the
equations for one time step.

3. Send the output array, which stores mass density, momen-
tum density, and energy density, upstream from the GPU
global memory back to the CPU memory.

Before invoking the GPU kernel, a preparation step is per-
formed by the CPU to prepare the input array which stores
the interior data of each patch and the ghost-zone values. For
the TVD scheme, three ghost zones are required on each side
in each spatial direction. The ghost-zone values are obtained by
direct memory copies if the sibling patches exist. Otherwise, the
values are obtained by linear interpolation with the Min-Mod
limiter.

Note that eight nearby patches are always allocated simul-
taneously thanks to the oct-tree data structure. Therefore, to
reduce the amount of workload associated with the preparation
of the ghost-zone values, we can group these eight patches into
a larger array (hereafter referred to as the patch group) before
sending into GPU. For the hydrodynamic solver, each patch
group contains (8 × 2 + 3 × 2)3 = 223 cells, where 8 is the
size of a single patch and 3 is the size of the ghost zones. Since
in this approach the ghost zones are prepared for the exterior
region of each patch group instead of each individual patch, it
reduces 63% of the computational overhead associated with the
ghost-zone preparation.

After sending the input array into GPU, each patch group
is advanced by one GPU thread block. The single-block GPU
hydrodynamic solver is based on the TVD scheme described
in Section 2.2. The three-dimensional evolution is achieved by
using the dimensional-splitting method, in which the solution
is obtained by first applying a forward sweep followed by a
backward sweep within the same step. During one GPU kernel
execution, either a forward sweep or a backward sweep is
performed, and a Boolean parameter is sent into GPU to indicate
the direction of sweeping.

Since the dimensional-split Euler equations are equivalent
to a set of one-dimensional conservation equations, the data
of one patch group can be regarded as a set of data columns,
and each of which can be evolved independently. Accordingly,
for the single-block GPU hydrodynamic solver, we advance the
solutions of a fixed number of data columns in parallel. Each
thread is responsible for advancing a single cell. We then iterate
through the remaining data columns until the whole patch group
is updated. Data that need to be accessed by more than one
threads within the same data column (e.g., the fluid fluxes) are
stored in the GPU shared memory. Otherwise they are stored in
the per-thread registers.

Briefly, the GPU hydrodynamic kernel executed by each
thread works with the steps as follows.

1. Get the index of cell being calculated. Fetch the correspond-
ing data from the global memory and store in the per-thread
registers.

2. Calculate the freezing speed c(x, t) and construct the
corresponding auxiliary vector w.

3. Calculate the left-moving and right-moving fluxes
(Equation (8)) defined at the boundaries of each cell by the
first-order upwind scheme. Store the fluxes in the shared
memory.

4. Obtain the midpoint solutions by Equation (13). Store the
solutions in the per-thread registers.

5. Recalculate the freezing speed using the midpoint values.
Construct the corresponding midpoint auxiliary vector.

6. Calculate the midpoint left-moving and right-moving fluxes
defined at the boundaries of each cell by the second-order
TVD scheme. Store the fluxes in the shared memory.

7. Obtain the full-step solutions by Equation (14). Store the
solutions in the per-thread registers.

8. Store the full-step solutions as well as the fluxes across the
patch boundaries back to the global memory.

9. Repeat steps 1–8 for the next targeted data column until the
entire patch group is updated.

10. Repeat steps 1–9 for the next one-dimensional sweep until
either a forward sweep or a backward sweep is complete.

The output array stores the updated solutions of each patch
group as well as the fluxes across the boundaries of each patch.
To reduce the amount of data transfer, no ghost-zone values are
stored in the output array. After the GPU kernel execution, the
output array is transferred upstream to the CPU memory, and
followed by a closing step performed by the CPU.

The closing step involves two operations. First, it copies the
updated solutions back to each corresponding patch pointer.
Second, for a patch adjacent to a coarse–fine interface, the data
of fluxes across this interface are copied into its own flux array
(to be corrected afterward by the fine-grid fluxes) if this patch is
in the coarse side of the interface. On the contrary, if this patch is
in the fine side of the interface, the data of fluxes are copied into
the flux array of the corresponding neighboring coarse patch (to
correct the coarse-grid fluxes).

We note that it is unnecessary to simultaneously advance all
patch groups in GPU, since the GPU computing power can
be fully exploited as long as there are sufficient arithmetic
operations. Typically, we advance 128–240 patch groups in
GPU in parallel. The input and output arrays are allocated only
for the patch groups being updated, and a single array can be
reused for different sets of patch groups. The additional memory
requirement in CPU for storing the ghost-zone data is therefore
nearly negligible. Moreover, the memory requirement in GPU
for the hydrodynamic kernel is less than 200 MB, and hence the
limited amount of DRAM memory in GPU is not an issue in the
current implementation of GAMER.

In a practical point of view, the performance comparisons
between CPU and GPU must include the data transfer time
between the CPU memory and the GPU memory through
the PCI Express bus. This data transfer time can be greatly
reduced by utilizing the capability of asynchronous memory
copies in GPU, in which the memory copies between CPU and
GPU can be overlapped with the kernel executions (NVIDIA
2008). In CUDA, the concurrency between different operations
is managed by creating the stream objects, which contain a
sequence of memory copy operations and kernel invocations.
To simplify the discussion, here we assume that a stream
identification number (hereafter referred to as the stream ID)
is assigned to each stream object. For a memory copy operation
and a kernel launch with different stream IDs, they can be
performed concurrently. Otherwise, they will be performed
sequentially in the order they are declared in the same stream
object.

In GAMER, since different patch groups at the same refine-
ment level can be evolved in an arbitrary order, we can create
several stream objects inside one GPU solver. Each stream ob-
ject contains one downstream memory copy, one kernel invo-
cation, and one upstream memory copy for a fixed number of
patch groups. Accordingly, the data transfer time of the patch
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Figure 5. Illustration of the concurrent execution between the memory copy and the kernel launch. The abbreviations “Down,” “Up,” and “Ker” stand for the
downstream memory copy, upstream memory copy, and kernel execution, respectively. The numbers in the parentheses indicate the stream IDs. The operations at the
same column are performed concurrently. Therefore, the memory copies can be overlapped with the kernel executions.

groups belonging to one stream object can be overlapped with
the kernel execution time of the patch groups belonging to a
different stream object.

As an illustration, let Ns denote the number of stream objects
and Ng denote the number of patch groups associated with one
stream object. The total number of patch groups advanced by
one launch of the GPU solver is then given by Ns × Ng . At the
first step, the patch groups 1 to Ng are sent to the GPU memory.
At the second step, a GPU kernel is executed to advance the
patch groups 1 to Ng, while at the same time the patch groups
Ng +1 to 2Ng are sent to the GPU memory. At the third step, a
GPU kernel is executed to advance the patch groups Ng +1 to
2Ng, while at the same time the updated solutions of the patch
groups 1 to Ng are sent back upstream to the CPU memory,
and the prepared data of the patch groups 2Ng +1 to 3Ng are
sent downstream to the GPU memory. Figure 5 illustrates the
complete procedure. Ns +2 steps are required to complete one
launch of the GPU solver. Theoretically, by using Ns streams,
the data transfer time between CPU and GPU can be reduced to
(1/Ns)th of the time without using streams.

For comparison, a CPU hydrodynamic solver with the same
TVD scheme has also been implemented. In order to have
more reliable timing measurements, we have measured the
performance of the hydrodynamic solver in three different
hardware implementations: the GraCCA system, the GPU
system installed in the National Center for High-performance
Computing of Taiwan (hereafter referred to as NCHC), and the
GPU system installed in the Center for Quantum Science and
Engineering of National Taiwan University (hereafter referred
to as CQSE). Below, we give a brief description of the hardware
implementations in different GPU systems.

The GraCCA system contains 18 nodes connected by Gigabit
Ethernet. Each node is equipped with two GeForce 8800
GTX GPUs and one AMD Athlon 64 X2 3800 CPU. Two
distinct configurations of GPU systems are implemented in
NCHC. First, a GPU cluster consisting of 16 nodes connected
by InfiniBand is installed in NCHC. In order to exploit the
bandwidth of InfiniBand, currently each node is only equipped
with two Tesla T10 GPUs and two Intel Xeon X5472 CPUs.
In addition, an experimental node with four Tesla T10 GPUs
and two Intel Xeon E5520 CPUs is also installed in NCHC.
This node aims at exploring the computing power of four Tesla
GPUs. Therefore, throughout this work, we perform the timing
measurements in NCHC at this node. The CQSE GPU cluster
contains 16 nodes connected by Gigabit Ethernet. Each node is
equipped with four Tesla T10 GPUs and two Intel Xeon E5462
CPUs.

Note that in contrast to the Tesla T10 GPU, the GeForce 8800
GTX GPU installed in the GraCCA system does not support the

Table 1
Detailed Timing Analysis of the GPU Hydrodynamic Solver

Platform Downstream Upstream Kernel Totala Totalb CPUc Speed-up
(μs) (μs) (μs) (μs) (μs) (μs)

GraCCA 71 46 252 369 · · · 5369 14.55
NCHC 51 64 144 262 177 2366 13.37
CQSE 44 29 150 223 177 2701 15.26

Notes. Timing results shown here are the execution times per patch group.
a Timing results with only one stream.
b Timing results with four streams.
c Timing results using CPU only.

capability of asynchronous memory copies. Consequently, the
memory copies and the kernel invocations must be performed
sequentially, which is equivalent to have only one stream.
For the Tesla T10 GPU, we have compared the performances
between tests using only one stream (Ns = 1) and four streams
(Ns = 4). Also note that each thread block is calculated by one
multiprocessor in GPU, and there are 16 and 30 multiprocessors
in GeForce 8800 GTX GPU and Tesla T10 GPU, respectively.

Figure 6 shows the performance speed-up of one GPU
over one CPU as a function of the number of patch groups
associated with each stream (Ng) for the hydrodynamic solver.
The performance measurements include the downstream and
upstream data transfers as well as the kernel executions. The
computing times for the preparation step and the closing step
are not included. It can be seen that the performance of GPU
solver is linear proportional to Ng when Ng is smaller than the
total number of multiprocessors in one GPU. As we have at
least one patch group for each multiprocessor, the performance
approaches the saturated values. Factors of 14.6, 13.4, and
15.3 performance speed-ups are demonstrated in the GraCCA
system, NCHC, and CQSE, respectively, for GPU computation
as opposed to CPU computation.

A detailed timing analysis for the hydrodynamic solver is
listed in Table 1, in which we set Ng = 256 in the GraCCA
system and Ng = 240 in NCHC and CQSE. Note that since
the specifications of GPUs installed in NCHC and CQSE are
the same, the difference of speed-up ratios between these two
systems is mainly due to the different performances of CPUs
as well as the different Northbridge chips. When using only
one stream, the data transfer times are 46.4%, 79.9%, and
48.7% of the kernel execution times in the GraCCA system,
NCHC, and CQSE, respectively. A relatively low bandwidth in
PCI Express bus is found in NCHC, especially in the upstream
bandwidth. Nevertheless, the data transfer times are reduced to
22.9% in NCHC and 18.0% in CQSE when the memory copies
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Figure 6. Performances of the GPU hydrodynamic solver in different hardware implementations.

are partially overlapped with the kernel executions by using
four streams. Also note that both GPUs and CPUs installed in
NCHC and CQSE outperform those installed in the GraCCA
system. However, the performance ratios between GPU and
CPU measured in different hardware implementations do not
vary significantly.

3.2. GPU Poisson Solver

The basic procedure of the GPU Poisson solver is similar to
that of the GPU hydrodynamic solver. It works with the steps as
follows.

1. Send the input array, which stores the mass density and
potential, downstream from the CPU memory to the GPU
global memory.

2. Invoke the GPU SOR kernel to evaluate the potential
solutions.

3. Send the output array, which stores the potential only,
upstream from the GPU global memory back to the CPU
memory.

In order to reduce the computational overhead associated with
the ghost-zone preparation as well as to reduce the interfaces
between patches at the same refinement level, eight nearby
patches are also grouped into a patch group at the preparation
step. For the SOR method, the potential data require one ghost
zone on each side in each spatial direction, while the mass
density data require no ghost zones. Accordingly, for the GPU
Poisson solver, each patch group stores (8 × 2 + 1 × 2)3 = 183

potential data and (8 × 2)3 = 163 density data. After the
preparation step, the input array is sent downstream to the GPU
global memory, and the GPU SOR kernel is invoked to evaluate
the potential solutions of each patch group. Afterward, the
output array storing only the potential solutions is sent upstream
to the CPU memory, and a closing step is performed by CPU to
copy the solutions back to each corresponding patch pointer.

The single-block GPU Poisson solver is based on the SOR
scheme with odd–even ordering as described in Section 2.3.
Implementing the three-dimensional SOR scheme into GPU
differs greatly from the implementation of the three-dimensional
TVD scheme. For the GPU hydrodynamic kernel, the data of
each patch group are decomposed into a set of data columns,
and each of which can be evolved independently. Accordingly,
only the data columns being calculated need to be stored in
the shared memory, and a single shared memory array can be
reused for many different data columns. The total amount of
shared memory required in the GPU hydrodynamic kernel is
therefore only 8.6 KB.

On the contrary, the SOR scheme requires the three-
dimensional relaxation, where the data in each cell must be
re-accessed during each iteration. In addition, the arithmetic
intensity in each iteration of the SOR scheme is relatively low.
Consequently, storing all data naively in the global memory will
suffer from the high memory latency and result in marginal per-
formance improvement. However, since the amount of potential
data in each patch group is about 22.8 KB, it is impossible to
store all potential data in the shared memory (which is only
16 KB per multiprocessor).

One of the solutions to reduce the data transfer is that
during each iteration, we solve Equations (19) and (20) slice
by slice. Since Equation (19) requires the data of six nearby
cells, we can keep only three slices of data in the shared
memory, and fetch a new slice into the shared memory each
time when iterating to the next slice. It ensures that the
reused data are stored in the shared memory during each
iteration. However, this method still requires frequent data
transfer between the global memory and the shared memory,
and hence the achieved performance is far from optimized.
On the contrary, in GAMER we have implemented a different
scheme that minimizes the data transfer by utilizing both
the shared memory and the per-thread registers, as detailed
below.
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Figure 7. Two-dimensional illustration of the configuration of odd and even
cells in the GPU SOR kernel. To simplify the illustration, a patch group with
only 4 × 4 cells is shown. The border of patch group is highlighted by bold
lines. The triangles and circles represent the even and odd cells, respectively.
The interior cells are indicated by open symbols, and the ghost cells are indicated
by filled symbols. At the first half-step for updating all even cells, the triangle
data are stored in the per-thread registers, while the circle data are stored in the
shared memory. A shared memory array with 6 × 3 elements is allocated, and
eight threads are used to solve the equation. Each thread stores the potentials
of one interior cell and one ghost cell in its own registers. The dotted arrows
indicate the direction of data exchange at the end of the even step.

To solve the issue of shared memory shortage, we first note
that there are 8192 and 16,384 threads per multiprocessor in
the GeForce 8800 GTX and Tesla T10 GPU, respectively. In
principle, they provide another 32 KB and 64 KB storage
through the per-thread registers, although the data stored in one
register cannot be directly accessed by other registers. Next, by
dividing all cells within a single-patch group into odd and even
cells, the update of an even cell depends only on nearby odd
cells, and vice versa. Accordingly, when updating all even cells
at the even step in one iteration, the data of all even cells can be
stored in the per-thread registers instead of the shared memory.
By contrast, since the data of each odd cell need to be accessed
several times by nearby even cells, the data of all odd cells are
stored in the shared memory at the even step. After updating
all even cells, we exchange the data stored in the registers and
the shared memory, and proceed to the odd step for updating
all odd cells. At the end of the odd step, another data exchange
operation is applied, and a single iteration is complete.

Figure 7 illustrates the configuration of odd and even cells
as well as the data exchange operation at the even step in two
dimensions. Note that the ghost zones are also divided into
odd and even cells, except that their values are fixed during
iterations. In this scheme, the requirement for the amount of
shared memory is nearly halved, and all potential data are stored
in either the shared memory or the per-thread registers. The
data transfers of the potential data between the global memory
and the shared memory are only necessary before and after the
relaxation loop, and thus the performance is highly improved.
Also note that since the access rate of the mass density is much
lower than that of the potential, the data of mass density are still
stored in the global memory.

According to the discussions above, we store the potential
data of each patch group in either the shared memory or the per-

thread registers, and update the potential solutions slice by slice.
Since there are 128 interior even cells and 128 interior odd cells
in each x–y plane in one patch group, we use 128 threads for
each patch group. Each thread will update the potential of one
even cell in each slice (and store in the register) at the even step
and update the potential of one odd cell in each slice (and store in
the register) at the odd step. Since there are 16 slices of potential
data to be updated in each patch group, each thread requires 16
registers for storing the temporary interior potentials. Besides,
each thread also requires six registers for storing the ghost-zone
potentials on each side of the patch group. The GPU SOR kernel
executed by each thread works with the steps as follows.

1. Load the potentials of odd cells into the shared memory.
2. Load the potentials of even cells into the per-thread regis-

ters.
3. Initialize the parameters for the even step.
4. Evaluate the residual of an even cell at the targeted x–

y plane by Equation (19). Store the residual in a shared
memory array.

5. Update the solution of an even cell by Equation (20).
6. Repeat steps 4–5 for the next x–y plane until all even cells

are updated.
7. Exchange the data stored in the shared memory and the

per-thread registers.
8. Initialize the parameters for the odd step. Repeat steps 4–7

for all odd cells.
9. Perform a reduction operation to get the 1-norm of the

residuals. Repeat steps 3–9 until the 1-norm of the residuals
has been diminished to the floating-point precision limit
(compared to the source term in the Poisson equation).

10. Store the solutions back to the global memory.

A CPU Poisson solver with the SOR scheme has been imple-
mented for the sake of comparison. Note that the data exchange
operation is not required in the CPU solver. Figure 8 shows the
performance speed-up of one GPU over one CPU as a func-
tion of the number of patch groups associated with each stream
(Ng) for the Poisson solver. The performance measurements in-
clude the downstream and upstream data transfers as well as the
kernel executions, whereas the computing times for the prepa-
ration step and the closing step are not included. In the NCHC
and CQSE systems, four streams are used for the asynchronous
memory copies. For comparison, the results using only one
stream are shown as well. As for the GPU hydrodynamic solver,
the speed-up ratios are linear proportional to Ng when Ng is
smaller than the number of multiprocessors in one GPU, and
they approach the saturated values when we have at least one
patch group for each multiprocessor. Factors of 16.1, 23.4, and
24.1 performance speed-ups are demonstrated in the GraCCA
system, NCHC, and CQSE, respectively.

Table 2 shows a detailed timing analysis for the Poisson
solver, in which we set Ng = 256 in the GraCCA system
and Ng = 240 in NCHC and CQSE. Again, a relatively low
bandwidth of the PCI Express bus is measured in NCHC. When
using only one stream, the data transfer times are 20.0%, 56.4%,
and 33.3% of the kernel execution times in the GraCCA system,
NCHC, and CQSE, respectively, and they are reduced to 15.4%
in NCHC and 21.4% in CQSE as the asynchronous memory
copies are activated by using four streams.

3.3. Gravitational Acceleration

In GAMER, the evaluation of the potential gradients as well
as the updating of hydrodynamic variables by self-gravity is
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Figure 8. Performances of the GPU Poisson solver in different hardware implementations.

Table 2
Detailed Timing Analysis of the GPU Poisson Solver

Platform Downstream Upstream Kernel Totala Totalb CPUc Speed-up
(μs) (μs) (μs) (μs) (μs) (μs)

GraCCA 13 8 105 126 · · · 2034 16.14
NCHC 10 12 39 61 45 1055 23.44
CQSE 8 6 42 56 51 1230 24.12

Notes. Timing results shown here are the execution times per patch group.
a Timing results with only one stream.
b Timing results with four streams.
c Timing results using CPU only.

also performed in GPU. The procedure is analogous to the ones
adopted in the hydrodynamic and Poisson solvers. An input
array storing both the hydrodynamic variables and the potentials
is sent downstream to GPU, a GPU kernel is executed to update
the solutions, and the updated hydrodynamic variables are sent
upstream back to CPU.

Note that the arithmetic intensity is extremely low in this
case, and hence the data transfer time between CPU and GPU
dominates the execution time. Consequently, only marginal per-
formance speed-up factors around 1.3–1.4 are achieved in the
GraCCA system. In NCHC and CQSE, the performances are
even slightly lower than using CPU. Nevertheless, in the cos-
mological tests using CPU only, the execution time associated
with the calculation of gravitational acceleration only accounts
for ∼1% of the total execution time. Therefore, the overall per-
formance of the code is not constrained by the relatively poor
performance of the computation of gravitational acceleration.

3.4. Courant–Friedrichs–Lewy Condition

To ensure the stability of numerical integration, the inte-
gration time step must satisfy the Courant–Friedrichs–Lewy
(CFL) stability criterion. For the three-dimensional relaxing

TVD scheme, the CFL condition is given by

�t � �h�

cs + max(|vx |, |vy |, |vz|) , (30)

where cs is the sound speed and �h� is the zone spacing at level
�. The denominator in Equation (30) gives the maximum speed
of information propagation.

The evaluation of the CFL condition may, at first sight,
seem to take negligible time compared to the total execution
time. However, timing measurements show that, after the
performances of both the hydrodynamic and Poisson solvers
are highly improved by using GPUs, the calculation time
for the CFL condition accounts for at most 8% of the total
execution time if the CFL condition is computed in CPU. It is
comparatively low but non-negligible.

Due to the fact that the evaluation of the CFL condition
requires no ghost zones, we can calculate the CFL condition
in GPU after the backward sweep of the GPU hydrodynamic
solver. Since all data essential for the CFL condition already
reside in the GPU memory, no extra downstream data transfer
is required. To reduce the amount of upstream data transfer
for the CFL condition, a reduction operation is performed in
GPU in advance to obtain the maximum speed of information
propagation among each patch group. By doing so, only a
single floating-point value per patch group is required to be
transferred from GPU to CPU. The reduction operation among
different patch groups is then performed by CPU to evaluate
the CFL condition. Accordingly, since the extra data transfer is
minimized and the number of arithmetic operations of the CFL
condition is much less than that of the hydrodynamic solver, the
computation time of the CFL condition is reduced to less than
0.1% of the total.

3.5. Concurrent Execution Between CPU and GPU

In GAMER, two optimization strategies are adopted to mini-
mize the computational overhead introduced by the preparation
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Figure 9. Illustration of the concurrent execution between CPU and GPU. The abbreviations “Pre” and “Clo” stand for the preparation step and the closing step,
respectively. The numbers in the parentheses indicate the indices of patch groups being calculated. The operations at the same column are performed concurrently.
Accordingly, the preparation step and the closing step performed by CPU can be overlapped with the hydrodynamic solver or the Poisson solver performed by GPU.

step and the closing step. First, as described in Sections 3.1 and
3.2, we prepare the ghost-zone data for each patch group instead
of each patch. The surface/volume ratio is reduced, and thus the
computational overhead is reduced. However, since the number
of the interior cells in one patch group is only 163, the number
of the ghost zones is still comparable to that of the interior cells.
For example, for the hydrodynamic solver which requires three
ghost zones, the total number of ghost zones for each patch
group is 1.6 times more than the number of interior cells. More-
over, although the number of arithmetic operations involved in
the preparation step and the closing step is much less than that
of the hydrodynamic and Poisson solvers, these two steps are
performed by CPU in the current scheme. On the contrary, the
execution times of both solvers are reduced by at least a fac-
tor of 10 by using GPU. Consequently, timing analyses show
that the execution times of the preparation step and the closing
step are comparable to or even longer than that of the GPU
solvers.

To further remove this bottleneck, a second optimization
strategy is implemented in GAMER by taking advantage of the
parallel execution between CPU and GPU. In CUDA, both the
memory copy operations and the kernel invocations in GPU
are asynchronous, meaning that the program returns from the
function call before the requested task is completed. In other
words, the CPU and GPU can work concurrently. With this
insight, we can overlap the executions of the preparation step
and the closing step in CPU with the executions of the GPU
solvers.

As an illustration, let Np denote the number of patch groups
calculated by one invocation of the GPU solver. For using Ns
stream objects, each of which contains the calculations of Ng
patch groups, we have Np = Ns ×Ng . At the first step, the patch
groups 1 to Np are prepared by CPU. At the second step, the
patch groups 1 to Np are calculated by the GPU solver, while
at the same time the patch groups Np +1 to 2Np are prepared
by CPU. At the third step, the patch groups Np +1 to 2Np are
calculated by the GPU solver, while at the same time the patch
groups 2Np +1 to 3Np are prepared by CPU, and the solutions
of the patch groups 1 to Np are copied to the corresponding
pointers by CPU in the closing step. This procedure continues
until the solutions of all targeted patch groups are obtained, as
illustrated in Figure 9.

We note the similarity between the concurrent executions
with the downstream memory copy, the kernel launch, and the
upstream memory copy in the GPU solver (Figure 5) and the
concurrent executions with the preparation step, the GPU solver,
and the closing step (Figure 9). In principle, having a larger
Ns can further decrease the communication time in the PCI

Express bus. However, it will also deteriorate the efficiency
of concurrent execution between CPU and GPU, because the
amount of CPU workload that can be overlapped with GPU
computing is reduced. Typically, we set Ns = 4 to balance
these two optimization approaches.

In order to test the efficiency of the concurrent execution
between CPU and GPU, we execute each GPU solver in GAMER
and simultaneously perform a matrix summation in CPU. We
keep the workload of the GPU solver fixed while varying the
size of the matrix, and measure the total execution time in each
case. Ideally, the total execution time should be equal to the one
that consumes more time.

Figures 10 and 11 show the test results for the GPU hy-
drodynamic solver and the GPU Poisson solver, respectively.
The measurements are conducted in the NCHC system. As ex-
pected, in both solvers the total execution times are dominated
by the tasks with higher workload, and good concurrent effi-
ciencies are demonstrated. At the crossover point in Figure 10,
where the execution times of GPU and CPU are approximately
equal, the measured wall-clock times of performing only the
GPU hydrodynamic solver, only the matrix summation, and the
concurrent execution between CPU and GPU are 20.76 ms,
21.01 ms, and 22.02 ms, respectively. The overhead is 4.8%.
At the crossover point in Figure 11, the measured wall-clock
times of performing the GPU Poisson solver only, the matrix
summation only, and the concurrent execution between CPU
and GPU are 5.84 ms, 5.83 ms, and 6.57 ms, respectively.
The overhead is 12.5%. For both solvers, the overheads are
less than 1.5% when the GPU solvers dominate the execution
times.

The performance improvement actually obtained by exploit-
ing the concurrency between CPU and GPU is application de-
pendent, since the execution times of the preparation step and
the closing step are related to the structure of domain refine-
ment. We demonstrate the significance of utilizing this fea-
ture by comparing the performances in purely baryonic cos-
mological simulations, which will be described in detail in
Section 5.1.

4. ACCURACY TESTS

GAMER is designed to achieve both high performance and
high accuracy. All GPU kernels implemented in the code follow
the same numerical algorithms as their CPU counterparts,
except for certain optimized data managements which do not
affect the accuracy. In other words, no numerical robustness is
sacrificed for performance. In the following, we give the results
of various standard tests to demonstrate the accuracy of the code.
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Figure 10. Efficiency of the concurrent execution between CPU and GPU for the GPU hydrodynamic solver. The x-axis represents the size of the matrix summation
performed by CPU.
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Figure 11. Efficiency of the concurrent execution between CPU and GPU for the GPU Poisson solver. The x-axis represents the size of the matrix summation performed
by CPU.

Single precision is assumed unless the floating-point precision
is explicitly stated.

4.1. Acoustic Wave Test

As a first elementary test, we simulate the one-dimensional
acoustic wave. This test is particularly useful for demonstrating
the second-order accuracy of the hydrodynamic solver (Miniati

& Colella 2007a). We construct the initial condition as follows.
The uniform background density and pressure are set to ρ0 = 1
and P0 = 3/5, and the ratio of the specific heats is set to
γ = 5/3. The sound speed is given by cs = (γP0/ρ0)1/2 = 1.
A sinusoidal density perturbation is adopted with a very small
amplitude δρ/ρ0 = 10−6 in order to avoid any nonlinear effect
(e.g., the wave steepening). The flow is initially at rest. Double
precision is adopted to reduce the round-off errors. To verify the
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Figure 12. Acoustic wave test. The wave vector is aligned with the diagonal
of simulation box. The data points represent the L1 error norm of density as a
function of numerical resolution (N).

code accuracy in multi-dimensional cases, we choose the wave
vector K to be parallel to the diagonal of simulation box, i.e.,
K = (1/

√
3, 1/

√
3, 1/

√
3).

We perform simulations with increasing resolutions: N =
643–5123, and estimate the L1 error norm of each case. The
spatial coordinate is normalized to the grid size at N = 5123.
In each case, the L1 error norm of density is defined as

L1(ρ) = 1

N

∑
i

|ρi − ρ(xi)|, (31)

where ρi is the numerical solution of ith cell along the diagonal
and ρ(xi) is the corresponding analytical solution. Figure 12
shows the L1 error norm at t = 600, as a function of spatial
resolution. The error converges as L1(ρ) ∝ N−1.9, which is
slightly slower than second order. Error distribution shows that
error peaks sharply near local extreme values of fluxes, at
which the hydrodynamic solver locally reduces to only first-
order accurate. It is found that these errors may contaminate
the convergence rate of numerical solutions. Nevertheless, the
global convergence still approaches second order.

4.2. Shock Tube Test

The shock tube test (Sod 1978) gives a great insight into the
capability and accuracy of our hydrodynamic AMR program.
Initially, the flow is stationary, with mass density and pressure
jumps across a discontinuous interface. Afterward, three char-
acteristic waves with different propagation speeds are excited,
namely, the rarefication wave, the shock wave, and the contact
discontinuity. While the hydrodynamic quantities in the Euler
equations are continuous across the rarefaction wave, the mass
density is discontinuous across the contact discontinuity, and
the mass density, flow velocity, and pressure are discontinuous
across the shock wave. A correct AMR scheme must fulfill the
following criteria. The quantities to the left and the right of the
shock front must satisfy the Rankine–Hugoniot shock jump con-
ditions. All these features should be correctly captured by the
simulation. Moreover, the domain refinement should be able to

follow the wave propagations closely, the discontinuities should
be resolved with a small number of cells, and there should be
no spurious oscillations resulting from the domain refinement.

The initial conditions are constructed as follows:

ρL = 1, ρR = 0.125, (32)

PL = 1, PR = 0.1, (33)

uL = uR = 0, (34)

where the subscripts L and R indicate the states to the “left” and
“right” of the initial discontinuous interface, respectively. The
ratio of the specific heats γ is set to 5/3. The interface normal
is chosen to be parallel to the x-axis. We set the size of the
root level equal to 64, with five refinement levels (�max = 5).
Accordingly, the effective resolution is 2048. The Dirichlet
boundary condition is adopted to ensure no boundary effects
to contaminate the wave propagations.

The refinement criterion is based on the density gradient. A
cell is flagged for refinement if the relative change of density
across the width of a single cell exceeds a given threshold Cρ :

�h�

ρ

∂ρ

∂x
� Cρ. (35)

For the shock tube test, we have Cρ = 0.03. The size of the flag
buffer (Nb) is set to 8.

Figure 13 shows the simulation results at t = 110, along
with the analytical solutions for comparison. The distance is
normalized to the grid size at the maximum level. Both the
contact discontinuity and the shock wave are refined to the
maximum level, whereas the rarefication wave is refined to
� = 3. Only 2.34%–7.81% of the computational domain is
refined to the maximum level during the entire simulation, and
note that the discontinuous interface is refined to the maximum
level from the beginning. The simulation results demonstrate
a good resolution at discontinuities. The shock front is well
resolved within three to four cells, and the contact discontinuity,
which is potentially more diffusive, is resolved within seven to
nine cells. We find a good agreement between the numerical
solutions and the analytical solutions. The maximum numerical
error is found to be about 1%–3% in the rarefication wave for the
mass density, velocity, and pressure. No unphysical oscillations
are observed throughout the computational domain, and the
flow velocity and pressure remain uniform across the contact
discontinuity.

We adopt the individual-time-step scheme for the shock tube
test. At t = 110, it only takes 22 time steps to evolve the patches
at the root level, whereas it takes 22 × 25 = 704 steps to evolve
the patches at the maximum level. A simulation with uniform
time step is also performed for comparison, and no obvious
differences in profiles are found between these two schemes.

4.3. Sedov–Taylor Blast Wave Test

The Sedov–Taylor blast wave test features a strong spherical
shock and a self-similar flow. Initially, the mass density is
uniform and the flow is at rest. The explosion is triggered
by instantaneously releasing a point-like energy source, which
is assumed to be much larger than the background thermal
energy, into a homogeneous medium. Afterward, a spherical
shock propagates outward from the point of explosion. Since
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Figure 13. Shock tube test. The top left, top right, bottom left, and bottom right panels show the velocity, mass density, pressure, and refinement level as a function of
position at t = 110, respectively. The initial discontinuous interface is placed at x = 0. The solid lines depict the analytical solutions.

(A color version of this figure is available in the online journal.)

the background thermal energy is negligible compared to the
explosion energy, the shock wave is strong. The challenge
of the blast wave test lies in solving a spherically symmetric
problem on the Cartesian grid. It may also verify the capability
of GAMER to accurately capture the propagation of strong shock
waves.

A self-similar solution to the Sedov–Taylor blast wave is
described in detail in Landau & Lifshitz (1987). Let ρ1 denote
the initial background density, and E0 be the total amount of
explosive energy introduced at t = 0. The explosion center is
chosen to be the origin of the coordinate system. Then, from the
dimensional analysis, the position and the propagation velocity
of the shock front at t > 0 are given by

rs(t) = β

(
E0t

2

ρ1

)1/5

, (36)

vs(t) = drs

dt
= 2β

5

(
E0

ρ1t3

)1/5

, (37)

where β is a constant depending on γ . For γ = 5/3, β ≈ 1.15.
The values immediately behind the shock front can be derived
by applying the Rankine–Hugoniot shock jump conditions in
the strong shock limit, which gives

ρ2 =
(

γ + 1

γ − 1

)
ρ1, (38)

v2 =
(

2

γ + 1

)
vs, (39)

P2 =
(

2

γ + 1

)
ρ1v

2
s . (40)

Finally, by introducing the dimensionless similarity variable

ξ = r

rs(t)
= r

β

(
ρ1

E0t2

)1/5

, (41)

the Euler equations can be transformed into a set of ordinary
differential equations, and the post-shock solutions can be
obtained by direct integration.

We simulate the blast wave by initializing the background
environment as ρ1=1, v1 = 0, and E1 = 10−5. The ratio
of the specific heats γ is set to 5/3. A total thermal energy
E0 = 8 × 105 is injected into the eight central cells at the finest
level. Note that since an averaging operation is performed during
the initialization, the explosive energy is also injected into the
eight central cells at coarser levels with an energy density one-
eighth of that of their parent cells. The size of the root level is
set to 643 and the maximum level is chosen to be �max = 5,
giving 20483 effective resolution.

We adopt the pressure gradient as the refinement criterion so
that the central region can be refined from the beginning. A cell
is marked for refinement if the relative change of pressure across
the width of a single cell exceeds a given threshold CP:

�h�

P

∂P

∂x
� CP . (42)

For the blast wave test, we set CP = 1.0. The size of the flag
buffer (Nb) is chosen to be 8. Since the background quantities
are continuous across the simulation box, the periodic boundary
condition is adopted.

The simulation results at t = 2000 are shown in Figure 14,
along with the analytical solutions for comparison. The hydro-
dynamic variables are normalized to the values directly behind
the shock front (Equations (38)–(40)), and the dimensionless
radius (ξ ) is adopted for the spatial coordinate. The numerical
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Figure 14. Sedov–Taylor blast wave test. The top left, top right, bottom left, and bottom right panels show the shell-averaged velocity, mass density, pressure, and
refinement level as a function of radius at t = 2000, respectively. The error bars represent the standard deviations to the average values. The hydrodynamic variables
are normalized to the values directly behind the shock front, and the radius is normalized to the position of the shock front. The solid lines depict the analytical
solutions. In the right bottom panel, the refinement level is recorded along the x-axis.

(A color version of this figure is available in the online journal.)

results shown here are the spatial averages over radial bins with
thickness equal to the resolution at the finest level. The standard
deviations (asphericity) from the shell-averaged values in each
bin are represented by error bars. We find a good agreement be-
tween the numerical solutions and the analytical solutions. The
propagation of the strong shock front is accurately captured,
with a compression ratio ρ(ξ = 0.998)/ρ1 = 3.67. The shock
front is well resolved within three cells. Moreover, despite using
the Cartesian geometry to solve a spherically symmetric prob-
lem, the standard deviations from the shell-averaged values are
small. The maximum deviation is found in the velocity profile
at the radius ξ = 0.1–0.3, where the effective resolution is only
2563.

The distribution of refinement levels along the x-axis is also
shown in Figure 14 for illustration. Only the region surrounding
the shock front is refined to the maximum level, which is
1.38% of the entire simulation box. Due to the proper-nesting
constraint, the refinement levels gradually downgrade to � = 0
and � = 2 in the upstream and downstream regions, respectively.
We adopt the individual time step for the blast wave test. At
t = 2000, only 347 time steps are required for the root level,
while 11,104 time steps are required for the finest level.

4.4. Point-masses Poisson Solver Test

In order to verify the accuracy of the multi-level Poisson
solver described in Section 2.3, we perform tests to measure
the gravitational accelerations between point masses. Two unit-
mass particles are randomly placed in a simulation box with
323 root-level cells. The maximum refinement levels are set
to �max = 0–6, giving 323–20483 effective resolutions. The
refinement criterion is set to ρ� > 0, so that the eight cells

surrounding each particle are always refined to the maximum
level. At each level, we first compute the mass density using
the CIC interpolation scheme (Hockney & Eastwood 1981).
Afterward, the gravitational potential and acceleration at each
cell are evaluated, and the acceleration of each particle is
obtained by the inverse CIC interpolation. Ideally, with an
increasing refinement level, the force resolution should be
improved and approaches the cell size of the current refinement
level.

Figure 15 shows the evaluated gravitational accelerations
divided by the analytical solutions. The contributions from
image particles due to the periodic boundary condition are
calculated using the Ewald summation technique (Hernquist
et al. 1991). For comparison, we also show the results without
applying any potential correction. These two cases should give
identical results when only the root level is used and the multi-
level Poisson solver reduces to a pure FFT solver. For �max > 0,
we see that the results without potential correction significantly
deviate from the analytical solutions. It reveals the fact that
the interpolation errors at coarse–fine boundaries can seriously
contaminate the solutions at finer levels. On the contrary, when
the potential correction is applied, the force resolution can
approach the cell size at the given maximum level. The effective
force resolution remains approximately two cells in each case,
and the scatters of solutions are highly suppressed. Note that
the small solution scatters arise primarily from the fictitious
anisotropic force of the square meshes. We also note that the
error spatial distributions in the cases �max > 0 are similar to
those in the case �max = 0, indicating that the numerical errors
are dominated by the CIC interpolation.

To provide a more quantitative analysis, we further com-
pare in detail the solutions obtained from the hierarchical AMR
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Figure 15. Poisson solver test. Two particles are randomly distributed in the simulation box, and the gravitational acceleration is evaluated using the multi-level
Poisson solver. Here, we show the numerical results divided by the analytical solutions, using 0–6 refinement levels. The particle separation is normalized to the
root-level grid size. The top and bottom panels show the results with and without potential correction, respectively.

grids with the uniform-grid solutions, and investigate the nu-
merical errors introduced from the spatial interpolations at the
coarse–fine boundaries after the potential correction. One of the
approaches to verify the solution accuracy is to fix the particle
distributions, compare the numerical solutions to the analytical
solutions using different numbers of refinement levels, and esti-
mate the solution convergence rate. However, this approach does
not provide a good insight into the convergence behavior for the
cases with particle separations close to the minimum cell size,
because the errors will be dominated by the CIC interpolation
when using less refinement levels. For example, for a particle
pair with separation equal to 2 finest cells at �max = 6, the same
particle separation only corresponds to 0.5 finest cell when using
�max = 4, in which the numerical solution deviates significantly
from the analytical solution due to the softening effect of the
CIC method. Accordingly, it is inappropriate to compare the
force solution of this particle pair using refined meshes of dif-
ferent levels. To resolve this issue and quantify the numerical
errors for the cases that particle separations are close to the given
minimum cell size, we proceed the analysis as follows.

First, for each particle pair, we fix its relative orientation,
but normalize the particle separation by the current minimum
cell size when adopting different maximum refinement levels.
The multi-level Poisson solver is then applied to evaluate the
gravitational force between each particle pair, and the forces
introduced by image particles are subtracted. By doing so,
since the minimum cell size provides the only length scale, the
numerical solution obtained using a higher refinement level can
easily be rescaled and compared with the root-level solution.
Ideally, these two solutions should be identical, if the errors
introduced from the coarse–fine boundaries are negligible.
For example, for a given particle pair, the gravitational force
obtained using �max = 1 should be exactly four times larger
than that obtained using �max = 0.

Figure 16 plots the ratio between the rescaled solutions at
refinement levels and the solutions obtained using only the
root level. Data are divided into bins that are equally spaced
in logarithmic scale, and the standard deviation in each data bin
is represented by an error bar. For the case �max = 6, the average
ratios at different data bins range from 96.4% to 99.4%, and the
maximum rms value is 2.89 × 10−2. For particle separations
larger than one cell, the average ratios are above 99.0%. Also
note that the errors for �max = 4 and �max = 6 are nearly
indistinguishable. It verifies that the errors introduced from
the coarse–fine boundaries are suppressed after a few levels
of refinement, and the accuracy of the point-masses Poisson
solver test is always dominated by the CIC-induced errors at the
finest level. In other words, it demonstrates that, within a fixed
small error, the multi-level Poisson solver is able to give a force
resolution equivalent to a uniform-mesh PM solver whose cell
size is equal to that in the current maximum refinement level,
regardless of the level of refinement.

4.5. Jean’s Instability Test

To further test the accuracy of Poisson solver and give a quan-
titative analysis of the integration scheme in a hydrodynamic +
self-gravity system, we test the problem of Jean’s instability.
For a small-amplitude perturbation, Equations (1)–(3) and (17)
can be linearized, and the dispersion relation is given by

ω2 = c2
s [k2 − k2

J ], (43)

where kJ is Jean’s wave vector,

k2
J = 4πGρ0

c2
s

, (44)

cs = (γP0/ρ0)1/2 is the sound speed, and ρ0 and P0 are
the background density and pressure, respectively. For k <
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kJ , a growing-mode solution can be found and the density
perturbation grows exponentially as

ρ(t) = ρ0 + δρ sin(kx)e
√−ω2t , (45)

where δρ is the amplitude of initial density perturbation.
We simulate the Jean’s instability problem by having δρ =

10−6, G = 10−3, ρ0 = 1, P0 = 3/5, and γ = 5/3.
The wavelength is chosen to be equal to the size of the
simulation box, which has a 163 root level with zero to
three refinement levels. The effective resolutions are therefore
N = 163–1283. Double precision is adopted to reduce the
round-off errors. Since the sinusoidal density distribution has
an analytical solution to the Poisson equation, we first compare
it to the numerical solutions. Figure 17 shows the L1 error norm
of potential. Encouragingly, the second-order convergence is
verified. We then perform simulations until the perturbation
amplitudes have grown two orders of magnitude, and compare

the numerical results to the analytical predictions. The L1 error
norm of density is shown in Figure 17. The error converges
as L1(ρ) ∝ N−1.9, which is consistent with the convergence
rate observed in the acoustic wave test. For comparison, we
also conduct simulations using only the FFT Poisson solver
with the same effective resolutions. As shown in Figure 17,
the numerical errors observed in these two schemes are nearly
identical.

4.6. Spherical Collapse Test

In the spherical collapse test, an initial overdense perturbation
with spherical symmetry is placed in the Einstein–de Sitter space
(Ωm = 1). The background pressure is assumed to be negligible.
Since the system is gravitational bound, the overdense region
first expands with the Hubble flow, and eventually begins to
collapse at the “turn around” time. The mass shells at larger
radii also collapse at later times, and a strong shock wave
propagates outward. Since the turnaround radius provides the
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only length scale in this problem, the solution is self-similar.
The spherical collapse test is the most comprehensive test for
the three-dimensional hydrodynamic code with self-gravity. It
simultaneously involves several essential properties of the code,
namely, the accuracy of both hydrodynamic and Poisson solvers,
the shock-capturing capability, the domain refinement due to
the density contrast, and the accuracy of solving a spherically
symmetric problem using the Cartesian grid.

An analytical solution to the spherical collapse problem
was given by Bertschinger (1985), for both collisional and
collisionless components. Here, we only consider the collisional
case. Let δi and Ri denote the density contrast and the radius
of the top-hat overdense perturbation at an initial time ti. The
turnaround radius, from where the mass shells cease expanding
and start to collapse, is given by

rta(t) =
(

4

3π

t

ti

)8/9

δ
1/3
i Ri . (46)

Accordingly, the dimensionless radius and the fluid variables
are defined as

λ ≡ r

rta
, (47)

ρ̃(λ) ≡ ρ

ρb

, (48)

ṽ(λ) ≡ v

(
t

rta

)
, (49)

P̃ (λ) ≡
(

P

ρb

) (
t

rta

)2

. (50)

From Equations (47)–(50), the Euler equations can be reduced
into a set of ordinary differential equations, and the analytical
solutions can be calculated by direct integration.

We perform the spherical collapse test by setting δi = 0.01
and Ri = 160 at a = 10−5 in a comoving box, in which
the periodic boundary condition is adopted. The ratio of the
specific heats γ is chosen to be 5/3, and the background
pressure is set to an arbitrarily low value. Since the comoving
coordinates are adopted in this test, the initial velocity is set
to zero, which corresponds to an unperturbed Hubble flow in
the physical coordinates. The size of the root level is set to
1283, and the maximum refinement level is four, giving 20483

effective resolution. Note that the radius of the top-hat density
distribution is much smaller than the size of the simulation
box, so that the image density introduced by the periodic
boundary condition should not severely infect the numerical
results, and the overdense perturbation can be regarded as an
isolated system.

We adopt the amplitude of density as the only refinement
criterion. Any cell at level � is marked for refinement if it exceeds
the density threshold: ρ� > 8�. Accordingly, the overdense
region is refined to � = 1 at the beginning. The size of the
flag buffer (Nb) is chosen to be 8.

The simulation results at a = 0.09 is shown in Figure 18. We
plot the shell averages of the dimensionless variables defined
in Equations (47)–(50). The analytical solutions derived by
Bertschinger (1985) are also depicted for comparison. In order
to test the convergence of the numerical solutions, we perform
simulations with zero, two, and four refinement levels, giving
1283, 5123, and 20483 effective resolutions, respectively. A good
agreement between the numerical and analytical solutions is

found. The simulation run with a higher maximum refinement
level indeed probes the solutions in a more central region,
where only two to four cells in the most central region are
incapable of following the rising density and pressure profiles
predicted by the analytical solutions. This is due to the second-
order TVD scheme that requires three-point interpolation and
has the tendency to smooth out the local extreme values. The
propagation and the jump conditions of the strong spherical
shock are accurately captured.

In order to test the property of spherical symmetry, we also
show the standard deviations from the shell-averaged values for
the simulation run with four refinement levels. No significant
deviations are observed in both the density and the pressure
profiles, whereas a relatively large deviation is found in the
velocity profile in the post-shock region where the infall velocity
abruptly drops to zero. It is consistent with the result given
by Teyssier (2002). Nevertheless, the shell-averaged velocity
profile agrees well with the analytical solution even in the post-
shock region.

The result of domain refinement along the x-axis for the
simulation run with four refinement levels is also shown in
Figure 18. Note that neither the density gradient nor the
pressure gradient is adopted as the refinement criteria in this
test; therefore, the shock front is not necessarily refined to the
maximum level. At a = 0.09, only 0.01% of the region is
refined to the maximum level. Due to the self-similar property,
the volume of the overdense region increases as the shock
propagates outward, and hence the refined region increases as
well. However, still only 0.02% of the region is refined to the
maximum level at a = 0.3.

5. PERFORMANCE TESTS

The timing measurements described in Section 3 mainly focus
on the performances of the hydrodynamic and Poisson solvers.
Although there is no doubt that these two solvers are the most
time-consuming parts in GAMER, it is still not clear whether
other parts of the code will become the performance bottlenecks,
especially when the computation times of both solvers are
highly reduced by using GPUs. For example, the ghost-zone
preparation, the domain refinement, and the network bandwidth
may also affect the performance. Accordingly, in this section,
we perform detailed timing analyses for different parts of the
code as well as the overall performance.

The accuracy tests described in Section 4 are inadequate
for a persuasive timing analysis, since the profiles of these
solutions are too simple compared to realistic astrophysical
simulations. Therefore, to have a more comprehensive timing
analysis, we measure the performance in purely baryonic
cosmological simulations. The initial condition is constructed
by using CMBFAST (Seljak & Zaldarriaga 1996) on 2563 grids
in a ΛCDM universe at redshift z = 99. The cosmological
parameters are chosen to be Ωm = 0.3 and ΩΛ = 0.7, and
the size of the periodic comoving box is set to 100 h−1 Mpc.
In the following, we first describe the performance of GAMER
in a single-GPU system, and then follow it with the multi-GPU
performance.

5.1. Single-GPU Performance

To fit into the CPU memory of a single node, we set the
size of the root level equal to 1283. The initial condition is
obtained by downgrading the 2563 initial condition in order
to have consistent results among runs with different spatial
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Figure 18. Spherical collapse test. The top left, top right, bottom left, and bottom right panels show the shell-averaged dimensionless velocity, mass density, pressure,
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(A color version of this figure is available in the online journal.)

resolutions. Five refinement levels are adopted to give 40963

effective resolution. The corresponding spatial resolution is
therefore 24 h−1 Kpc. We rebuild the refinement map every
four steps, which provides the balance between performance and
accuracy. Accordingly, the flag buffer size is set to Nb = 4, so as
to prevent the information in the flagged cells from propagating
out of the refined regions before the refinement map is rebuilt.

The refinement criterion is similar to the one adopted in
the spherical collapse test described in Section 4.6. A cell is
labeled as refinable if its local density exceeds a level-dependent
threshold: ρ� � 8�+1ρb. This kind of “quasi-Lagrangian”
refinement strategy is often adopted in the AMR cosmological
simulations. It roughly fixes the total mass within each cell
at different refinement levels. Moreover, when the dark matter
particles are included and the standard PM method is used to
calculate the gravitational potential, this refinement strategy
naturally provides an adaptive soften length according to the
level-dependent grid size, thereby minimizing the effect of two-
body relaxation.

Figure 19 shows the speed-up ratio of one GPU over one CPU
as a function of the redshift. We measure the performances at
six different redshifts: z = 9.45, 4.12, 1.96, 0.88, 0.21, 0. To
provide more robust results, we perform the timing analyses in
the GraCCA system, NCHC, and CQSE, respectively. In each
system, we further compare the performances with and without
activating the concurrent execution between CPU and GPU de-
scribed in Section 3.5. It shows that, as the concurrent execution
is enabled, an order of magnitude performance improvements
are demonstrated in all three different hardware implementa-
tions. The maximum sustained speed-up ratios are 12.19, 10.78,
and 10.07 in the GraCCA system, NCHC, and CQSE, respec-

tively, and the speed-up ratios are approximately constant when
z � 4.12. It demonstrates the significant performance improve-
ment by using GPU.

We note that, at z = 9.45, the performance speed-up
ratios drop about 40% compared to the maximum sustained
performance in each GPU system. This is not surprising since
at that time massive halos are not yet formed, and thus the
total number of patches at refined levels is relatively small.
Consequently, the calculation time of the Poisson solver is
dominated by the root-level FFT, which is computed by CPU.
Nevertheless, factors of 8.05, 6.73, and 6.95 performance speed-
ups are still achieved in the three systems at z = 9.45.

In Figure 19, we see considerable performance deterioration
as the concurrent execution is disabled. The maximum sustained
speed-up ratios drop to 7.83, 6.69, and 7.43 in the GraCCA
system, NCHC, and CQSE, respectively. It reveals the large
computational overheads associated with the preparation steps
and the closing steps performed by CPU, for both the hydro-
dynamic and Poisson solvers. This result is reasonable since in
the cosmological simulation, structures form hierarchically, and
the number of grids used to resolve a substructure at a given
refinement level is generally on the order of 103. In GAMER, it
approximately corresponds to the size of one patch group. Con-
sequently, nearly all patch groups require spatial interpolations
to calculate the ghost-zone values, and it results in a computa-
tion time comparable to or even longer than the execution time
of each GPU solver. Therefore, it is necessary to simultaneously
utilize both the computational power of CPU and GPU, thereby
hiding the computation times of the preparation steps and the
closing steps by the executions of the GPU solvers. For the cases
where the CPU workload is higher, the execution time in GPU
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Figure 19. Performance speed-up ratios as a function of redshift in different hardware implementations. We measure the performance in purely baryonic cosmological
simulations. The speed-up ratios are measured by comparing the runs with single-GPU acceleration to the runs using singe CPU only. The abbreviations “async” and
“sync” represent the timing results with and without the concurrent execution between CPU and GPU, respectively. The sizes of the root levels are set to 1283 and the
maximum refinement levels are set to 5 in all tests.

Table 3
Detailed Timing Analysis of the Performance of GAMER

Platform Hydro.a Poissonb Acc.c Time Step Hydro. Buffer d Poisson Buffere Refinement Total
(s) (s) (s) (s) (s) (s) (s) (s)

GraCCA (GPU-async) 11.14 12.82 1.95 0.01 0.25 0.34 0.36 26.88
GraCCA (GPU-sync) 18.54 20.07 2.58 0.01 0.26 0.34 0.40 42.21
GraCCA (CPU) 131.51 191.01 2.81 2.26 0.26 0.34 0.40 328.60
NCHC (GPU-async) 6.58 6.51 1.35 0.00 0.16 0.28 0.27 15.20
NCHC (GPU-sync) 10.49 10.86 2.08 0.00 0.15 0.27 0.28 24.17
NCHC (CPU) 58.95 101.16 1.25 0.99 0.16 0.27 0.27 163.09
CQSE (GPU-async) 10.70 9.74 1.86 0.00 0.24 0.30 0.35 23.19
CQSE (GPU-sync) 15.59 14.51 2.42 0.00 0.24 0.29 0.36 33.41
CQSE (CPU) 96.88 131.49 1.52 1.34 0.24 0.29 0.34 232.10

Notes. Timing results shown here are measured in purely baryonic cosmological simulations at z = 0.88. The abbreviations “async”
and “sync” represent the runs with and without the concurrent execution between CPU and GPU, respectively. The computation times
of the refinement operation have been divided by 4, since in these runs we reconstruct the refinement map every 4 steps. Also note that
four sibling relaxation steps are applied in the end of the Poisson solver in these timing tests.
a Hydrodynamic solver (including the preparation and closing steps).
b Poisson solver (including the preparation and closing steps).
c Gravitational acceleration.
d Preparing the buffer patches for the hydrodynamic solver.
e Preparing the buffer patches for the Poisson solver.

can also be hidden behind the CPU computation. The consider-
able performance improvements as the concurrent execution is
activated also verify the good concurrent efficiencies as shown
in Figures 10 and 11.

Table 3 shows the timing results of different parts in GAMER
at z = 0.88. We perform the timing measurements in three
different hardware implementations, each of which includes the
results using GPU with and without the concurrent execution,
and the results using CPU only. First we note that, even when
the concurrent execution is enabled, the speed-up ratios of both
the hydrodynamic and Poisson solvers are still lower than the

results given in Tables 1 and 2. It implies that the computational
overheads associated with the preparation step and the closing
step of both solvers dominate the computation time. In other
words, these computational overheads are the performance
bottlenecks in the current version of GAMER, and therefore any
further optimization of the GPU solvers alone will not improve
the overall performance at all. However, we must emphasize
that the three-dimensional relaxing TVD scheme described in
Section 2.2 has a relatively low arithmetic intensity, compared
to other high-order shock-capturing schemes, e.g., the third-
order PPM method. Therefore, it is promising to further improve
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(A color version of this figure is available in the online journal.)

both accuracy and performance by implementing an alternative
higher-order hydrodynamic scheme in the code.

In Table 3, we see that the overall performance is still
dominated by the two solvers. The computation times of the
gravitational acceleration, the data copies for the buffer patches,
and the domain refinement are about 8%, 2%, and 1% of the
total simulation time. The calculation time of the CFL condition
is negligible. Note that in the CQSE and NCHC systems,
implementing the evaluation of the gravitational acceleration
into GPU turns out to provide lower performances than using
CPU. It reveals the trickiness of using GPU, where poor
performance may be obtained if the arithmetic intensity of the
GPU kernel is not high enough and hence the performance
degrades due to the additional communication time in the PCI
Express bus. Also note that here the preparation of the buffer-
patch data do not involve any network communication. Finally,
since in these tests we reconstruct the domain refinement in
every four steps, the timing results of the refinement operations
recorded here are the average values in order to compare with
the computation times of other operations.

Figure 20 shows the refinement ratios at different redshifts
as a function of the refinement level. The refinement ratio is
defined as the ratio of the volume of space refined to a given
level to the volume of the entire simulation box. At z = 9.45,
only 10.86% and 0.01% of the simulation box are refined to the
level one and two, respectively. It verifies that the performance
drop at z = 9.45 shown in Figure 19 is due to the lack
of patches at refined levels. In comparison, when there are a
sufficient number of patches at higher levels after z � 4.12, the
performance approaches the maximum sustained speed-up ratio.
Moreover, note that the total computation time of the simulation
is dominated by the evolution at lower redshifts, when lots of
substructures formed and, correspondingly, the total number
of patches at refined levels is high enough for exploiting the

computational power of GPU. The timing experiment shows
that the accumulated computation time before z > 4.12 is
less than 0.03% of the total computation time over 0 � z �
99. Therefore, the overall performance improvement during
the entire simulation does not suffer from the relatively low
performance at higher redshifts. Totally 2608 steps are required
to reach z = 0, and it took only 16 hr of wall-clock time by
using only one GPU and one CPU of the GraCCA system.

5.2. Multi-GPU Performance

Utilizing multiple GPUs across different nodes requires the
network communication. Since the computation time is highly
reduced by an order of magnitude as demonstrated in the
previous subsection, correspondingly, the communication time
becomes more critical. The data transfer time may easily become
the performance bottleneck if it is not properly optimized.
Therefore, in this section, we investigate the importance of
network communication in GAMER.

To test the multi-GPU performance, we perform purely bary-
onic cosmological simulations with the same initial condition
adopted in the single-GPU case, and measure the performance
using 1–32 GPUs (NGPU = 1–32) in the GraCCA system. In
order to have consistent results, the simulation parameters and
the refinement criterion for the multi-GPU tests are the same
as the ones adopted in the single-GPU test, except that the
sizes of the root levels are set to 1283 and 2563 for the runs with
NGPU = 1–8 and 16–32, respectively. The maximum refinement
levels are chosen to be �max = 5 in both cases, giving 40963 and
81923 effective resolutions. Accordingly, the highest comoving
spatial resolution is 12 h−1 Kpc. As an illustration, Figure 21
shows a two-dimensional snapshot of the simulation results at
z = 0, in which we plot the density distribution and the corre-
sponding refinement map. Also note that for NGPU = 1–16, we
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Figure 21. Two-dimensional slice of the gas density distribution in the logarithm
scale. The image is obtained in a purely baryonic cosmological simulation at
z = 0, and the image size is 18.75 × 18.75 h−1 Mpc in a (100 h−1 Mpc)3

simulation box. The refinement map is also shown for illustration, in which each
grid represents a single patch. In this snapshot, the densest region is refined to
� = 4, giving 40963 effective resolution.

(A color version of this figure is available in the online journal.)

use only one GPU per computing node, whereas for NGPU = 32
we use two GPUs per node in the GraCCA system. Therefore,
in all timing tests (except for the case NGPU = 1) the network
communications are involved.

Figure 22 shows the performance speed-up ratio versus
redshift for NGPU = 1–32. The ratios are measured by using the
same number of CPUs and GPUs in each test. For example, the
speed-up ratio for NGPU = 16 is measured by comparing to the

timing result using 16 CPUs. The concurrent execution between
CPU and GPU is activated in all runs. As expected, for the test
runs with the same size of the root level and the same maximum
refinement level (and hence the computational workloads are the
same), the speed-up factors slightly decrease with the number
of GPUs. It is reasonable since the network communication
accounts for a larger percentage of total simulation time when
using GPUs. Nevertheless, the performance enhancement still
exceeds 10.47 after z � 4.12 when using 16 GPUs. This result
is encouraging since it shows that the total simulation time is
still dominated by the computation even with the use of GPUs.
Moreover, note that in the GraCCA system different nodes
are connected by Gigabit Ethernet, which has a relatively low
bandwidth compared to other high-bandwidth interconnections,
for example, the InfiniBand and Myrinet. Timing analyses show
that the network communication accounts for 8%–11% of the
total simulation time for NGPU = 16.

We also note that a relatively low speed-up ratio is observed
in the case NGPU = 32, in which two GPUs in the same
computing node are both activated. This performance drop
is mainly caused by the decrease of data transfer bandwidth
between one CPU and one GPU. In the GraCCA system,
although there are two individual PCI Express buses dedicated
for the two GPUs, the total bandwidth actually measured is only
marginally above the bandwidth observed in the single-GPU
case (Schive et al. 2008). In addition, the GeForce 8800 GTX
GPUs installed in the GraCCA system do not support the
capability of asynchronous memory copies, and hence the data
transfer time in the PCI Express bus cannot be overlapped with
the GPU kernel executions. However, 8.14–9.24 speed-up ratios
are still demonstrated during 0 � z � 4.12 in the NGPU = 32
case. We note that the difficulty with communications via
PCI Express bus can potentially be lifted by using the latest
motherboard, which supports dual PCI Express 2.0 ×16.
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Figure 22. Performance speed-up ratios as a function of redshift using 1–32 GPU(s) in the GraCCA system. We measure the performance in purely baryonic
cosmological simulations. The speed-up ratios are measured by comparing the runs with GPU(s) acceleration to the runs using CPU(s) only. The concurrent execution
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6. CONCLUSIONS AND FUTURE WORKS

We have presented a novel GPU-accelerated AMR code
named GAMER, which is dedicated to astrophysical simula-
tions. The AMR implementation is based on constructing a hi-
erarchy of mesh patches with an oct-tree data structure, in which
each patch is restricted to contain a fixed number of cells. The
hydrodynamic solver is based on a three-dimensional relaxing
TVD scheme, which is second-order accurate in both time and
space. The gravitational potential is solved by using a multi-
level Poisson solver, and the SOR algorithm is adopted to solve
the Poisson equation for each mesh patch. The potential error
caused by the coarse–fine boundaries is diminished by elimi-
nating the effect of pseudomass sheets, which are introduced
from the discontinuity of resolution across different refinement
levels. The computational performance of GAMER has been
highly improved by an order of magnitude by utilizing the GPU
computing power in several parts of the code.

GAMER is a parallel code that can be run in a GPU cluster
system. The parallelization strategy is based on a rectangular
domain decomposition and the concept of using the buffer
patches to enclose the computational sub-domain of each
CPU/GPU. This method ensures that different patches can be
calculated independently and in an arbitrary order, and therefore
multiple patches can be computed by GPUs simultaneously.
The amount of data transfer has been carefully minimized
to avoid the bottleneck of network communication, and a
hierarchical search algorithm has been adopted so that the
global search for patches adjacent to the boundaries of sub-
domain is only necessary at the root level. Currently, a more
advanced domain decomposition method using the space-filling
curve is being implemented in order to further improve the load
balance.

Two GPU kernels have been developed for speeding up
the hydrodynamic and Poisson solvers, respectively. For the
GPU hydrodynamic solver, the data of each patch group
are decomposed into a set of data columns, each of which
can be stored in the low-latency shared memory and can be
calculated efficiently and simultaneously by GPU. For the GPU
Poisson solver, we have developed an elaborate data-exchange
algorithm, in which the data of odd and even cells are stored
in either the shared memory or the per-thread registers. No
potential data transfer between the global memory and the
shared memory is required during the SOR iterations, and hence
the computational performance is highly improved. In both GPU
solvers, in order to reduce the data transfer time in the PCI
Express bus, we have utilized the capability of asynchronous
memory copies, by which the data transfer time is overlapped
with the GPU kernel executions. To reduce the computational
overhead associated with the preparation of the ghost-zone data,
the eight nearby patches are always grouped into a patch group
before sending into GPU. Furthermore, we have exploited the
concurrent execution between CPU and GPU, by which the
computation times in CPU and GPU can be overlapped with
each other.

We have measured the performances of individual GPU
solvers in different hardware implementations, including the
GraCCA system and the GPU-equipped nodes in CQSE and
NCHC. In each performance test, we have compared the perfor-
mance using GPU acceleration as opposed to the performance
using CPU only. Maximum speed-up factors of 15.3 and 24.1
are demonstrated for the hydrodynamic and Poisson solvers,
respectively. We have also measured the efficiency of the con-
current execution between CPU and GPU, and the maximum

overheads are found to be less than 4.8% for the hydrodynamic
solver and 12.5% for the Poisson solver.

The accuracy of GAMER has been verified by performing
several standard test problems, including the shock tube test,
Sedov–Taylor blast wave test, and spherical collapse test. The
agreement with analytical solutions, the good shock-capturing
capability, and the convergence of numerical solutions have been
demonstrated. The aspherical scatter is found to be small when
solving spherically symmetric problems on the Cartesian grid.
We have also shown the significance of the potential correction
by comparing the potential solutions obtained by the adaptive-
mesh method to those one obtained by the high-resolution
uniform-mesh method.

We have measured the performance of the complete GAMER
code in purely baryonic cosmological simulations, in which
we have adopted effective resolutions 40963 and 81923 when
using 1–8 and 16–32 GPU(s), respectively. An order of mag-
nitude performance speed-ups have been observed when using
1–16 GPU(s), which demonstrates the remarkable performance
of the code. A relatively low speed-up factor (still exceeding 8)
has been observed when using 32 GPUs in the GraCCA system,
which is due to the insufficient bandwidth between CPU and
GPU when using two GPUs in the same node. This bottleneck
should, however, be able to get highly reduced by using the latest
motherboard supporting dual PCI Express 2.0 ×16 and by uti-
lizing the capability of asynchronous memory copies enabled
in the latest GPUs. In these tests, we have also demonstrated
the importance of exploiting the concurrent execution between
CPU and GPU, by which speed-up factors of 1.4–1.6 have been
measured when compared to the results without the CPU and
GPU overlap.

In the present implementation, the performance bottleneck
of GAMER lies in the computing time of the ghost-zone data
for each solver. It is because this calculation is performed
by CPU and also because the number of cells in the ghost
zone is comparable to that of the interior cells in each patch
group. Adopting a higher-order and more arithmetic-intensive
algorithm, for example, the third-order PPM scheme, can
almost certainly eliminate this bottleneck. Also note that, in
the current implementation of GAMER, the computation time
of the Poisson solver is approximately equal to that of the
hydrodynamic solver. This is due to the fact that we apply 4–8
SOR operations in one step in order to improve the accuracy
of gravitational potential. Clearly, investigating a more precise
Poisson solver with higher arithmetic intensity can lead to a
further performance improvement.

Another approach to further improve performance is to
implement more elements of the code in GPU, for example,
the interpolation and the oct-tree data structure. However, it
will certainly lead to substantial inflexibility of the code. The
current GPU implementation in GAMER aims at balancing
the performance and the flexibility. The GPU kernels are only
applied to individual solvers, and the main AMR data structure
is still controlled by CPU. Therefore, by simply modifying the
GPU kernels, GAMER can be applied to different applications
and include various physics straightforwardly.

We note that the GAMER code can serve as an extremely
high-performance and general-purpose tool for astrophysical
simulations. Although at present only hydrodynamics and self-
gravity are included, we believe that we have developed the
framework for exploiting the enormous GPU computing power
with an astrophysical AMR code. Future works in GAMER will
focus on including more physics for various simulations. For
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example, one of the most straightforward extensions is to include
the dark matter particles and calculate the corresponding density
by the standard CIC method. Another promising extension
is to include the magnetohydrodynamics, which has been
successfully implemented in the AMR framework in several
works (e.g., Ziegler 2005; Fromang et al. 2006; Collins et al.
2009). We can further include several physics in GAMER, for
example the gas cooling and the feedback mechanism, in order
to simulate the galaxy formation. Currently, GAMER has been
modified to address the detailed halo profile found in the large-
scale structure simulation with an extremely light dark matter
model (Woo & Chiueh 2009).
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