GAMER
(GPU-accelerated Adaptive-MEsh-Refinement)
&
Out-of-core Computation

H. Y. Schive (薛熙于)
Graduate Institute of Physics, National Taiwan University
Leung Center for Cosmology and Particle Astrophysics (LeCosPA)

T. Chiueh (闕志鴻), Y. C. Tsai (蔡御之)
Graduate Institute of Physics, National Taiwan University
Leung Center for Cosmology and Particle Astrophysics (LeCosPA)

IAUS 270 (06/03/2010)
Outline

- AMR
- AMR + GPUs
 - Performance (Hydrodynamics / Poisson / Overall)
 - Optimization
- AMR + GPUs + OOC (out-of-core)
- Conclusion and Future Work
AMR Scheme in GAMER

- Refinement unit: patch (containing a fixed number of cells, e.g., 8^3), similar to FLASH
- Hierarchical oct-tree data-structure
- Individual time-step
CPU-GPU Collaboration

- Two main tasks in AMR:

1. **Patch construction**: decision making, interpolation, complex data-structure, data assignment …
 ~ complicated, but consume less time
 - CPUs

2. **3-D hydrodynamic + Poisson solvers**:
 ~ straightforward, but time-consuming
 - GPUs
 - feed with hundreds of patches simultaneously
Multi-GPU Example
Performance: Hydrodynamic Solver

- Second-order relaxing TVD scheme
- Data transfer between CPU and GPU is overlapped by GPU computation
- Currently the ghost-zone interpolation is performed by CPU
- One T10 GPU vs. one Xeon E5520 CPU core
 - Speed-up ratio: 23.9x
Performance: Poisson Solver

- **Root level**: fast Fourier transform (FFT)
 - use **CPUs** only
- **Refinement levels**: successive overrelaxation method (SOR)
 - use **GPUs**
- **Coarse-grid interpolation** is performed by GPU
- **One T10 GPU vs. one Xeon E5520 CPU core**
 - Speed-up ratio: **40.9x**

![Graph showing speed-up ratio vs. number of patch groups per stream (N_y)]
Performance: Overall

- **GPU vs. CPU**
 - # of GPUs: 1 ~ 16
 - One GPU in each computing node

- Purely baryonic cosmological simulation
 - Root level: 256³
 - 5 refinement levels
 - Effective resolution: 8192³

- **Speed-up ratio**
 - 10.23x (1 GPU vs. 1 CPU core)
 - 10.05x (16 GPUs vs. 16 cores)

- z=100 to z=0, 16 GPUs
 - 8 hours (725 root-level steps)
Optimization:

Concurrent Execution between CPU and GPU

- Speed-up ratio: $10.23x \rightarrow 16.25x$
Future Optimizations

- To be honest, # of CPU cores / GPUs per node is usually 2~4

- Issue: Fluid solver: CPU time >> GPU time
 1. Perform the ghost-zone interpolation in GPU
 2. Relaxing TVD scheme is not very computation-intensive
 - Adopt a more accurate scheme, e.g., PPM, approximate/exact Riemann solver ...

- SOR method is too slow ...
 - Multi-grid, FFT, super-stepping ...

- Not load-balance → space-filling curve

- 128 GPUs benchmark tests are on the way!
AMR + GPUs + Out-of-core
Motivation

- **Performance**: GPU / CPU → 10x
 - 1 small simulation
 - 10 small simulations
 - 1 larger simulation ?

- **Memory**: Hard disk / Ram → 10x ~ 100x
 - Limited memory
 - 1 ~ 8 TB memory per node ?
Issue I: Hard Disk Bandwidth

- Single HD: ~100 MB/s → Multiple HDs ??
- Prototype: 8 HDs → 750 MB/s
 - Distribute data by direct I/O, not RAID
 - More detailed control of data storage

Spartan
Issue II: Out-of-core + AMR

- Just apply the same domain decomposition as the case using MPI only

BLUE number: MPI rank
- In different nodes
- Updated in parallel
- Data transfer: network
- MPI_Send, MPI_Recv

RED number: OOC rank
- In the same node
- Updated sequentially
- Data transfer: hard disk
- OOC_Send, OOC_Recv
Performance I: Uniform Mesh

- Resolution: \(2048^3\) grids
- Total memory requirement: \(~ 400\) GB
 - 50x larger than the ram in our prototype system
- Decomposed into \(8^3\) OOC ranks in a single node
- Each OOC rank works on \(256^3\) grids
Performance II: AMR

- Root level: 512^3
- 5 refinement levels
- Effective resolution: $16,384^3$
- Total memory requirement: ~100 GB
 - 12.5x larger than the ram in our prototype system
- Decomposed into 4^3 OOC ranks in a single node
Future Work

- More physics
 - I want to write my own MHD code
 - Dark matter particles
 - Cooling, feed-back, radiation transfer …

- Out-of-core computation
 - Optimization
 - Multi-node test

- OpenMP + MPI + GPU
 - Fully exploit the computing power of a single node

- OpenCL

- Open source
Conclusion

- **GAMER**: GPU-accelerated Adaptive-MEsh-Refinement Code
 - GPU hydrodynamic and Poisson solvers
 - Parallelized (multi CPUs + multi GPUs)
 - A framework of AMR + GPUs → general-purpose, flexible
 - 16x faster than CPUs (N GPUs vs. N CPU cores in NAOC)

- **Optimizations**
 - Concurrency of memory copy and kernel execution
 - Concurrency of CPU work and GPU work

- **Out-of-core**
 - Increase the simulation size: 10x ~ 100x
 - Small-scale GPU cluster vs. large-scale CPU cluster