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Abstract

We present in this paper a thorough investigation of three-dimensional flow in a cubical cavity, subject to
a constant velocity lid on its roof. In this steady-state analysis, we adopt the mixed formulation on tri-
quadratic elements to preserve mass conservation. To resolve difficulties in the asymmetric and indefinite
large-size matrix equations, we apply the BiCGSTAB solution solver. To achieve stability, weighting
functions are designed in favor of variables on the upstream side. To achieve accuracy, the weighting
functions are properly chosen so that false diffusion errors can be largely suppressed by the equipped
streamline operator. Our aim is to gain some physical insight into the vortical flow using a theoretically
rigorous topological theory. To broaden our understanding of the vortex dynamics in the cavity, we also
study in detail the longitudinal spiralling motion in the flow interior. � 2002 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

Among the few selected geometries that have been studied in detail is cavity flow driven by a
roof lid. Despite its simple geometry, flow in this cavity exhibits features of more complex geo-
metry flows. This problem, thus, is a good test for experimental flow research [1–8]. Another
reason for the proliferation of research on this flow is that the problem under investigation is
intended to test the accuracy of numerical methods so far developed for the prediction of in-
compressible Navier–Stokes fluid flows. Thus, extensive numerical studies on this problem have
been carried out.
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Experimental studies on the lid-driven cavity problem started in the early 1980s. In these
studies, Taylor–G€oortler-like (TGL) vortices were experimentally observed by Koseff et al. [3].
Koseff and Street [4] observed corner vortices in the vicinity of the two vertical end walls and local
TGL vortices over the span of the cavity with spanwise aspect ratio (SAR) values of
ð� L:B ¼ 1; 2; 3Þ. In the case of Re � 3000, eight pairs of TGL vortices have been observed. On
increasing Reynolds number Re up to 6000, another three pairs of TGL vortices become visible.
For Reynolds numbers as high as 6000–8000, unsteady flow can no longer be sustained; thus, it
evolves into turbulence. For a comprehensive literature review, see the research work of Street and
his colleagues [3–6,9–13].

Numerical investigation into this problem dates back to the pioneer work of Burggraf [14].
While some fundamental flow phenomena have been revealed through two-dimensional solutions,
many of the subtleties of third dimensionality are missing. The recent progress in numerical
analysis and computer hardware has made it possible to analyze unsteady flow problems by
solving their corresponding Navier–Stokes equations with a large number of grid points within a
three-dimensional domain. The interested reader can refer to Ref. [15] who recently provided an
excellent review of this subject. In 1985, TGL vortices were first numerically confirmed by Freitas
et al. [10]. Six years later, the GAMM-committee sponsored a workshop dedicated to numerical
simulation of a lid-driven cavity flow at Re ¼ 3200 for SAR ¼ 3:1 [16] with the aim of ascertaining
the number of TGL vortex pairs appearing in the transverse direction. Comparisons were also
made among the participants, and it was surprising to find that the conclusions drawn were quite
different among the contributors. They differed in their opinions not only on the flow symmetry,
but also on the number of TGL vortex pairs. In this light, we felt that much work remains to be
done, thus prompting our study of the lid-driven cavity problem over the last five years.

Numerical exploration into flow instability caused by longitudinal vortices has been the subject
of our previous efforts [17–21]. These studies have helped explain why spiralling vortices inside the
upstream secondary eddy tend to destabilize the flow by means of laminar instabilities. After years
of exploration into this problem, there are very few, if any, theoretical investigations of vortical
flow structure in the cavity. The present work is a continuation of our previous research endeavors
aimed at presenting a clear picture of the vortices by using a theoretically rigorous topology
theory [22–24]. It is hoped that this topological description of vorticity can provide insight into
longitudinal vortical flow.

Investigation into incompressible viscous flow problems can be conducted using pressure-based
methods or mixed formulations [25]. The difficult task in the pressure-based approach is to im-
plement proper pressure boundary conditions. Thus, we will confine ourselves to the mixed for-
mulation, which solves the continuity equation directly rather than solving the Poisson equation
for the pressure in order to eliminate ambiguity in the implementation of proper boundary
conditions for the pressure [25]. In the mixed formulation, difficulties also arise as to the choice of
finite element spaces for working variables and the choice of iterative solvers for solving indefinite
and unsymmetric matrix equations. To solve the first problem, we consider an element which
retains the LBB (Ladyzhenskaya–Babu�sska–Brezzi) stability condition [26,27]. In the finite ele-
ment calculation of large-size matrix equations, one has no choice but to employ the parallelized
iterative solver to resolve difficulties in matrix indefiniteness and asymmetry [28].

The organization of the rest of this paper is as follows. In Section 2, we present the working
Navier–Stokes equations and the divergence-free constraint condition to preserve conservation of
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momenta and mass. In order to make these equations well posed, boundary conditions are pre-
scribed along the entire boundary. This is followed by a brief outline of the Petrov–Galerkin finite
element model. The BiCGSTAB iterative solution solver [29], which can effectively resolve diffi-
culties with indefinity and asymmetry, is also given. In Section 4, we describe the physical problem
under investigation and present results using the topological theory [22–24] to reveal the flow
structure. In Section 5, we make concluding remarks on the implications of the reported results.

2. Numerical model

Computational modeling of lid-driven cavity flow requires solving three-dimensional flow
equations. Under the incompressible and steady assumptions, the continuity and Navier–Stokes
equations in Cartesian coordinates are as follows:

oui
oxi

¼ 0; ð1Þ

o

oxm
ðumuiÞ ¼ � op

oxi
þ 1

Re
o2ui

oxm oxm
: ð2Þ

The above elliptic differential system for the velocity field u and pressure p is subject to the Di-
richlet type boundary condition given by u ¼ g, whereZ

C
n � gdC ¼ 0: ð3Þ

The rationale behind choosing the primitive-variable setting is that closure boundary condi-
tions are clearly defined [30]. More importantly, these closure conditions are relatively easy to
implement for the confined flow simulation. For purposes of generality, the primitive-variable
differential system has been further normalized. In this study, all lengths have been scaled by the
cavity height lref , the velocity components uref by the lid velocity applied on the cavity roof. The
Reynolds number is, thus, defined as Re ¼ ureflref=m, where m is known as the kinematic viscosity of
the fluid flow. The assumption made in this study is that the flow is laminar; turbulence modeling
is left for future investigation.

Solutions to Eqs. (1) and (2) are obtained in the weak sense based on the following weighted
residuals statement: Given admissive functions w 2 H1

0ðXÞ 
H1
0ðXÞ and q 2 L2

0ðXÞ, primitive
variables defined in a simply connected domain X are subject to the essential-type boundary
condition u ¼ g on oX � C, and we seek u 2 H1

0ðXÞ and p 2 L2
0ðXÞ fromZ

X
ðu � rÞu � wdX þ 1

Re

Z
X
ru : rwdX �

Z
X
pr � wdX

¼
Z

C=Cn

rw � ndC þ
Z

C=Cc

s � w
 ndC; ð4Þ

Z
X
ðr � uÞqdX ¼ 0: ð5Þ
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In Eq. (4), C=Cn;r denotes the complement of Cn;r in C ¼ oX. By definition, / 2 C=Ci ði ¼ n; rÞ
implies that / 2 C but that / 62 Ci. We denote n as the unit outward normal vector to C. In
Eq. (4), r ¼ �p þ ð1=ReÞn � ru � n and s ¼ ð1=ReÞn � ru
 n.

Basis spaces chosen for storing primitive variables are critical to success with the mixed finite
element simulation of incompressible fluid flow equations. The LBB (or inf–sup) condition is the
guiding principle in choosing basis spaces for primitive variables [26,27]. The element considered
here is schematically shown in Fig. 1 and has been shown to accommodate the inf–sup div-sta-
bility condition. This chosen element involves tri-quadratic polynomials, Ni ði ¼ 1–27Þ, for the
velocities and tri-linear polynomials, Mi ði ¼ 1–8Þ, for the pressure.

Prediction of high Reynolds number flows requires careful treatment of advective terms. En-
hancement of stability can be accomplished through the addition of a biased polynomial to the
shape function [31]. As a result, information at the upwind side is favorably considered. Upwind
schemes are, however, prone to numerical contamination due to the introduction of false diffusion
errors [32], which are typical of multi-dimensional analyses. To avoid this type of prediction error
without sacrificing stability, we have applied our previously developed streamline operator on
quadratic elements so that the stabilizing terms are mainly added along the primary flow direction
to improve the discrete stability [28].

In the mixed finite element context, we are usually faced with very large-size matrix equations.
Employment of Gaussian-elimination-like direct solvers can consume a great deal of computer
time, and the storage requirement can greatly exceed the capacity of today’s computers. For this
reason, iterative solvers need to be used to circumvent this problem. In this study, we apply the
BiCGSTAB iterative solver [29]. This solver was developed within the Lanczos framework to
solve unsymmetric matrix equations without sacrificing irregular convergence. The choice of
BiCGSTAB to solve the presently encountered unsymmetric and indefinite matrix equations is

Fig. 1. The variable layout in the tri-quadratic finite element.
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owing to its accommodation of local minimization of residuals through GMRES (1). Another
advantage of applying BiCGSTAB is that mathematical manipulation of the transpose matrix is
avoided. Nevertheless, it is important to prevent pivoting breakdown [33] and Lanczos break-
down because the BiCGSTAB method still inherits the essence of BiCG [34]. For computational
efficiency, we have integrated the element-by-element capability into the BiCGSTAB solver. The
reader is referred to Ref. [35] for additional details about the EBE–BiCGSTAB solution algorithm
applied here.

3. Problem description and validation

The problem under investigation is schematically shown in Fig. 2. The cavity has a depth-
to-width aspect ratio of 1:1 and a span-to-width aspect ratio of 1:1. Problems with other length
ratios and Reynolds numbers have been studied elsewhere. The reader can refer to our previous
publications [17–21]. For an intensive discussion of the flow details, we discuss results for
Re ¼ 400. This Reynolds number is not high in the sense that TGL vortices are not seen in the
cavity, thus permitting steady-state flow analysis. The present analysis was conducted on the
whole cavity without assuming flow symmetry. Pitchfork bifurcation, if any exists, then can be
detected. To resolve the flow details, grid points shown in Fig. 2 are clustered in regions imme-
diately adjacent to the solid wall as well as in the vicinity of the cavity roof. This implies that the
cavity has been non-uniformly discretized, resulting in a mesh having a resolution of 413 and 513

nodes in the x, y, z directions, respectively.

Fig. 2. Grid layout and geometric description (ABCD: bottom plane; EFGH: upper lid plane; EABF and HDCG:

vertical end walls; EADH: upstream side wall; FBCG: downstream side wall).
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As a means of checking the integrity of the three-dimensional Petrov–Galerkin finite element
code used to investigate incompressible flow equations, we validate the code first for the problem
having benchmark test data. Analysis was carried out in a cubical cavity of unit length for the case
with Re ¼ 400. The calculation results show the good agreement with the data of Babu and
Korpela [36] and Kato et al. [37] shown in Fig. 3, which plots velocity profiles along the vertical
and horizontal centerlines on the mid-plane of the cavity. Since grid-independent solutions are
revealed, discussion of results is based on the solutions obtained at 413 nodes.

4. Results and discussion

4.1. Flow topology on the solid surface

The first step in exploring vortical details in a cavity is to extract physically meaningful data
from the enormous amount of the three-dimensional data. In this study, topological theory was
chosen so as to obtain a better understanding of three-dimensional features of the vortical flow in

Fig. 3. Comparison of u and w velocity profiles at the plane of symmetry y ¼ 0:5.
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the lid-driven cavity. Among the methods which enable exploration of kinematics of three-
dimensional fluid flows, one can conduct a topological study of limiting streamlines (or wall
streamlines) [22] or skin-friction lines [24]. In addition to these vector quantities, a graphical vi-
sualization of a scalar quantity, such as the density of helicity or its normalized value, can be used
to achieve this goal [23]. We consider limiting streamlines in the topological study of the flow
kinematics. Limiting streamlines are, by definition, streamlines immediately above the wall sur-
face. The projection of the three-dimensional limiting streamlines onto a no-slip wall is compu-
tationally analogous to experimental surface flow visualization.

Fig. 4 plots a three-dimensional view of limiting streamlines on five solid surfaces. It is re-
markable that the kinematic aspect of these limiting streamlines are featured by some points that
are distinct in nature. Using the terminology of Legendre [22], they are called either singular or
critical points. In light of the distinct nature of these critical points, attention should be paid to
them to gain a better understanding of kinematically possible cavity flow driven by a roof lid. For
descriptive purposes, the wall plane, schematically shown in Fig. 5, is assumed to be a no-slip
plane z ¼ 0. By definition, streamlines are integral representations of the curves dx=dt ¼ u,
where dx is the direction of the streamline and u is the instantaneous velocity vector. By

Fig. 4. Limiting streamlines plotted on five solid walls of the cavity.
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linearizing equation dx=dt ¼ u around an arbitrary point x0, we can have dx=dt ¼ ðA x þ bÞz
in the limiting case of z ! 0. Here, b is a constant vector and A ¼ ou=ox½ �x¼x

0
. By definition, the

magnitude of u is zero; therefore, its direction is indeterminate. This enables us to determine the

critical point as xc ¼ �A�1 b.
Flows behaviors immediately adjacent to the so-called critical point are characterized by the

eigenvectors and eigenvalues of the Jacobian matrix jou=oxj. Singular points can be classified as
nodal (N) and saddle (S) points. Nodal points can be further divided into nodes and foci (or spiral
nodes). A real eigenvector with a negative eigenvalue points towards a critical point. In contrast,
an eigenvector in association with a positive eigenvalue is repelled from the critical point. If
complex eigenvectors are computed, limiting streamlines either spiral towards or are repelled
spirally from the critical point, depending on the signs of the two real parts of eigenvalues k1 (real)
and k2 � ik3 (conjugate complex).

According to the eigenvalues of ou=ox½ �, we can determine not only the singular points, but
also their classification. To give an impression of the surface-flow pattern, we provide in Fig. 6 a
sketch of the critical points. Also shown in this figure is the classification of these points. As a
means of checking whether all the critical points determined by the above eigenvalue analysis of
ou=ox½ � are kinematically possible, we follow the topological rule of Davey [38] and Lighthill
[24]. Summing the critical points reveals that

P
S ¼ 10 and

P
N ¼ 12 on the cavity surfaces. This

confirms the validity of the present three-dimensional calculation since the computed numbers of
the nodes N and saddles S satisfyX

N ¼
X

S þ 2: ð6Þ

All the surface topological points are tabulated in the Table 1 for the reader’s reference.
An examination of the limiting streamlines shown in Fig. 4 and the critical points shown in

Fig. 6 leads to the following observations. At a critical point, all of the limiting streamlines are
directed towards or away from the node. At a node of separation, say point (1.000000, 0.063216,
0.434984) (point #4 shown in Figs. 6 and 7), all of the nearby limiting streamlines are directed
towards the node. If the limiting streamlines spiral into or out of a node, we call this node,
namely points � shown in Fig. 7, a focus. A focal point into which nearby limiting streamlines
are directed is called a spiral point of detachment or separation. In contrast, a critical point whose

Fig. 5. An arbitrary plane with its outward normal in the direction z.
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adjacent limiting streamlines are directed outwards is called a point of reattachment. Two
particular lines, called separatrices, are observed to pass through the saddle point. The direction
on either side of the singular point is inward on one particular line and outward on the other
line.

From the wall-streamlines shown in Fig. 4, it is clear that several families of limiting streamlines
are directed either towards or away from the computed singular points. To see how the lines of
separation and reattachment are determined, consider the plane shown in Fig. 5. According to
Zhang [39], at a point ‘‘o’’ located on an arbitrary line of separation the following three conditions
hold:

ou
oz

����
0

< 0;

o2u
oxoz

����
0

< 0;

o2w
oz2

����
0

> 0:

ð7Þ

By virtue of the above conditions and the no-slip condition, the velocities u; v;w are expanded
with respect to their values computed at ‘‘o’’. These velocities are expressed in terms of z as

Fig. 6. A plot of critical points of different classification on five solid walls of the cavity.

T.W.H. Sheu, S.F. Tsai / Computers & Fluids 31 (2002) 911–934 919



u ¼ 1

2

o2u
oz2

����
0

z
2 þ � � � þ o2u

oxoz

����
0

xz þ � � � ;

v ¼ ov
oz

����
0

z þ 1

2

o2v
oz2

����
0

z
2 þ � � � þ o2v

oxoz

����
0

xz þ o2v
oyoz

����
0

yz þ � � � ;

w ¼ ow
oz

����
0

z þ 1

2

o2w
oz2

����
0

z
2 þ � � � :

ð8Þ

The limiting streamline on the z ¼ 0 plane is given below in the case of z ! 0:

dx

dy
¼ u

v
� ðo2u=ox ozÞj0x

ðov=ozÞj0 þ ðo2v=ox ozÞj0x þ ðo2v=oy ozÞj0y
: ð9Þ

Based on the above equation defining the line of separation, we determined them on the theo-
retical basis and plot them in Fig. 7 to give the reader a global view of flow separations near the
cavity wall.

A close examination on the lines of separation reveals that they have one feature in common.
Lines of separation are found to have origins in the saddle point and to terminate either at a spiral
node in the flow interior or at the half-node located on the intersection line of two adjacent walls.
These findings prompt us to give a theoretical demonstration of their existence. The reader is

Table 1

Spatial locations of singular points

Number Type Physical coordinate

1 Saddle (1.000000, 0.990002, 0.518093)

2 Saddle (1.000000, 0.009998, 0.518093)

3 Attracting-Node (1.000000, 0.936784, 0.434984)

4 Attracting-Node (1.000000, 0.063216, 0.434984)

5 Saddle (1.000000, 0.500000, 0.278292)

6 Repelling-Node (1.000000, 0.500000, 0.022669)

7 Saddle (0.985353, 1.000000, 0.506517)

8 Saddle (0.985353, 0.000000, 0.506517)

9 Repelling-Node (0.795412, 1.000000, 0.032967)

10 Repelling-Node (0.795412, 0.000000, 0.032967)

11 Repelling-Node (0.737776, 0.500000, 0.000000)

12 Saddle (0.328579, 0.983235, 0.000000)

13 Saddle (0.328579, 0.016765, 0.000000)

14 Saddle (0.316996, 1.000000, 0.026026)

15 Saddle (0.316996, 0.000000, 0.026026)

16 Attracting-Node (0.309044, 0.966091, 0.000000)

17 Attracting-Node (0.309044, 0.033909, 0.000000)

18 Saddle (0.088356, 0.500000, 0.000000)

19 Repelling-Node (0.053676, 1.000000, 0.051789)

20 Repelling-Node (0.053676, 0.000000, 0.051789)

21 Repelling-Node (0.019895, 0.500000, 0.000000)

22 Repelling-Node (0.000000, 0.500000, 0.144760)
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referred to the proof, given in Appendix A, following in the same vein as Zhang and Deng [40].
The line of separation with a saddle as a starting point was first recognized by Lighthill [24] and is
referred to as close-type separation.

Another remarkable finding from the plotted line of separation is that more than one singular
point is seen on this line. Clearly revealed by Fig. 7 is that on the lines of separation saddle and
node appear in an alternating fashion. The theoretical support for this observation was given by
Zhang and Deng [40]. In regions near the two intersecting planes, lines of separation have a
saddle-half node-saddle configuration. The half-node is exactly located at the line of two in-
tersecting planes. In the present study, a line of separation starting at a regular point was not

Fig. 7. Lines of separation and reattachment on the five solid walls of the cavity.

T.W.H. Sheu, S.F. Tsai / Computers & Fluids 31 (2002) 911–934 921



observed. Such a separation is featured by ov=oz 6¼ 0 at point ‘‘o’’ and is regarded as open-type
separation, as first explained by Wang [41].

Unlike lines of separation, wall-streamlines adjacent to the line of reattachment are repelled
from this line. For completeness, we also plot lines of reattachment on the five cavity walls in Fig.
7. This figure gives an impression of the typical surface topology of this particular reattachment
phenomenon. Specific to the lines of reattachment is that they emanate from a node and terminate
at a saddle. Near the two intersecting planes, lines of reattachment have two nodes, in between
which there is a half-saddle.

4.2. Vortical flow pattern in the vicinity of the vortical coreline

To get additional insight into vortical flow driven by a roof lid, we will now proceed to study
the flow on planes which are locally orthogonal to the vortical coreline. On the plane with a unit
normal vector n, schematically shown in Fig. 8, two coordinates t1 and t2 are perpendicular to
each other, and are all orthogonal to n. Streamlines on the t1–t2 plane are, by definition, ob-
tained as dt1=dt2 ¼ ut1=ut2 . Given this definition, we can now proceed to a more theoretical
discussion of the vortex established in the cubical cavity. Let us find first the vortical coreline,
which is regarded as the main signature of the vortical flow. The vortical coreline is the col-
lection of spatial locations, at which points ut1 and ut2 on a plane with an outward normal n have
values of zero. Sketching the vortical coreline, as shown in Fig. 9, is, thus, quite a delicate task.
Spatial coordinates that span the vortical coreline are tabulated in Table 2 for the reader’s
reference. Upon determining the vortical coreline, we computed the velocity component along
the vortical coreline and plot its distribution against y in Fig. 10(a). Along the vortical coreline,
we then calculated k � ðoun=onÞ and plotted them against y in Fig. 10(b). In one half of the
cavity, there is an increasing value of k, followed by a decreasing value of k in the direction
towards the plane of symmetry y ¼ 0:5. Results exhibiting the change of k ð� oun=onÞ inspire us

Fig. 8. An illustration of a plane, which is locally normal to the vortical coreline, and the longitudinal plane.
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Fig. 9. The computed vortical coreline in the driven cavity.

Table 2

Spatial coordinates of the computed vortical coreline

x y z

4.360812306E�01 3.419186687E�03 4.957499802E�01

4.509942532E�01 4.719771910E�03 6.042528152E�01

4.960576296E�01 7.333191577E�03 6.914645433E�01

5.712176561E�01 1.324093528E�02 7.482188940E�01

6.519504786E�01 3.793755919E�02 7.542282343E�01

6.548249125E�01 1.259413064E�01 7.125176191E�01

6.432981491E�01 2.331477702E�01 6.739135385E�01

6.349019408E�01 3.420910835E�01 6.322959065E�01

6.339827776E�01 4.615832269E�01 6.035609245E�01

6.342189908E�01 5.000000000E�01 6.010810137E�01

6.338430047E�01 5.471287370E�01 6.044864058E�01

6.348633170E�01 6.675446630E�01 6.356755495E�01

6.446325779E�01 7.730600238E�01 6.770549417E�01

6.547553539E�01 8.778058290E�01 7.137499452E�01

6.441428661E�01 9.673632979E�01 7.544165254E�01

5.580334067E�01 9.880096912E�01 7.329680920E�01

4.839097559E�01 9.937051535E�01 6.583787799E�01

4.517050385E�01 9.957927465E�01 5.616562366E�01

4.498236477E�01 9.968656301E�01 4.580300450E�01
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to examine if there exists any physically important flow feature that can give us insight into the
vortical dynamics.

Fig. 10. Velocity component and its derivative against y along the vortical coreline: (a) the distribution of velocity junj;
(b) the distribution of k ð� oun=onÞ against y, where n is defined in Fig. 8 or Fig. 9.
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We can consider an arbitrary plane, schematically shown in Fig. 8. This chosen plane is normal
to the vortical coreline at ‘‘o’’ ð0; 0; n0Þ. As alluded to earlier, ut1ð0; 0; n0Þ ¼ ut2ð0; 0; n0Þ ¼ 0. By
performing a Taylor series expansion of ut1 and ut2 with respect to ‘‘o’’, we obtain

ut1 ¼
out1
ot1

����
0

t1 þ
out1
ot2

t2 þ � � � ; ð10Þ

ut2 ¼
out2
ot1

����
0

t1 þ
out2
ot2

t2 þ � � � : ð11Þ

Subject to the conservation of mass constraint condition, it is required that the value of k at point
‘‘o’’ be

�k ¼ out1
ot1

����
0

þ out2
ot2

����
0

: ð12Þ

In other words, k represents the negative of the divergence of the velocity vector at the plane with
an outward normal vector n:

D ¼ �k: ð13Þ

A direct implication of Eq. (12) is that as D > 0 (or k < 0), the flow decelerates in the direction
towards the plane y ¼ 0:5. On the other hand, as D < 0 (or k > 0), the flow keeps accelerating
along the vortical coreline in the direction towards the plane of symmetry y ¼ 0:5.

We will now focus on the pressure distribution along the vortical coreline by examining
the momentum equation along this line. Given that ut1 j0 ¼ ut2 j0 ¼ 0 along the vortical core-
line passing through ‘‘o’’, the resulting equation of motion for particles on this line can be sim-
plified as

D ¼ 1

unj0
op
on

����
0

�
� l

o2un
ot21

�
þ o2un

ot22
þ o2un

on2

��
: ð14Þ

In the high Reynolds number case (or in the case of a negligibly small value of l), the sign of D
depends only on the values of unj0 and ðop=onÞj0. Simple algebraic manipulation leads to the
following conclusions: If unj0 > 0 and ðop=onÞj0 < 0, we have D < 0 (or k > 0) and can have, in
turn, an accelerating flow. Otherwise, if unj0 > 0 and ðop=onÞj0 > 0, then D > 0 (or k < 0) and we
have, in turn, a decelerating flow. Along the vortical coreline, we plot in Fig. 11 the computed
pressure against the coordinate n. As this figure reveals, the analysis based on the equation of
motion in n direction is justified.

In the light of the non-zero values of un along the vortical coreline, we were led to expect that
fluid particles near ‘‘o’’ would move spirally towards the plane of symmetry. To confirm this, the
flow was seeded with markers near two end walls. The result shown in Fig. 12 is a pair of tra-
jectories of massless particles moving under the influence of the spanwise pressure gradient. The
sketch of these spirally moving particles raises a question as to the stability of the vortex
motions proceeding to the plane of symmetry. To get a theoretical answer to this question, mo-
mentum equations are transformed in the coordinate system (t1; t2; n). We can then manipulate
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o=ot1ðt1 �momentum equationÞ þ o=ot2ðt2 �momentum equationÞ þ o=onðn�momentum equa-
tionÞ ¼ 0. Let us define the Jacobian of the vector ðut1 ; ut2Þ as

J � out1
ot1

����
0

out2
ot2

����
0

� out1
ot2

����
0

out2
ot1

����
0

: ð15Þ

We can then obtain the following equation for J after some simple algebraic manipulation:

J � D2 þ 1

2

o2p
ot21

�
þ o2p

ot22
þ o2p
on2

�
: ð16Þ

By virtue of Eqs. (14) and (16), the expression for 4J � D2 at the point ‘‘o’’ is derived as

4J � D2 ¼ 3

u2nj0
op
on

����
0

�
� l

o2un
ot21

�
þ o2un

ot22
þ o2un

on2

�����
0

�
þ 2

o2p
ot21

�
þ o2p

ot22
þ o2p

on2

�����
0

: ð17Þ

According to the theorem of ordinary differential equations [42], the necessary condition for a
spiralling motion to occur is

4J � D2 ¼ 0: ð18Þ
Based on Eq. (17) and the underlying theory leading to Eq. (18), the spiralling motion seen in Fig.
12 is, indeed, physically meaningful. Moreover, according to the Dulac theorem [42], streamlines
on the t1–t2 plane are of the close-type and are computationally visible in the present study.

Fig. 11. Pressure distribution against the direction n, as defined in Fig. 8 or Fig. 9, along the vortical coreline.
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It now remains to investigate the stability of vortical motion for particles moving spirally to-
wards the plane of symmetry. By substituting Eqs. (10) and (11) into dt1=dt2 ¼ ut1=ut2 , we can
obtain the streamlines on the t1–t2 plane:

dt2
dt1

¼ ðout2=ot1Þj0t1 þ ðout2=ot2Þj0t2
ðout1=ot1Þj0t1 þ ðout1=ot2Þj0t2

: ð19Þ

As the flow accelerates towards the plane y ¼ 0:5, k > 0 (or D < 0) can cause a spiralling motion
to occur in the vicinity of ‘‘o’’ on the vortical coreline. This motion is stable in the sense that the
particles spiral towards ‘‘o’’ (Fig. 13). In contrast to the previous case, as un begins decelerating,
k < 0 (or D > 0) destabilizes the spiralling flow motion in view of the particles, seeded immediately
adjacent the ‘‘o’’, which repel spirally away (Fig. 14).

4.3. Interior vortex stability and bifurcation

Examining Fig. 10, it is clear to see that k > 0 in the range of 0 6 y6 0.16733 and k < 0 in
between y ¼ 0:16733 and y ¼ 0:5. As a result, at the spatial point y ¼ 0:16733, k is zero along one
half of the vortical coreline. The particle which spirals towards the plane of symmetry evolves
from the stable vortex region to its unstable counterpart. This finding motivates us to take a closer
look at the streamlines on the t1–t2 planes, which are adjacent to the point where k ¼ 0 along the

Fig. 12. An illustration of spiralling particle motions about the vortical coreline.
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vortical coreline. We plot in Fig. 15 streamlines on three cutting planes. It is surprising to find
that streamlines on planes in between 0:167336 y6 0:3 exhibit a remarkable change in their
vortex orientation in response to the change of sign in k. Streamlines on the plane immediately
downstream of k ¼ 0 have two spiralling types. One moves spirally towards the vortical coreline,
and the other is repelled spirally away from ‘‘o’’. They have, however, one feature in common in
the sense that they both spiral in a clockwise direction. Owing to the inward-and-outward particle
motion, we would expect to find a ring, outside of which particles cannot spiral towards the
vortical coreline. We call this ring the limiting cycle. On the other hand, particles inside this ring
should not be able to spiral outwards. Fig. 15 shows that the inward spiralling flow decreases in
size as the flow proceeds toward the plane of symmetry. The implication is that the flow becomes
more destabilized as it proceeds toward the plane of symmetry. The limiting cycle schematic in
Fig. 15 is stable since k changes to a negative value from the original positive value. The theo-
retical proof of this phenomenon has been given by Zhang [43].

We can also apply the topology rule of Hunt et al. [44] to flows on the cross-flow plane to show
the validity of the computed solutions from the topological point of view. Take an arbitrary cross-
flow plane ðx ¼ 0:634Þ as an example; we can determine the critical points of different topological
types as shown in Fig. 16. Summing the nodes N, saddles S, half-nodes N 0, and half-saddles S0

reveals that N ¼ 4, S ¼ 1, N 0 ¼ 0, and S 0 ¼ 4. In the non-obstacle flow interior, these values satisfy
the topological rule at the cross-flow plane:

Fig. 13. Particle motions at two cross-flow planes (y ¼ 0:05 and 0.1) in the accelerating region.
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X
N þ 1

2

X
N 0 �

X
S � 1

2

X
S 0 ¼ 1: ð20Þ

Here, half-nodes and half-saddles are only seen at two intersecting planes.
This paper will conclude with an investigation of the flow patterns on planes which have

stagnation point at the intersection of the vortical coreline and the plane of symmetry. An
examination of the streamlines plotted in Fig. 17 reveals that the particles approach this par-
ticular singular point from each direction. The adjacent streamlines point towards this
saddle point, followed by streamlines repelled away from this point. We will attempt to pro-
vide a theoretical justification of the presence of a saddle point on the longitudinal plane.
For a point ‘‘o’’ on the vortical coreline, we have, by definition, ut1 ¼ 0 and out1=ot2 ¼ 0.
Given that un ¼ 0 at point ‘‘o’’, we can perform Taylor series expansion on ut1 and un as fol-
lows:

ut1 �
out1
ot1

����
0

t1 þ � � � ; ð21Þ

un �
oun
ot1

����
0

t1 þ
oun
on

j0nþ � � � ð22Þ

Fig. 14. Particle motions at two cross-flow planes (y ¼ 0:4 and 0.495) in the decelerating region.
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Thus, the streamline function on the longitudinal plane is

on
ot1

� un
ut1

� ðoun=ot1Þj0t1 þ ðoun=onÞj0n
ðout1=ot1Þj0t1

: ð23Þ

Since un decreases from a positive value to zero at ‘‘o’’, ðoun=onÞj0 < 0 and k < 0 result. The
consequence of the negative value of k is that the streamline beginning at ‘‘o’’ on the vortical
coreline is repelled outwards. This implies that ðout1=ot1Þj0 > 0 and, thus, Jð� ðout1=ot1Þj0
ðoun=onÞj0Þ < 0 in the vicinity of the stagnation point. As a result, the streamline on the longi-
tudinal plane is of the saddle-type.

5. Concluding remarks

We have presented three-dimensional computations of steady-state incompressible Navier–
Stokes equations. The results were obtained based on the streamline upwind finite element model,
implemented on quadratic elements to avoid cross-wind diffusion errors. In the present three-
dimensional mixed finite element model, we have used the BiCGSTAB to solve large-size un-
symmetric and indefinite matrix equations. This iterative solver has been implemented in an

Fig. 15. An illustration of limiting cycles (bold black line, thin line) for showing range of inward/outward spiralling

motions at different cross-flow planes y ¼ 0:18; 0:2 and 0.3.
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element-by-element format to improve the computational performance. To explore the flow, we
have adopted a theoretically rigorous theory of topology on the velocity vector field. In this
study, we have considered limiting streamlines immediately above the wall surface. Since the
kinematic nature of these limiting streamlines is best described by singular points, we have de-
termined them and plotted nodes, foci, and saddles on the no-slip walls and have theoretically
justified their presence. Streamlines on both the cross-flow and longitudinal planes have also been
investigated, with emphasis placed on the flow pattern in the vicinity of the vortical coreline. In
the cavity, longitudinal vortices originating from regions near the two vertical end walls spiral
towards the plane of symmetry. In the beginning of these vortex motions, they are affected by a
favored pressure gradient and are, thus, classified as being stable along the vortical coreline. In its
approach to the plane of symmetry, the adverse pressure causes the velocity component tan-
gential to the vortical coreline to decrease. The flow in such an adverse pressure gradient region
is, thus, less stable. As the velocity that is tangential to the vortical coreline decreases, a stable
limiting cycle is found in the streamlines plotted on the downstream cross-flow planes. This so-
called limiting cycle can divide streamlines into two groups. In the outer one, streamlines spiral
towards the vortical coreline. In contrast with this outer spiralling motion, streamlines inside the
limiting cycle tend to spiral outwards and, thus, to destabilize the longitudinal vortex motion.
Such a destabilized vortex convects downstream in the adverse pressure gradient region and
can lead to flow unsteadiness in the form of a Hopf bifurcation as the Reynolds number keeps

Fig. 16. Streamlines and critical points plotted at the cross-flow plane x ¼ 0:634.
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increasing. On the longitudinal plane near the plane of symmetry, the flow pattern has saddle-
type streamlines.
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Appendix A

Referring to Fig. 5, the definition of singular point demands ðov=ozj0Þ ¼ 0. According to Eq. (9),
the limiting streamline passing over the point ‘‘o’’ can be further simplified as

Fig. 17. Streamlines plotted at planes which pass the stagnation point on the vortical coreline.
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dx
dy

¼ ðo2u=oxozÞj0x
ðo2v=oxozÞj0xþ ðo2v=oy ozÞj0y

: ðA:1Þ

Without loss of generality, ðx; yÞ ¼ ð0; ysÞ is assumed to be a singular point on the line of sepa-
ration. Introducing the following auxiliary transformation

n ¼ x; ðA:2Þ

g ¼ y � ys; ðA:3Þ
one can express Eq. (A.1) as

dg
dn

¼ ðo2v=oy ozÞjs g
ðo2u=oxozÞjs n

: ðA:4Þ

By virtue of Eq. (7), we can have ðo2u=oxozÞjs < 0. According to the definition of singular point,
we have ðou=ozÞjs ¼ 0. Since point ‘‘o’’ is away from the point ‘‘s’’ with a fairly short distance, it is
rational to conclude that ðov=ozÞj0 > 0. As a result, the classification of singular point depends on
the sign of ðo2v=oz2Þjs. If o2v=oz2 > 0, it follows that dg=dn < 0. This implies that the singular
point at ð0; ysÞ must be a saddle. On the other hand, if o2v=oz2 < 0, we have dg=dn > 0 and the
singular point ð0; ysÞ is referred to as a node.
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