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Abstract. Development of a stable finite element model for solving steady incompressible vis-
cous fluid flows in three dimensions is the main theme of the present study. For stability reasons,
weighting functions are designed in favor of field variables on the upstream side. For accuracy rea-
sons, it is required that weighting functions be equipped with the streamline operator so that false
diffusion errors can be largely suppressed. In the steady-state analysis of Navier–Stokes equations,
we adopt the mixed formulation to preserve mass conservation on quadratic elements which accom-
modate the Ladyzhenskaya–Babǔska–Brezzi (LBB) stability condition. To resolve difficulties arising
from asymmetry and indefiniteness in the resulting large-size matrix equations, we abandon the
elimination-like solution solver because the storage demand exceeds the ability of our hardware to
solve for three-dimensional problems. A modern iteration solver, known as the biconjugate gradiant
stabilized (BICGSTAB) solution solver, is thus implemented in an element-by-element fashion to
effectively alleviate the problem. For performance reasons, the finite element code developed here
should be implemented in a hardware environment which is suited to the use of an iterative solver.
To this end, our analysis is implemented in shared memory parallel architectures, CRAY C-90 and
J-90. We benchmark the parallel computing performance through a lid-driven cavity flow problem
and a problem amenable to analytic solution.
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1. Introduction. The study of incompressible Navier–Stokes equations is of
practical interest with respect to transport phenomena and also helps research en-
gineers gain a better understanding of the processes which occur in many industrial
applications. Investigating flow convection in incompressible viscous fluid flows poses
a formidable challenge to numerical methods. First among the complication factors is
the fact that the pressure does not appear explicitly in the continuity equation even
though the pressure field has a direct influence on the divergence of the velocity. A
pressure Poisson equation (PPE) can be derived from the momentum and continuity
equations [10]. A fundamental problem with the PPE approach for incompressible
flow analyses is to implement numerically the proper pressure boundary conditions.
A mixed formulation, which solves for the continuity equation directly rather than
the Poisson equation for pressure, is presented as a remedy for the difficulty. In doing
so, the ambiguity in imposing the proper boundary condition for the Poisson pressure
equation is eliminated. However, the absence of pressure in the continuity equation
is problematic with regard to the choice of a finite element space for working vari-
ables and poses a challenge to apply an iterative solver to solve for matrix equations.
In the first category, the guideline concerns whether or not the finite element is en-
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dowed with the Ladyzhenskaya–Babǔska–Brezzi (LBB) stability condition [3,13]. One
major hurdle in the calculation of large-sized matrix equations using the Gaussian-
elimination–based direct solver involves dealing with the continued fill-in while finding
solutions. Researchers have no choice but to employ iterative solvers. This prompts
us to use a modern iterative solver to resolve difficulties in association with matrix
indefiniteness and asymmetry, and this is the main theme of this study.

The nonlinear coupling between advective fluxes and the divergence-free velocity
presents difficulties in the numerical solution of a convection-dominated flow field and
raises the possibility of oscillatory velocities. On physical grounds, there is consider-
able incentive to adopt the upwind model to suppress velocity oscillations. Although
useful for stabilizing the differential system under investigation, the conventional up-
wind method is not sufficient for predicting the transport phenomena in a domain
of multiple dimensions. The prediction accuracy deteriorates due to the introduction
of false diffusion errors into the multidimensional discretization of advective fluxes.
Therefore, it is desirable to add artificial viscosity to the primary flow direction.
The streamline upwind finite element model [19] has formed the basis of the high
Reynolds number flow model in the present three-dimensional analysis. Although our
finite element model has been used with varying degrees of success, the need to solve
large-sized indefinite and unsymmetric algebraic equations places limitations on the
use of the computational technique as a rigorous tool. The present work is part of
a research effort aimed at reducing the computing time required for finite element
study of three-dimensional Navier–Stokes equations. With the advent of software
such as PVM and MPI, it is now possible to run codes in parallel on workstations
and mainframes. Parallel calculation of coupled algebraic equations will be proposed
as a likely approach to reducing the elapsed time requirements for three-dimensional
simulations.

The outline of the rest of this paper is as follows. In this paper, we present
the working Navier–Stokes equations together with the constraint condition to pre-
serve mass conservation. For the problem to be well-posed, boundary conditions are
prescribed along the entire boundary. In section 2, we introduce the concept of the
Petrov–Galerkin finite element model on quadratic grids and show how the high-order
advection-diffusion scheme is constructed. This is followed by a brief overview of the
iterative solvers in the literature, and we also give reasons in section 3 to explain why
we adopt the biconjugate gradient stabilized (BICGSTAB) iterative solver to deal
with indefinite and unsymmetric matrix equations. In section 4, we point out that
there is growing interest in exploring the rapid development of parallel computers. For
this study, we ran code in parallel on a shared memory hardware architecture. In sec-
tion 5, we present numerical results and benchmark the present parallel computation.
Finally, we draw conclusions in section 6.

2. Working equations. In a domain of three dimensions, we consider working
equations which concern mass and momentum conservations in the incompressible
flow field as follows:

∇ · u = 0,(2.1)

u · ∇u+5p− 1

Re
∇2u = 0 .(2.2)

It is noted that for incompressible flow, the continuity equation becomes a constraint
on the velocity field u, and the pressure p is implicit in nature.
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The above elliptic differential system is subject to the following Dirichlet-type
boundary condition at ∂Ω = Γ:

u = g,(2.3)

where ∫
Γ

n · g dΓ = 0 .(2.4)

The Reynolds number Re ≡ ρurefLref/µ is the direct result of normalization of de-
pendent as well as independent variables. Despite the trend of adopting the velocity-
vorticity formulation in the analysis of incompressible viscous flows, we stick to work-
ing equations cast in a primitive-variable form because a formulation involving use of
primitive velocities and pressure accommodates closure boundary conditions [14].

There are several possible avenues for attacking the differential system of interest
here. One may be tempted to resort to a segregated approach to solving (2.1)–(2.2).
The analysis that follows decouples the calculation of the continuity equations and
the equations of motion. While the segregated approach fits the algorithmic idea of
parallel computation, this approach has been hindered by the lack of mathematically
rigorous boundary conditions. The mixed formulation is, thus, considered to be a
logical choice between two major classes of approaches, namely, the segregated and
mixed approaches. Given the above reason for using the mixed formulation, solutions
to (2.1)–(2.2) are obtained in the weak form from the following weighted residuals
statement: Given admissive functions w ∈ H1

0(Ω) × H1
0(Ω) and q ∈ L2

0(Ω), primi-
tive variables in the simply connected domain Ω subject to the essential boundary
condition u = g on ∂Ω, we seek u ∈ H1

0(Ω) and p ∈ L2
0(Ω) from

(2.5)

∫
Ω

(u · ∇)u · w dΩ +
1

Re

∫
Ω

∇u : ∇w dΩ−
∫

Ω

p∇ · w dΩ =∫
Γ/Γn

r w · n dΓ +

∫
Γ/Γγ

s · w × n dΓ,

∫
Ω

(∇ · u) q dΩ = 0 .(2.6)

In (2.5) above, Γ/Γn,r denotes the complement of Γn,r in Γ = ∂Ω. By definition,
φ ∈ Γ/Γi(i = n, r) implies that φ ∈ Γ but φ /∈ Γi. As to n and s, they denote the
outward normal and the tangent to Γ, respectively. Corresponding to the present
choice of a bilinear form, namely, 1

Re

∫
Ω
∇u : ∇w dΩ, shown in equation (2.5), the

following natural boundary conditions are invoked in the weighted residuals statement:

−p+
1

Re
∇u · n = r on Γ/Γn,(2.7)

1

Re
n · ∇u× n = s on Γ/Γr .(2.8)

These physically irrevelant boundary conditions are suggested to be used in conjunc-
tion with the following essential boundary conditions [11]:

u · n = gn on Γn,(2.9)

n× u× n = gr on Γr .(2.10)
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In the above weak statement which constituted the basis for modeling incompress-
ible viscous fluid flows, the choice of basis spaces for primitive variables is critical to
the success of the mixed finite element formulation. An outstanding feature of the
weak statement given in (2.5)–(2.6) is that pressure appears only in the momentum
equations and acts as a source term in driving the velocity transport. The lack of
a scalar equation for pressure in our primitive-variable working equations is a con-
cern in that there is evidence of checkerboard pressure oscillations as discussed by
Gunzburger [11]. Recognizing the dual role of the pressure, both as an enforcer of
the continuity constraint and as a force in the mechanical balance law for momentum
conservation, shape functions for the velocity vector and the scalar pressure warrant
careful consideration if we are to avoid spurious node-to-node pressure oscillations.
The guiding principle in the choice of basis spaces for primitive variables to obtain the
discrete problem which is free of the pressure mode is the accommodation of the LBB
(or inf-sup) condition [3, 13]. In this light, finite elements chosen here fall within the
uni-variant framework [20]. One way to satisfy the inf-sup div-stability condition is
to employ triquadratic polynomials, N i(i = 1, 27), for velocities while using trilinear
polynomials, M i(i = 1, 9), for the pressure

N i =

(
3

2
ξ̄2 +

1

2
ξ̄ + 1 + ξ2 − ξ2

i

)(
3

2
η̄2 +

1

2
η̄ + 1 + η2 + η2

i

)(
3

2
ζ̄2 +

1

2
ζ̄ + 1 + ζ2 − ζ2

i

)
,

(2.11)

M i =
1

8
(1 + ξ̄)(1 + η̄)(1 + ζ̄),(2.12)

where

ζ̄ =ζζi, η̄ =ηηi, ξ̄ = ξξi .(2.13)

In the above, we denote ξi, ηi, and ζi as the normalized coordinates for the ith node.
Consideration must now be given to the approximation of spatial derivatives.

Prediction of high Reynolds number flows requires careful selection of a test space to
enhance the discrete problem. Stability enhancement is achieved through the addition
of a biased polynomial to the shape function so that the upwind information is fa-
vorably considered. Upwind schemes are, however, prone to numerical contamination
due to the introduction of false diffusion errors, which are typical of multidimensional
analyses [17]. To avoid this type of prediction error without sacrificing of stability, we
have designed a streamline operator so that the stabilized terms are mainly added in
the primary flow direction to enhance the discrete stability. As a result, the stiffness
matrix equation which has association with the convection term is derived as follows:

Cil =
[
N i + τ

(
N lṼ lj

)]∂N l

∂Xj
N lṼ lj

∂N l

∂Xj
+

1

Re

∂N l

∂Xj

∂N l

∂Xj
,(2.14)

where

τ =
αξVξhξ + αηVηhη + αζVζhζ

2VjVj
,(2.15)

αYi = δ

(
VYihYi

Re

2

)
,(2.16)
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VYi = êYi · u.(2.17)

The parameter δ in (2.16) determines the degree of upwinding and is the key to success
of application of the streamline operator. In the present three-dimensional analysis,
formulated on quadratic elements, we define δ as follows:

δ(γ) =

{
1
2 cosh(γ2 − 1

γ ) at center-nodes,
cosh(γ)−2

sinh(γ)−4 tanh( γ2 )
− 1

γ at end-nodes.
(2.18)

Insofar as the one-dimensional analysis is concerned, the above choice of δ provides
nodally exact solutions in quadratic elements.

3. Element-by-element BICGSTAB (EBE-BICGSTAB) iterative solver.
The matrix equations formulated here are unsymmetric in form. Furthermore, this
matrix equation is intrinsically devoid of real value. This further complicates the
calculation of finite element solutions for primitive variables with as many zeros as
continuity equations in the diagonal in that eigenvalues become poorly distributed.
This poses no problem for the use of a Gaussian elimination direct solver. For very
large-size problems, the storage requirement becomes prohibitive in the course of fill-
in processes. As a result, computer time and storage requirements greatly exceed the
capacity of today’s computers. For this reason, there is a strong need to use iterative
solvers to circumvent this problem. As noted earlier, there is a trend toward using
robust iterative solvers as research moves toward three-dimensional analysis of heat
and fluid flows.

It is generally accepted that iteration numbers needed for an iterative method to
converge increase dramatically with the increase in the number of grid points. Thus,
iterative solvers of the nonstationary type are considered preferable. The reason
for using nonstationary solvers instead of their stationary counterparts is that the
computations involve information that changes in each iteration. A typical example
of a nonstationary iterative method is the conjugate gradient method of Hestenes and
Stiefel [12]. The idea behind the construction of nonstationary iterative solvers is to
replace the matrix equation problem, Ax = b , with the minimization problem. Let
x0 denote a starting vector and let r0 ≡ b − Ax0; the method generates a sequence
x1, x2, x3, . . . given by

xi ∈ x0 +Kryi

(
A; r0

)
,(3.1)

where Kryi(A; r0) is known as the Krylov subspace given by

Kryi

(
A; r0

)
= span

(
r0;Ar0, . . . , A

i−1r0

)
.(3.2)

In the conjugate gradient (CG) method, the search direction vector is chosen
optimally to update the iterative xi in each iteration. This is fundamental to the
efficiency of the CG method. When A is not symmetric, we lose the three-term
recurrence property for the residual vector ri ≡ (b − Axi−1). Development of a
Krylov subspace method to cope with matrix asymmetry is thus an active field of
study, and new methods are still emerging. In the literatures, there exist two classes
of nonstationary iterative solvers which are often used to overcome the problem of
matrix asymmetry. They are the Chebyshev method [9], which works effectively only
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for positive definite matrix equations, and the Krylov subspace methods, which are
designed using the idea of orthogonalization. Our review of the iterative methods will
focus primarily on the Krylov subspace methods.

The biconjugate gradient (BICG) method [7] is representative of the Krylov sub-
space methods and is designed to handle the matrix asymmetry. In the BICG method,
the approximations are constructed using two three-term recurrence relations for rows
{ri} and {r̂i}. The residual vector ri is orthogonal with respect to one row of vectors
r̂0, r̂1, . . . , r̂i−1, and vice versa, r̂j is orthogonal with respect to r0, r1, . . . , ri−1. As
with the CG method, the BICG method terminates in at most n steps. The dis-
advantage is that there is no minimization property as in CG for the intermediate
steps. Other deficiencies inherent in the BICG method are the irregular convergence
behavior and the need to perform a transpose operation on the coefficient matrix. To
solve these problems, the Lanczos and Arnoldi methods can be used. The general-
ized minimized residuals (GMRES(k)) method [18] is most often referred to in the
class Arnoldi methods. GMRES accommodates a self-orthogonal sequence so that
the residuals are minimized optimally. No more than n steps are needed to reach
convergence of the solution. It is noted that k is the maximum number of vectors
used. While GMRES works effectively in regularizing the convergence behavior, this
method suffers from a severe storage requirement. This problem can be circumvented
through use of a restart capability programmed in the code.

In the Lanczos category, product methods are featured by having dual orthogo-
nal vector sets. Methods in this class which are often referred to are the conjugate
gradient squares (CGS) [21], quasi-minimal residual (QMR) [8], and BICGSTAB [4]
methods. They are all regarded as effective in solving matrix asymmetry problems
and distinguish themselves in their combination of construction polynomials. The
QMR method of Freund and Nachtigal [8] avoids irregular convergence behavior but
still suffers from the necessity of transposing the stiffness matrix. In contrast, the CGS
method dispenses with the transpose of the matrix equation but inhibits the irregular
convergence behavior since the contraction polynomial involved in the CGS method
is the same as that in the BICG method [21]. The BICGSTAB method of Van der
Vorst [4] was developed within the Lanczos framework to solve unsymmetric matrix
equations without sacrificing irregular convergence. The main idea behind choosing
BICGSTAB to solve unsymmetric and indefinite matrix equations for incompressible
Navier–Stokes equations is rooted in its accommodation of local minimization of resid-
uals through GMRES (1). Another advantage in BICGSTAB is that mathematical
manipulation of the transpose matrix is avoided. Nevertheless, there is much work
to be done to refine the BICGSTAB iterative solver to avoid pivoting breakdown
and Lanczos breakdown because this method still inherits the essence of BICG. In
the literature other iterative solvers, such as ORTHOMIN [2], generalized conjugate
residual (GCR) [6], and conjugate gradient method on normal residuals (CGNR) [16]
are viable remedies for matrix asymmetry.

In the finite element stiffness matrix equations, the profile of nonzeros is cru-
cial to effective use of iterative solvers. With this in mind, our strategy for ordering
nodal points and allocating primitive working variables is to avoid unnecessary stor-
age of voids. This helps reduce the bandwidth of the matrix equations and, thus, aid
efficient application of the BICGSTAB iterative solver. To achieve the goal of com-
pressing the matrix equations, we invoke the element-by-element capability together
with BICGSTAB. The resulting main steps involved in the EBE-BICGSTAB solution
algorithm are summarized as follows:
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Compute r0 = b−Ax0 for some initial guess x0

Choose r, such that (r, r0) 6= 0
For i = 1, 2, . . .

ρi−1 = (r, ri−1)
if ρi−1 < ε1 [near break down]
if i = 1

ri = ri−1

else
βi−1 = (ρi−1/ρi−2)(αi−1/ωi−1)
ri = ri−1 + βi−1(ri−1 − ωi−1vi−1)

endif
solve Kr = ri
vi =

∑
elem(Aelemr) ←− element-by-element procedure

αi = ρi−1/(r,vi)
if (r,vi) < ε2 [near break down]
s = ri−1 − αivi
solve Ks = s
t =

∑
elem(Aelems) ←− element-by-element procedure

if ‖s‖2 < ε
ωi = 0

else
ωi = (t, s)/(t, t)

endif
xi = xi−1 + αiri + ωis
ri = s− ωit
check convergence; continue if necessary (ωi 6= 0)

End

The present investigation attempts to resolve matrix asymmetry and indefinite-
ness with no specific emphasis placed on the preconditioner, although we realized
that preconditioning the present matrix equation is an essential prerequisite of the
three-dimensional computation. However, there is still a lack of detailed knowledge
about the appropriate way to choose a preconditioner. As a result, we did not take
this theoretically challenging subject into the present consideration. Further stud-
ies are necessary to accelerate the convergence through introduction of a suitable
preconditioner.

4. Parallel implementation of finite element code. The motivation for this
study was derived from the need for efficient implementation of the finite element code
so far developed for three-dimensional flow simulations. Parallel computation has been
proposed as a way to gain substantial improvement in computational throughput in
solving large-scaled problems in general and fluid dynamics problems, especially on
parallel architectures. To achieve this goal, the computer code has to be adapted to
enable execution in a multiprocessor computational environment. There exist several
platforms which take advantage of concurrent processing. The parallel architectures
now range from desktop workstations with few processors to massively parallel ma-
chines.

Owing to the speed-up potential offered, the use of multiprocessor architectures
in which many computer processors work simultaneously on a flow problem has be-
come an integral part of our code development. As a first step toward increasing
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Table 1
Features of machines CRAY C-90 and J-90.

Machine J-90 C-90

CPU Speed (MFloaps) 200 1000
Memory Bandwidth (Gbs/s) 25.6 250∗

I/O Bandwidth (Gbs/s) 6.4 13.6
CPU Clock Speed (ns) 10 4.2
Maximal no. of CPU 32 16

∗ Peak value

the execution speed of a computer program, it is best to identify which portions of
the code use the majority of the execution time. In the programming stage, we can
then pay more attention to those parts of the code where programming will have the
greatest impact on computing performance. To this end, we use utility tools, such as
FLOWTRACE, PERFTRAC, and PROF, which are installed on a CRAY UNICOS
system [5]. Through such performance analysis on our incompressible Navier–Stokes
code, it has been found that the iterative solver used to obtain solutions from unsym-
metric and indefinite matrix equations constitutes the most computationally intensive
part of the code. In this regard, much work has been expended on the computation-
ally intensive EBE-BICGSTAB iterative solver in order to optimize the performance
of the analysis code.

Presented here are results of our preliminary parallel studies, which were carried
out on a sixteen-processor CRAY C-90 system. Each processor of the C-90 had a
4,167 nanosecond cycle time and dual vector pipes. The chaining of addition and
multiplication was allowed in each processor, thus delivering a 15.36 Gflop peak per-
formance rate. On the C-90, vectorization of the code was automatically done by a
compiler, named “cft77,” which was installed on the standard CRAY UNIONS sys-
tem. For parallel compilation, we have the options of microtasking and autotasking.
Of those, microtasking is much simpler to use because it uses directives rather than
cumbersome synchronization subroutine calls in the Fortran-callable library. Beyond
this, microtasking uses special parallel features of the CRAY C-90. Much improved
overall speed-up results are produced as compared with macrotasking. A further ad-
vantage can be gained through use of autotasking, which places an enriched set of
microtasking directives in the original Fortran code. Based on the above, a combina-
tion of autotasking and microtasking was used here to achieve better performance in
the numerical simulation of incompressible flow problem. For comparison purposes,
analyses were also carried out on another CRAY platform named “J-90.” The features
of J-90 and C-90 are summarized in Table 1 for the reader’s reference.

5. Computed results. In our previous article [22] the justification for applying
the iterative solver BICGSTAB to incompressible Navier–Stokes codes was presented.
It was reported here that very good convergence was obtained. The results compare
favorably with the analytic solutions. In a cube which is covered with 83 uniformly
distributed quadratic elements, more than 20% of the CPU time can be saved by using
the presently employed BICGSTAB iterative solver, as compared with the frontal
direct solver. When the problem size increases to 163, the analysis is no longer
amenable to the frontal solver due to the prohibitive size of the matrix equations.
This study has shown that the demand for finer resolution continues to increase the
need to carry out calculations using iterative solvers.

We can now focus our attention on the performance gain in the parallel imple-
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Fig. 1. Illustration of the three-dimensional lid-driven cavity problem.

mentation of the finite element code described in this study. In the current study,
we benchmarked the parallelized BICGSTAB iterative solver by considering a well-
documented lid-driven cavity flow problem. Analyses were carried out in a cube
schematically in Figure 1. For the Reynolds number under consideration, Re = 400
is small enough to keep the flow laminar. Prior to discussion of the results in a unit
square driven by a roof lid, it is instructive to note that the present steady-state finite
element code has been 86% parallelized on a Cray C-90 platform which has 16 CPUs,
as shown in Figure 2. A fixed point iteration is used in the linearization of differential
equations. The convergence criteria used for the inner iteration is 10−1 and 10−6 for
the outer iteration. Figure 3 presents the computed velocity profiles along the vertical
and horizontal center lines on the mid-plane of the cavity. The computed solutions
on the parallel platform show close agreement with those of Babu and Korpela [1].
This verifies the utility of the BICGSTAB iterative solver implemented in a parallel
environment.

Advances in computational environment have made three-dimensional finite el-
ement flow analyses feasible in our computational fluid dynamics laboratory. This
poses a serious threat to us to provide, in depth, the flow structure inferred from
an enormous amount of three-dimensional data. To explore into the flow details
we adopted a theoretically rigorous theory of topology. Of vector fields which can
be chosen in the topological study of three-dimensional data, we considered limiting
streamlines which are, by definition, streamlines passing immediately above the body
surface [15]. Since the kinematic nature of limiting streamlines are best described
topologically by singular points, in Figure 4 we plot nodes, foci, and saddles on the
no-slip walls of the cavity. Also given in Figure 4 are half-nodes which arise at the
intersection of the plane with the cavity. Thanks to the lines of separation, the flow
structure pertinent to the flow can be faithfully depicted. Although the problem is
very simple in geometry, the flow structure is by no means simple in nature; especially
noteworthy is the prediction of a three-dimensional saddle in the interior of the cavity,
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Fig. 3. Comparison of velocity profiles along the vertical and horizontal centerlines on the
symmetry plane, x = 0.5, at Re = 400.

as is shown in Figure 5. The vortical flow structure also manifests itself by presence
of two vortical core lines shown in Figure 6. By definition, the vortical core line is a
collection of three-dimensional foci. They emanate from the two end walls bfgc and
aehd and proceed toward the symmetry plane and, finally, meet at the saddle point.
For particle tracers adjacent to the vortical core line, they wrap the vortical core line
and spiral towards the plane of symmetry.

There remains a discussion on how much computational efficiency can be gained
from parallel implementation of the finite element code. To this end, we benchmarked
the parallel performance of the CRAY C-90 and CRAY J-90 supercomputers for the
lid-driven cavity flow problems conducted on three refined elements, namely, 43, 83,
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Fig. 4. Three-dimensional plot of limiting streamlines from different views. (a) abcd-bfgc-cghd
planes; (b) cdab-dhea-aefb planes; (c) abfe-efgh-aehd planes.
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Fig. 5. Secondary flow pattern and vortical flow structure in the cavity.

and 163. The performance was measured by means of the CPU time used against
the number of processors. Included in Table 2 are also the memory sizes (ms) for the
reader’s reference. We summarize the parallel performance results in Table 2, from
which the corresponding speed-up can be obtained, as shown in Figure 7. It is noted
that as the problem size increased to 163, C-90 outperformed J-90 in the percentage
of parallelism.



1398 TONY W. H. SHEU, MORTEN M. T. WANG, AND S. F. TSAI

a

b d

f

g

h

Saddle point

vortical core line
adjacent particle
tracers

Fig. 6. An illustration of a three-dimensional saddle point and the adjacent streamlines
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Fig. 7. Speed-up for problems conducted on different meshes using the parallelized finite element
code. (a) 4× 4× 4 elements; (b) 8× 8× 8 elements; (c) 16× 16× 16 elements.
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Table 2
Program test on multi-CPU; ne: number of elements, ms: memory size in megawords, ni:

number of outer/inner iterations.

(a) CPU times and memory size on J-90

No. of CPU
Ne

1 2 4 8 16
Ms Ni

43 78 52 36 27 (23) 1.2 22/3210

83 986 591 377 288 (235) 7.2 24/7890

163 10639 (6800) (4900) (4000) (3500) 52.8 38/10036

(b) CPU times and memory size on C-90

No. of CPU
Ne

1 2 4 8 16
Ms Ni

43 23 15 10 8 (7) 1.2 22/3620

83 241 144 97 76 (62) 7.2 31/6039

163 3753 2124 1346 947 (745) 52.8 67/11475
∗ CPU time is measured in second
† Estimates are in parentheses “( )”

6. Concluding remark. We have presented parallel computation of steady-
state Navier–Stokes equations. The fluid flow under investigation has the incom-
pressibility property. The results presented here are based on the streamline upwind
formulation. It is addressed that the finite element model is implemented on quadratic
elements using combinations of interpolants for velocity and pressure variables which
accommodate the inf -sup div-stability condition. This finite element model is effec-
tive in suppressing numerical oscillations under high Reynolds number conditions and
has the ability to avoid crosswind diffusion errors. The finite element formulation
gives rise to a system of coupled, nonlinear equations, which fall within the unsym-
metric and indefinite context. Due to the prohibitive size of the algebraic system in
the present three-dimensional simulations, it is advisable to compute solutions using
an iterative solver which can resolve matrix asymmetry and indefiniteness. We have
used the BICGSTAB update technique to achieve this goal and have implemented
it in an element-by-element format to improve the computational performance. It
is the computationally intensive nature of solving a large set of indefinite and un-
symmetric matrix equations which has motivated us to further increase the execution
speed of programs. One solution is the use of multiprocessor architectures because
of the speed-up potential offered. In this study, we have focused on the parallel per-
formance for code run on two parallel platforms, CRAY J-90 and C-90, using the
three-dimensional lid-driven problem to benchmark the parallel performance.
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