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The solution-refined method is developed to solve electrostatic fields of the electron-beam direct-write lithography system. The prediction of

accurate electron trajectories and the geometry of the developed photoresist patterns rely on high-resolution electrostatic fields in the whole

system. Considering fabrication errors, such electrostatic fields cannot be solved using a cylindrical symmetry. Thus, this problem is a multiscale

problem that requires a huge computer memory to solve. In our cases, the minimum number of grids of 1 nm length are applied and the total

memory required approaches 75Gbyte. Since the proposed solution-refined technique has a tradeoff with computational time, fewer central

processing units (CPUs) are needed to solve this system because each CPU that solves the problem exceeds its available storage memory. The

proposed technique can be used to solve the electron-beam direct-write lithography system at higher resolution and the problems exceed the

available storage memory. # 2013 The Japan Society of Applied Physics

1. Introduction

Electron-beam direct-write lithography is a maskless writing
technique of high resolution and is a potential candidate
next-generation lithography for creating patterns under
22 nm and beyond.1) This type of lithography system uses
controlled electrons to strike a photoresist layer to form a
pattern directly within a vacuum chamber. As electron guns
emit a large number of electrons, the pathways of these
electrons within the vacuum chamber are controlled by
electron lenses. Thus, it is necessary to solve Laplace’s
equation and calculate the electrostatic field for electron
trajectory calculations. In general, Laplace’s equation can be
solved analytically by the superposition of harmonic func-
tions. However, the problem in electron-beam direct-write
lithography applications is too complex to find an analytical
solution. Thus, we need to use numerical methods to find
approximate solutions. Many numerical methods have been
used to solve Laplace’s equation, such as the finite-dif-
ference method (FDM),2) finite-element method (FEM),3)

boundary element method (BEM),4,5) and charge density
method (CDM).6) Also, some available packages based on
FDM, FEM, and BEM for solving Laplace’s equation have
also been developed to investigate electrostatic problems,
for example, SIMION,7) Poisson Superfish,8) and LORENTS
2D/RS.9) Comparisons of computational time as well as
memory usage between the FDM, FEM, and BEM for
solving electrostatic charged particle optics can be found in
Ref. 10. The results show that each of these methods has
particular advantages and disadvantages. It was concluded
that the memory usage, computational speed, and computa-
tional accuracy of the FDM are dominated mainly by the
number of mesh points. Thus, for complex and large-scale
charge optic problems, it is easier to predict the required
computational resources using FDM.

For charged particle optic simulators, Munro and
coworkers have published a series of research results,
including aberration predictions,11,12) the design of a photo-
multiplier,13) an overview of computational modeling tech-
niques in charged particle optics,14) and the beam blur of the
SCALPEL-HT/Alpha electron beam lithography tool.15,16)

They used FDM and second-order FEM to obtain numerical
results under an electrostatic field. However, more accurate
results have to be obtained by fitting a Fourier-Bessel series.
Consequently, an incredibly large computational memory
and a long time are needed if the system becomes larger.
Thus, the search for a method of solving the entire electron
optic system with a high resolution still continues. Sawada
and Yoneda adopted a modified axis symmetric FEM-BEM
mixed technique to calculate the electrostatic potentials for
the electron-beam lithography system.17) The electrostatic
potentials are calculated using BEM at FEM interpolated
grid nodes. As shown in their results, the central processing
unit (CPU) time can be less than that used in pure BEM
calculation and memory can be saved because only accurate
electrostatic potentials are obtained in some regions far from
the boundary. In addition, another reason for saving storage
memory is that a modified axis symmetric assumption is
used. Lencová applied fine mesh points under the FEM
scheme to calculate the electrostatic field for cylindrically
symmetric electron lenses.18–20) In this case, the problem can
be treated as a two-dimensional (2D) problem. Therefore,
both memory usage and computational time can be con-
served in such a symmetric situation. However, it was
reported that a 2D analysis of the electron beam optics can
be applied when the system is assumed to be perfect with
cylindrical symmetry, whereas a three-dimensional (3D)
computation is unavoidable.14) Actually, when fabricating
electron-beam direct-write lithography chambers, asym-
metric matching of individual electrode pieces and mis-
alignments between assembled elements may occur because
of fabrication limits. The investigation of fabrication error
budgets that affect electron trajectories was carried out by
Chen et al.21) In their research, the software LORENTS
2D/RS9) is employed and the analyses are based on 2D
electrostatic fields. An accurate 3D field computation for
electron-beam direct-write lithography chambers is a multi-
scale problem that requires a huge computer memory to
achieve sufficient resolution. In such circumstance, work-
stations or computer clusters equipped with multiple
processors and multiple storage memories are often used
to decompose a large problem into several subdomains for
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multiprocessing computations. Generally, the open multi-
processing (OpenMP),22) message passing interface
(MPI),23) hybrid MPI/OpenMP schemes,24,25) and paralle-
lized graphics processing unit (GPU)26,27) methods are used
as interfaces for multiprocessing computation. The electron
optics software SIMION7) can be used under multiple proc-
essors. However, the maximum point numbers allowed is
limited at 20 billion (i.e., up to 190Gbyte in their simulation
but only 24Gbyte in our solution-refined method) when
the computer is equipped with sufficient memory. There
are many examples that describe FDM combined with a
multiprocessing computation scheme to have remarkable
computing advantages over conventional single-processing
methods.28,29) Also, the use of parallelized GPUs, which
have many processors on one graphic card, is combined
with other multiprocessing computation methods to solve the
problems.30) Research employing the FDM combined with
NVIDIA’s GPU scheme was also reported,26) which showed
that the computational speed of the GPU (GeForce 7800 GS)
can be 30 times greater than that of the two-core CPU
(Opteron 890), but that the largest possible computational
domain is 1615 times smaller. Antoniou et al. utilized a
multicore GPU combined with MPI and OpenMP under
the FDM scheme.27) Their results show good computation
acceleration, but the computational domain is limited
because each processing unit has finite storage memory.

The computational ability of multiprocessing schemes is
limited by the number of parallelized processors used be-
cause each parallelized processor has finite storage memory.
Thus, the development of a numerical method with a greater
capability to solve larger scale problems is necessary. In this
paper, we propose the use of FDM-based solution-refined
procedures to solve Laplace’s equation for a large-scale
problem, and take electrostatic field distributions of an elec-
tron-beam direct-write lithography system as our example.
To show how the solution-refined method works, procedures
for solving 2D problems under different mesh sizes using a
single CPU are demonstrated in Sect. 2. Then, we solve 3D
electrostatic field distributions of an electron-beam direct-
write lithography system using the solution-refined method
combined with the MPI scheme in Sect. 3. Furthermore,
we also calculated the z-directional shifts and tilt situations
of the 3D electrostatic fields of the lens, which cannot be
solved using the cylindrical symmetry.

2. Solution Refinement under Single CPU

Taking the divergence of the electrostatic field, we can
obtain Poisson’s equation which is related to the charge
density � and the electrostatic potential as31)

r2� ¼ � �

"0
; ð1Þ

where "0 stands for the vacuum permittivity. In an electron-
beam lithography system, which is a high-vacuum system,
we assume � ¼ 0 for simplicity. Thus, Poisson’s equation
is reduced to Laplace’s equation. Here, a 2D problem for
Laplace’s equation is taken as an example and is shown in
Fig. 1. The boundary conditions of this problem are set as

�ð0; yÞ ¼ 0; �ðx; 0Þ ¼ 0;

�ða; yÞ ¼ 0; �ðx; bÞ ¼ 1;
ð2Þ

where a and b are the lengths along the x- and y-directions,
respectively. The analytic solution of this problem is

�ðx; yÞ ¼
X1
n�1

Bn sinh
n�y

a

� �h i
sin

n�x

a

� �
; ð3Þ

where

Bn ¼ 2

a

Z a

x¼0

sin
n�x

a

� �

sinh
n�b

a

� � dx:

The memory needed in the finite-difference computation
can be estimated using the equation32)

Ntotal
i � Ntotal

j � Ntotal
k � ne � 8 bytes; ð4Þ

where Ntotal
i , Ntotal

j , and Ntotal
k are the number of grids along

the x-, y-, and z-directions, respectively, and ne stands for the
number of storage variables.

Referring to Fig. 2, our solution-refined method entails
the following steps:
(a) Creating coarse grids in the � domain, and solving

Laplace’s equation for Ni � Nj meshes in the �

domain as shown in (a) in Fig. 2, where Ni and Nj

are the coarse grid numbers along the x- and y-
directions, respectively. After the coarse mesh compu-
tation, release the stored memory (i.e., Ni �Nj �
ne � 8 bytes) except all values at y ¼ Nj=2.

(b) Applying subgrids to the y ¼ Nj=2 line. Solve
Laplace’s equation in the upper-half region of � that
has ð�2=2Þ � Ni � Nj mesh points as shown in (b) in
Fig. 2, where � is the number ratio of subgrids to
coarse grids. After finishing the fine grid computation,
release the stored memory [i.e., ð�2=2Þ �Ni �Nj �
ne � 8 bytes] in the upper-half region except all fine
grid values at y ¼ 3Nj=4.

(c) Solving Laplace’s equation in the lower-half region
of � with a fine grid boundary at y ¼ Nj=2. At this
time, the total grid numbers are ð�2=2Þ �Ni �Nj as
shown in (c) in Fig. 2. After the fine grid computation
in the lower-half region is finished, release the stored
memory [i.e., ð�2=2Þ �Ni � Nj � ne � 8 bytes] in
the lower-half region except all fine grid values at
y ¼ Nj=4.

(d) Solving Laplace’s equation in the central domain
by grappling the fine grids at y ¼ 3Nj=4 and Nj=4
from (b) and (c). At this step, the total grid numbers
are ð�2=2Þ � Ni � Nj mesh points as shown in (d)
in Fig. 2. Then, release the stored memory [i.e.,

a

b

x

y

Ω

Φ = 1

Φ = 0

Φ = 0

Φ = 0

Fig. 1. (Color online) Boundaries and dimensions of 2D problem.
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ð�2=2Þ �Ni �Nj � ne � 8 bytes] except all fine grid
values at y ¼ Nj=2. In addition, these values at
y ¼ Nj=2 will be used in step (e) for repeated
computation.

(e) Repeating the steps from (b) to (d) until the computa-
tional results become stable.

Three 2D cases are used to demonstrate the accuracy of
the solution-refined method described above and the steps
shown in Fig. 2. The grid numbers of these three cases are
Ni � Nj ¼ 80� 80, Ni � Nj ¼ 100� 100, and Ni � Nj ¼
120� 120, respectively. We solve these problems numeri-
cally by the standard and solution-refined finite-difference
methods. Then, the results obtained using both methods are
compared with the analytical results shown in Fig. 3. The L2
norms (least-square error norms) between all the standard
finite-difference results and analytical results are shown in
Fig. 4. From these figs., the L2 norms between all the fine-
grid results and analytical results converge from 2:375�
10�4 to 1:088� 10�4 as the total grid number increases
from Ni � Nj ¼ 80� 80 to Ni � Nj ¼ 120� 120. This is
reasonable, because more accurate results can be obtained
in the fine meshes than those above in the coarse meshes. In
addition, the L2 norms of the solution-refined computation
approach the L2 norms of the standard finite-difference
computation after five refinements.

3. Simulation of 3D Electron-Beam Direct-Write

Lithography System

3.1 Introduction to electron-beam direct-write lithography

system

Electron-beam direct-write lithography is a potential candi-
date for the next-generation lithography. This type of litho-

graphy system uses controlled electrons to strike resists to
form a pattern directly inside a vacuum chamber. As elec-
tron guns emit a large number of electrons, the pathways
of these electrons within the vacuum chamber are controlled
by electron lenses. Generally, electron lenses are metallic
structures with circular shapes that allow electrons to pass
through their centers. As the desired electric voltages are
applied on electron lenses, electrons can be controlled and
focused on the designed focal plane. Thus, if an accurate
electrostatic field within the whole chamber can be calcu-
lated, the electron trajectories and electron focal spot on top
of the photoresist surface can then be predicted. The final
goal is to calculate electron penetration within a photo-
resist (i.e., photoresist development). Many research studies
related to the calculation of electron penetrations within
the resist have been published.33–35) However, most of them
used an ideal focal spot size, which means that the calculated
photoresist lithographic results were based on perfect elec-
tron ray focusing. Actually, when fabricating an electron-
beam direct-write lithography chamber, asymmetric error
may occur, which affects the resolution of the focal spot.
Thus, it is necessary to compute the 3D electrostatic field
to predict and control the trajectories of a moving electron
within the entire system.

3.2 Parallel computation with solution refinement

The electron-optical system (EOS) comprises an electron tip,
condenser lenses, silicon wafer stages, and other compo-
nents.36) These components are designed in the micrometer
range.37) The size of an electron is fairly small and can be
neglected in comparison with the size of the whole system.
Thus, a huge memory and a large amount of storage are
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required for an accurate simulation of this problem. To
validate the FDM FORTRAN program we developed, the
shrunken small-scale system shown in Fig. 5(a) is used
as a test problem. The dimensions of the system shown
in Fig. 5(a) along the x-, y-, and z-axes are 160, 160, and
260 nm, respectively. Furthermore, the electrostatic field of
this system is calculated using our FDM code and FEM-
based commercial software named COMSOL Multiphysics.
In our FDM calculation, 1 nmmeshes are applied in the entire
computational domain, except in the electron tip-shape
region. Some 0.15 nm grids are applied to smooth the elec-
tron tip shape. Thus, in this test, the grid number in our FDM
code is about 6,656,000, which needs an approximately
50MB memory and can be executed on a single CPU. The
computational results at the center of the y-axis, calculated by
the commercial software COMSOL Multiphysics, are shown
in Fig. 5(b), and the results calculated by the FDM programs
we developed are shown in Fig. 5(c). These results are
not easy to compare directly because nonuniform triangular
meshes are used in Fig. 5(b), but nonuniform rectangular
meshes are used in Fig. 5(c). Nonetheless, good agreement
can be seen between Figs. 5(b) and 5(c).

The designed large-scale 3D electron-beam lithography
system is shown in Fig. 6. To solve the full 3D electrostatic
field, the distributed computation is combined with the
solution-refined technique. Initially, we use 20 nm meshes
in the entire system under the Cartesian coordinate system.
However, the cylindrical geometry of the electronic lens
and electron tip cannot be described smoothly in Cartesian
coordinates. Hence, the conservative level set method is

used to describe the shapes of the cylindrical lens and
needlelike tip.38) The equation listed below is used to create
a smooth cylindrical shape in Cartesian coordinates.

� ¼ ð1þ eðd�dcÞ="Þ�1; ð5Þ
where d is the number of grid points surrounding the circle
center dc and " is the parameter for determining the thick-
ness of the circle. In electron beam lithography, the size of
the electron tip may differ on a case-by-case basis according
to the desired specifications and the fabrication limit. Here,
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we use 20 nm as the radius of the pinpoint, and the length of
this tip is 800 nm. The sharp tip shape is hard to describe
accurately by utilizing only 20 nm uniform grids. Thus, we
apply 1 nm fine subgrids at the edge of the electron tip to
smooth its shape. The mesh layout comparisons of the
electron tip at the center of the y-axis are shown in Fig. 7.
Figure 7(a) shows the mesh layout of the electron tip using
uniform 20 nm grids in the whole tip, and Fig. 7(b) shows
that in the case of 20 nm grids at the tip with 1 nm grids at
its edge. It is clear that the 20 nm grid size cannot provide
sufficient resolution at the edge of the electron tip. In the
case of Fig. 7(b), the storage memory occupied by 1 nm
grids can be neglected because there is only a small number
of 1 nm grids. Therefore, the total grid number for the
full 3D computation is roughly equal to the number of
20 nm meshes and can be estimated as Ni � Nj �Nk ¼
1000� 1000� 5000 grids. The iteration method is applied
in our FDM FORTRAN program. Thus, the two variables
�fineðNi;Nj; NkÞ and �

fine
old ðNi;Nj; NkÞ are stored during the

iteration. �fineðNi; Nj; NkÞ is the updated voltage during
the finite-difference iteration in the fine grids and
�

fine
old ðNi;Nj; NkÞ is the voltage that has not been updated in

the fine grids. The total memory required for a full 3D
electron-beam lithography simulation is about 74.5Gbyte.
We distributed the total domain via 10 CPUs along the

z-direction by one-dimensional data division. The MPI
library is used for the distributed computation, and the 3D
FDM parallelization programming with solution refinement
processes is shown in Fig. 8. All simulations were per-
formed in the IBM 1350 cluster at the National Center for
High Performance Computing of Taiwan. The specifications
of IBM 1350 are Intel X5450 3.0GHz Quad core processors
with 16Gbyte PC2-5300 667MHz FBD 240-pin ECC
DDR2-SDRAM. The computation starts from Fig. 8(a),
the coarse grids are used in the whole 3D domain as Ni �
Nj � Nk ¼ 200� 200� 5000 grids, and two variables,
�coarseðNi;Nj; NkÞ and �coarse

old ðNi;Nj; NkÞ, are used for the
finite-difference iterative method, where �coarseðNi;Nj; NkÞ
is the updated voltage during the finite-difference iteration
with coarse grids, and �coarse

old ðNi;Nj; NkÞ is the voltage that
has not been updated in the coarse grids. At this time, the
total memory required is about 3Gbyte. The required storage
memories are sufficient for one CPU to calculate. In the
second step, we propose to compute the whole domain using
10 CPUs. Thus, we generate nine fine-mesh interfaces that
contain Ni � Nj ¼ 1000� 1000 grids in each interface,
and divide the total number of domains into 10 subdomains
along the z-axis, as shown in Fig. 8(b). Then, we distribute
these subdomains into 10 CPUs for computation, and each
division has Ni � Nj �Nk ¼ 1000� 1000� 500 grids with
the two variables, �fineðNi;Nj; NkÞ and �

fine
old ðNi; Nj; NkÞ, as

shown in Fig. 8(c). Therefore, each division contributes an
approximately 7.45Gbyte memory. When the computations
in all CPUs are finished, as shown in Fig. 8(c), the solution
refinement technique is applied. However, the boundary
values in the n-th CPU should be passed onto the (n� 1)-th
CPU before the solution refinement. This step is shown in
Fig. 8(e). In addition, the positions of the passed boundaries
are decided by the programmer. Finally, repeat the steps
from Figs. 8(c) and 8(d) until the electrostatic field does not
vary very much.

However, the computational domain for each CPU in
Figs. 8(c) and 8(d), which contributes approximately 7.45
Gbyte, is still overloaded for a single CPU. Thus, the
computational domain is also decomposed during these two
processes in each CPU. The explanations for the domain
decomposition in each CPU are shown in Fig. 9. We take
CPU 1 and CPU 2 as examples in Fig. 9. In the first step, the
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solutions in the coarse meshes are computed in each domain in
CPU 1 and CPU 2. Then, the fine meshes at the center of the
z-axis in each domain are generated according to the solutions
in the coarse meshes, as shown in Fig. 9(a). Therefore,
Laplace’s equation under 1000� 1000� 250 meshes with
the two unknowns,�fineðNi;Nj; NkÞ and�fine

old ðNi;Nj; NkÞ, for
each upper-half domain can be solved in parallel using the two
CPUs. This step contributes about 3.725Gbyte in each CPU
to finish the computation, as shown in Fig. 9(b). Figure 9(c)
shows that Laplace’s equation is solved in each lower-half
domain under the same situation mentioned in Fig. 9(b). In
Fig. 9(d), the top, central, and bottom fine-mesh boundaries in
CPU 1 are obtained from previous procedures [i.e., Figs. 9(b)
and 9(c)]. Thus, Laplace’s equation can be solved using
CPU 1 for the upper-half and lower-half domains with
3.725Gbyte in Figs. 9(d) and 9(e).

The simulated voltage distribution (x–z plane) at the
center of the y-axis is shown in Fig. 10. Owing to the high
voltage at the wafer stage, it is difficult to observe either the
voltage distribution or the electrostatic field distribution in
the lens region.

The simulation conditions for Fig. 10 are listed in Table I.
The available memory of each CPU is 4Gbyte. Thus, under
20 nm resolution, at least 19 CPUs must be used to solve
this problem by the standard finite-difference method with
a parallel computation scheme. However, we used only 10
CPUs to solve this problem.

Imperfect fabrications occur frequently in micro-electro-
mechanical systems (MEMSs)/nano-electro-mechanical

systems (NEMSs), and the case for the 90V lens misalign-
ment, which cannot be solved using cylindrical symmetry,
is simulated by our proposed method. We consider the
z-direction shift and tilt situations of the electron lens in our
calculation, as shown in Fig. 11. For the z-direction shift
calculations, we assume that the left-half 90V lens has 250
and 500 nm downward shifts. For the lens tilt calculations,
we assume that the left-half 90V lens has 2.5 and 5�

downward tilts. The calculated voltage distributions (x–z
plane, at the center of the y-axis) for the electron tip and two-
well-aligned-lens region are shown in Fig. 12. Figure 12(A)
shows the voltage distribution of a well-aligned system.
Also, Figs. 12(B1) and 12(B2) show the voltage distribution
of the lens systems in which the left-half 90V lens has
250 and 500 nm shifts along the z-direction, respectively.
Furthermore, Figs. 12(C1) and 12(C2) show the voltage
distribution of the lens systems in which the left-half 90V
lens has 2.5 and 5� downward tilts, respectively. As show in
Fig. 12(A), the calculated results are symmetric owing to
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Table I. Simulation conditions of 3D electron-beam lithography system.

Computational domain (�m) 20� 20� 100

Grid size (nm) 20

Number of CPUs 10

Total memory required (Gbyte) 73
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90 V lens90 V lens
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Fig. 11. (Color online) Alignment situation of electron lens: (A) perfect

alignment, (B) left-half 90V lens tilted downward, and (C) left-half 90V

lens shifted along z-direction.
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the perfect alignment. Thus, this type of situation can be
calculated by applying cylindrical symmetry. Thus, compu-
tational memory can be reduced. However, fully 3D com-
putations are needed for the misaligned systems, as shown in
Figs. 12(B1)–12(C2). As seen from these results, nonsym-
metric voltage distributions can be found in Figs. 12(B1)–
12(C2) owing to the lens eccentricity.

The calculated voltage distributions and electrostatic field
distributions on top of the right-half 90V lens (x–y plane)
are shown in Fig. 13. Figures 13(A-a), 13(B1-a), 13(B2-a),
13(C1-a), and 13(C2-a) are the voltage distributions on top
of the right-half 90V lens. The voltages of the left-half
regions drop to about 70 and 62V in Figs. 13(B1-a) and
13(B2-a), respectively, because of the z-direction shift of
the left-half electron lens. Also, the voltages of the left-half
regions linearly decrease inward in Figs. 13(C1-a) and
13(C2-a) owing to the tilt of the left-half electron lens.
Furthermore, Figs. 13(A-b), 13(B1-b), 13(B2-b), 13(C1-b),
and 13(C2-b) show the magnified voltage plots around the
hollow region where electrons are assumed to pass through.
Under a perfectly aligned situation, the voltages are
symmetrically distributed around the hollow region in
Fig. 13(A-b). In contrast, the low-voltage regions shift to
the left in Figs. 13(B1-b), 13(B2-b), 13(C1-b), and 13(C2-b)
owing to lens misalignment. Moreover, the magnified elec-
trostatic fields of the hollow regions show in Figs. 13(A-c),
13(B1-c), 13(B2-c), 13(C1-c), and 13(C2-c) provide direct
information to determine if the emitted electrons can suc-
cessfully pass through the lenses in the designed direction.
As shown in Fig. 13(A-c), the electrostatic fields are uni-
formly distributed outside the hollow region. Thus, electrons
will not stray when they pass through a well-aligned system.
On the other hand, stronger electrostatic fields concentrate
on the right in Figs. 13(B1-c), 13(B2-c), 13(C1-c), and
13(C2-c). This means that electrons will be pulled to the
right when passing through the hollow region. Generally, we

can see that the electrostatic field becomes stronger when the
distance of the z-shift and the tilted angle increase.

The calculated voltage distributions and electrostatic field
distributions at the center of the right-half 90V lens (x–y
plane) are shown in Fig. 14. Figures 14(A-a), 14(B1-a),
14(B2-a), 14(C1-a), and 14(C2-a) are the voltage distribu-
tions at the center of the right-half 90V lens. The voltages of
the left-half regions drop to about 80V and linearly decrease
inward to 72V in Figs. 14(B2-a) and 14(C2-a) because of
the z-direction shift and the tilt of the left-half electron
lens. Figures 14(A-b), 14(B1-b), 14(B2-b), 14(C1-b), and
14(C2-b) are the magnified voltage plots around the hollow
region where electrons are assumed to pass through. The
result for Fig. 14(A-b) is symmetrically distributed around
the hollow region. The result in Fig. 14(A-b) is similar
to that in Fig. 13(A-b) because of perfect alignment.
In contrast, the low-voltage regions shift to the left in
Figs. 14(B1-b), 14(B2-b), 14(C1-b), and 14(C2-b) owing to
lens misalignment. Furthermore, the calculated magnified
electrostatic fields of the hollow region are shown in
Figs. 14(A-c), 14(B1-c), 14(B2-c), 14(C1-c), and 14(C2-c).
As seen from Fig. 14(A-c), the electrostatic fields are uni-
formly distributed outside the hollow region. Therefore,
electrons will not stray under a perfectly aligned system.
On the other hand, electrostatic fields are intensified on the
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left in Figs. 14(B1-c) and 14(C1-c) because the stronger
gradients in Figs. 14(B1-b) and 14(C1-b) are on the left.
Thus, electrons will be pulled to the left when passing
through these two systems. Moreover, stronger electro-
static fields concentrate on the right in Figs. 14(B2-c) and
14(C2-c). So, the electrons will be pulled to the right
when passing through these two systems.

4. Conclusions

The solution-refined finite-difference method for solving
Laplace’s equation is proposed. The advantage of this
method is that a large-scale problem can be solved even if
the required memory exceeds the storage capability of the
computer. We found that the numerical solutions are close to
the analytical solutions and are maintained stably by solution
refinement. Moreover, we calculated the 3D electrostatic
fields for a well-aligned lens, a lens with a z-direction shift,
and a lens in a tilted situation for the electron-beam direct-
write lithography system using solution-refined FDM com-
bined with the MPI scheme. A satisfactory simulation result
can be obtained. One of the drawbacks of our proposed
method is that it is time-consuming to obtain stable solutions
during the refinements. However, this method can be useful
for solving a large-scale problem that exceeds the memory
or storage installation capability of high-performance com-

puters. The proposed numerical method can be used to solve
Laplace’s equation, as shown in this paper, and it can also be
used to solve other partial differential equations for solving
large-scale problems.
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Fig. 14. (Color online) Calculated voltage distributions at center of right-

half 90V lens [subplots (A-a), (B1-a), (B2-a), (C1-a), and (C2-a)],

magnified plots [subplots (A-b), (B1-b), (B2-b), (C1-b), and (C2-b)], and

electrostatic fields of the magnified plots [subplots (A-c), (B1-c), (B2-c),

(C1-c), and (C2-c)]. (A-a), (A-b), and (A-c) show the plots for a perfectly

aligned case. (B1-a), (B1-b), and (B1-c) show the plots in the case in which

the 90V lens has a 250 nm z-direction misalignment. (B2-a), (B2-b), and

(B2-c) show the plots in the case in which the 90V lens has a 500 nm

z-direction misalignment. (C1-a), (C1-b), and (C1-c) show the plots in the

case in which the left-half 90V lens has a 2.5� downward tilt. (C2-a),

(C2-b), and (C2-c) show the plots in the case in which the left-half 90V lens

has a 5� downward tilt.
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