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A SEGREGATED SOLUTION ALGORITHM FOR 
INCOMPRESSIBLE FLOWS IN GENERAL CO-ORDINATES 
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SUMMARY 
To analyse an incompressible Navier4tokes flow problem in a boundary-fitted curvilinear co-odinatc system is 
definitely not a trivial task. In the primitive variable formulation, choices between wrhg variables and their 
storage points have to be made judiciously. The present work engages Contravariant velocity components and 
scalar pressure which stagger each other in the mesh to prevent even-odd pressure oscillations from emerging. 
Now that smoothness of the pnssure field is attainable, the remaining task is to ensure a disuete divergence-fire 
velocity field for an incompmsible flow simulation. Aside h m  the flux discretiZations, the indqensable metric 
tensors, Jacobian and Chistoffel symbols in the transformed equations should be approximated with care. The 
guidmg idea is to get the property of geometric identity Pertaining to these grid-sensitive discretizatons. In 
addition, how to maintain the revertible one-toone equivalence at the discrete level between primitive and 
contravariant velocities is another theme in the present staggered formulation. A semi-implicit segregated solution 
algorithm felicitous for a large-scale flow simulation was utilized to solve the entire set of basic equations 
iteratively. Also of note is that the present segregated solution algorithm has the Virtue of reqUiring no user- 
specified relaxation pammeters for speedmg up the satisfaction of incompmsibility in an optimal sense. "hu 
benchmark problems, including an analytic problem, were investigated to justie the capability of the present 
formulation in handing problems with complex geometry. The test cases considered and the results obtained 
herein make a useful contribution in solving problems subsuming cells with arbitrary shapcs in a boundary-fitted 
grid system. 
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1. INTRODUCTION 

In fluid engineering, numerous problems of practical relevance are centred around the incompressible 
Navier-Stokes equations. To develop a computer program capable of simulating this class of fluid 
flows in an arbitrary domain is defmitely beneficial to many industrial societies. A multitude of efforts 
have been made by researchers in the community of computational fiuid dynamics. With the advent of 
modem computers, this technique is slowly emerging as a substitute for much more expensive 
experimental calibration. 

Simulation quality for an incompressible fluid flow can be evaluated from several viewpoints such as . .  
solution accuracy and stability. Aside h m  the prediction error arising from the flux dkretmb on, an 
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inevitable evaluation of metric tensors is another major source of errors when a boundary-fitted, non- 
orthogonal co-ordinate transformation is conducted in the finite difference setting. Unless one uses a 
non-co-ordinate-invariant approach,' an attempt to model these geometric quantities turns out to be 
indispensable in the hope of retaining good solution accuracy in a non-uniform mesh with substantial 
grid skewness. Discretization errors originating from these curvature terms can be largely reduced to 
the satisfaction of physical reality if rules can be followed. How to manipulate these geometric 
quantities appearing in the transformed equations will be considered in this paper. We are also aiming 
at enhancing the scheme stability, together with high-order solution accuracy, so that the developed 
computer programme can be used over and over in predicting industrial flows. 

To conduct a large-scale flow simulation, direct approaches' are not advantageous in the sense of 
both execution time and memory storage as compared with segregated appro ache^.^ This has led many 
authors to analyse the entire differential system iteratively in an ad hoc manner. Inspired by the 
pioneering works of Harlow and Welch4 and Chorin: which can be interpreted as operator-splitting or 
fractional step methods, many decoupled methods for the solution of incompressible flow equations 
were developed later. In this class of methods the guiding idea is to employ a two-step time 
discretization for the conservation equations so that the primitive pressure variable can be decoupled 
from the momentum equations.6 The intermediate velocity can be projected onto a subspace of 
divergence-free vectors. This projection theory works effectively only for the timedependent 
incompressible Navier-Stokes flow analysis. If one is only concerned with the steady state solution, the 
segregated approach of Patankar' will be more attractive. The pressure gradients still serve as the 
source terms in the momentum calculations. 

2. THEORETICAL FORMULATION 

In the open literature the primitive variable (velocity-pressure),' streamfUnction-vorticityg and 
velocity-vorticity" formulations are three major settings of dependent variables that have been 
commonly used in incompressible viscous flow simulations. Each formulation has certain advantages. 
In every aspect an overwhelming superiority of one method over the other two has not been clearly 
demonstrated. The present analysis is based on the velocity-pressure formulation, so that the physics 
of the fluid flow taking place in a Cartesian system can be analysed by solving the following tensor 
form of the conservation equations: 

a a ap a - (pui)+--@u.u.)= J J  
at hj 

where ui are the Cartesian velocity components. In dimensional form P is the pressure, p the density 
and j l  the dynamic viscosity. 

With the aid of a boundary-fitted coordinate (BFC) transformation" it was possible to simulate a 
realistic flow problem by using a finite difference or finite volume method. This technique is the 
subject of intensive numerical research and has been applied to a wide variety of flow problems. The 
reason for this increased activity of making use of non-orthogonal co-ordinates rather than the classical 
orthogonal co-ordinates is grounded in its flexibility of representing a complex geometry. The 
goveming equations (1 a, b) an fist transformed to those in a curvilinear co-ordinate system and then 
discretized in a rectangular grid system. After conducting a series of chain rule manipulations, the 
goveming equations (la, b) can be represented in a general non-orthogonal curvilinear co-ordinate 
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system as 

To date, a large variety of numerical models have been proposed, analysed, discretized and evaluated 
for incompressible viscous flows. The velocity-pressure formulation has gained wide acceptance, 
presumably because it involves the variables of most interest in industrial flows. In this context, 
Cartesian,I2 ~ontravariant,’~”~ covariant15 velocity components and physical contravariant velocities16 
could be chosen as the dependent variables for the transformed basic equations. Besides these, a 
mathematical model using the contravariant velocity along the flow direction and the other two 
primitive velocities in the transverse co-ordinate plane was also prop~sed.’~ While the use of primitive 
velocities could render simpler conservation equations, it is subject to erroneous prediction, since the 
flow is not aligned well with the grid lines in a curved grid. As for the covariant velocities, they tend to 
couple with the pressure but at the expense of yielding a more complex discrete flux expression. For 
the contravariant velocity and its physical components the difficulties are reversed. Physical 
components of the contravariant vector are particularly attractive when the analysis is carried out on a 
non-uniform grid, since the derivative of a contravariant component becomes non-zero even if the flow 
velocity is uniform. Contravariant velocity components have been applied by one of the present 
authors to analyse both parabolized Navier-Stokes equations’* and Navier-Stokes equations.” The 
present work is a continuation of this previous work. We prefer to use contravariant rather than 
covariant components, mainly because the transformed convective and diffusive fluxes in a curvilinear 
system bear a resemblance to those formulated in a Cartesian co-ordinate system. Many effective 
solution algorithms that are available in the Cartesian context can consequently be employed safely. 
The inferiority of the underlined contravariant velocity to the physical contravariant components will 
be circumvented in the present study. 

The basic equations represented in a strong conservation law form are obtained by firstly 
multiplying equations (1 a, b) by the transformation Jacobian determinant (4 and then using the metric 
identity (a/at,,,)(Jat,,,/;ai) = 0 to bring the product inside the partial differentiations of 
every convective and diffusive term in the equation set.” This manipulation results in the following 
transformed equations, where U and V serve as the dependent variables for the t- and q-momentum 
equations respectively: 

where 

continuity 1 0 0  0 0 



518 

and 
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a s2 = j p U [ g " ( 4 ) (  + g'2(e,),ll + IN*"(&;)( + g12(&;),l)ll 

+ -lI(NUk2'($)c. + g22(&,k)q11 + (Nv[{€?(&;k)t + 22<$),1119 
a g'* =2' = --, B s"=- Y 

g" = Jz' 
a = + + &  B = xcx, + Y€Y,q Y=$+dv 

(4.4 
a 
av 

JZ J2' 

J = xt r ,  - x,,y<, & I  = (, E2 = q .  

The velocity components defined in the (x,  y )  co-ordinate system map to the computational co-ordinate 
system via the following one-to-one relations: 

u = tXU + 5;v. v = 'Ix" + 'Iyv. ( 5 )  

The strong resemblance between equations (2) and (3) enables us to adopt a solution algorithm that 
has been successfully developed in the Cartesian co-ordinate system and apply it directly to its 
curvilinear counterpart. 

3. DISCRETIZED CONVECTION SCHEME 

'Ifrpically, the existing multidimensional upwind schemes were developed by modifylug an ad hoc one- 
dimensional scheme through the space-operator-splitting ~rocedure.~' This gives rise to a so-called 
numerical diffusion error featuring the lowest order of mixed derivative term in the modified equation. 
Numerical inacmcy of this type might mask the real physics regardless of the accuracy order of the 
employed scheme. The deterioration accuracy is especially severe when the flow is not aligned well 
with the grid lines. To exploit a truly multidimensional advection scheme is consequently essential 
provided that the solution sought is of high quality." This paper aims at presenting a quadratic upwind 
two-dimensional advection scheme in an attempt to reduce the computed inaccuracy stemming from 
the dimensional splitting. The underlying philosophy in designing the present advection scheme is to 
take the flow direction into consideration. 

For the sake of simplicity we consider a pure convection equation in this regad 

a4 a4 a4 -++-+v- = 0. 
at ax ay 

Also, for the sake of ease of analysis, both velocity components are assumed to be positive. Referring 
to Figure 1, we utilize 10 nodal points to represent the discrete transport of equation (6): 

"+' - " AXAY (Fr4r - F I ~ ,  Ft#Jt - Fb$b)"+' = 0, (7) At 
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Figure 1. Lay-out of s taggd grid system 

where 

Fr = uEAY. = upAy. Ft = V& Fb = v,,Ax, 

4;+' = 4%: + Sh,, $"+I UD, = 4 P l  '%b, = Q ( 3 4 E  - 4W - 4 h  - 4S), 
s;l, = 4(34P - 4- - 4Nw - 4SW)q 

SftD, = i (34P - 4ss - 4 S E  - 4sw). 

,pn+l - 4;+l = 42; + Pi?, 

= 4 g  + s"HD,, 

UD, - 4w 

4G = 4s, 
4;+I = 4%: + Pm,, &"+I m1 = 4P '%D, = ( 3 4 N  - 4.9 - 4 E  - 4 W ) v  

This partial implicit discretization formulation falls within the category of interface-based upwind 
schemes where the invoked stencil points are not necessarily distributed only on the coordinate lines 
passing through the reference point P. Hereinafter we designate the above advection scheme as the 1 /8 
QUICK scheme. Detailed discussion of it may be found in Reference 23. 

4. SOLUTION ALGORITHM 

Existing methods which solve the pressure-velocity coupled system (1) encounter two notorious 
difficulties: (i) the presence of odd-even pressure oscillations and (ii) the enforcement of the discrete 
continuity equation to machine error. A discretization formulated on staggered grids, such as those 
implemented in SIMPLE: MAC? and is a remedy for the first difficulty. These unphysical 
decoupling oscillations can also be suppressed in a non-staggered or collocated gridzs by imposing a 
necessary compatibility condition in an integral-differentid form. A strong point in favour of the 
collocation approach is its logical simplicity. It is, however, not a straightforward task from the 
viewpoints of mathematical derivation and numerical implementation. As a consequence, we adopt a 
cell centre scheme where unknowns are stored at the centre of each representative control volume to 
circumvent these checkerboard pressure oscillations. As shown in Figure 1, it involves a group of three 
control volumes, two for each contravariant velocity and one for the pressure. The mixed formulation 
is a trivial remedy for the second difficulty. The disk storage required, however, can be considerable 
and in many cases may be insurmountable based on the state of the art in computer technology. It poses 
a severe limitation in multidimensional computations. We are therefore led to the segregated approach 
which will be discussed later in this section. 
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By integrating the conservation equations over their respective quadrilateral cells, together with use 
of the divergence theorem, one can convert the partial differential equations to integral form. Each 
momentum equation in its respective control volume thus can be discretized as follows: 

t-momentum equation, 

q-momentum equation, 

Hereinafter we use a superscript asterisk to denote the previous iteration step. While the relaxation 
factors aLI and a'are important in effectively reducing the momentum residuals, we assign them to be 
constant (au= a'= 0.8). The pursuit of an optimal relaxation procedure is under way. 

For solving a large-scale problem with a traditional computer, one has a preference for a projection 
method2697 or the simplified marker- and-cell methodzs which have been developed underlying the 
concept of C h ~ r i n . ~  In these methods one can split the numerical operator and achieve pressure- 
velocity coupling through solving a Poisson-like elliptic equation for either the pressure2' or the 
pressure correcti~n.~ Since this concept is not applicable to steady state analyses, a segregated 
approach, with first-order accuracy in time, of the SIMPLE type3 will be employed herein. 

From a guessed pressure field we have no difficulty solving for the contravariant velocities from the 
momentum equations in succession. These computed velocities violate the divergence-free constraint 
condition and in turn reflect in the pressure field." The strategy to correct these erronemus pressures 
consequently must take this constraint condition or continuity equation into account. By bearing this in 
mind, a Poisson equation is derived as 

apI$ = + awPw + uNPN + us& + b, (10) 
where 

aE = Wd)eAv* aw = (PJd)WA% a N  = (Pl4nAS- as = W4& 

b =  - (PJ)plAcAq + [ @ J u * ) ~  - @JU*),]Av + [(pJV*),  - @JV*),]At 
At 

+ uEd2P',Ie - aWg"<Iw + aN821P;In - u.&lp;Is- 

The above positive definite matrix equation for the pressure correction can be solved effectively either 
by the well-known Thomas direct solver or by a variant of conjugate grarllent iterative solvers along 
with a boundary condition P = 0 of the Dirichlet type. 
As is common practice, this semi-implicit coupling solution algorithm is also sensitive to the 

preassigned values of pressure. One thus has to cope with this problem by devising an effective 
relaxation procedure for velocities. The demand on a relaxation procedure for the pressure is also great 
and calls for a refined appr~ach.~' One way to correct the pressure field is to add a fraction 8 of P to 
the previously computed pressure field P*: 

P = P +dP. (1 1) 
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Since d determines the rate of discrete divergence towards machine zero, it is not encouraged by 
assigning the value of c f  by experience. In the present study we are to reduce the global residual 

GZ= ( R t + e )  

in the course of segregated processes. The ingredients chosen in the above momentum reductions take 
the forms 

(13) 

(14) 

The relaxation factor c f  is obtained by setting i3G2/&' = 0 to minimize the error.31 It leads to the 
following spatially independent expression for 8: 

R, = cCUc - ~ c ~ U *  - S, - A : ( G  - p*E) - A:(P* - p+Nc) ,  
Rv = Cn Vn - C Cnb vnb - Sv - A h ( G  - 6) - A;(p+N, - GC). 

In response to the above-mentioned pressure change, the velocities are then corrected accordingly: 

One can repeat the above computational procedures using the updated pressure to solve for the 
contravariant velocities, until each momentum residual reaches the user-specified convergence 
tolerance. 

5 .  CALCULATION OF GEOMETRIC COEFFICIENT TERMS 
Comparing the Navier-Stokes equations formulated in two different co-ordinate systems, they are 
virtually invariant after the curvilinear co-ordinate transformation has been made. In the transformed 
equations (2) the transformation production terms featuring the mesh distortion, however, are rather 
memory-intensive and cumbersome to compute. These geometric quantities require differentiation of 
mapping once or twice. Owing to the necessity of computing Christoffel symbols, contravariant metric 
tensors and base vectors, the solution accuracy depends largely on the discretization schemes for these 
geometric quantities. As a consequence, any flow simulation involving contravariant velocity 
components is under the influence of grid uniformity and skewness. We have felt the need for a treatise 
that these two issues must be well taken care of when using the present contravariant velocity 
formulation. 

On non-orthogonal grids, two basic guidelines leading to physically plausible meanings have been 
proposed.32 The first requirement deals with the discrete level of the geometric identity. To achieve this 
goal, we integrate the transformed continuity equation over a continuity cell: 

With the help of the divergence theorem this surface integral can be analytically converted to the line 
integral 

1 (JU dq + Jy d 0  = 0 (18) 

or 
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In cells of arbitrary shape the above expression can be furthermore approximated as follows, 
assuming the case considered involves a constant velocity vector (u, v): 

or 

These equations provide us with good knowledge of handling grid-sensitive terms such as XC, x,,, y,, 
and ye  It is important to note that equations (20 and 21) deal only with the differentiation of mapping a 
cell, shown in Figure 2. Coordinate values other than those in the investigated cell have nothing to do 
with the evaluations of these geometric quantities. As an example of this observation we can compute 
xt, x,,, y q  and y t  from the underlying interpolation theory: 

0 0 

i= I j=1 

where N,+n, n)  are known as biquadratic shape  function^.'^ Use of the above mapping yields 

By substituting these biquadratic shape functions N,{m, n )  into equations (23), the discrete levels of 
(20) and (21) are reached. 

Another crucial issue, which might even cause substantial errors in a uniform velocity field, has been 
reported in a grid system where an abrupt change in mesh density exists.34 Under this simple flow 
condition the discrete equation can be exactly satisfied by using the physical contravariant velocity 
components.35 This highlights the importance of evaluating the Cartesian velocity components from 
their corresponding working variables (contravariant velocity components). It necessitates the 
development of an interpolation method for surmounting numerical difficulties in regions with an 
abrupt change in mesh size. 

By definition, U and Yare given by equation (5). Analyhcally, these relations amount to 

11 = JbXU - ty:,v>. v = J(-tl,U + C X Q .  (24) 

y t  t" 

Figure 2. Transformation firom a physical cell in (a) to a rectangular computational cell in @) 
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F i m  3. Location of velocity nodes 

Because of the staggered nature, we have to interpolate the value of V when calculating u and likewise 
to interpolate the value of U when calculating v. Referring to Figure 3, the area-weighted interpolation 
scheme is used to compute the contravariant velocity component, for example, on the west side of the 
control surface: 

Once the contravariant velocity component Uw becomes available, one can compute the Cartesian 
velocity (u, v) at the grid point ‘w’ from 

(26) uw = JW(%lWUW - tyIwVw). vw = Jw(-%lw~w + txlw~w)* 
For the sake of a clear illustration of the underlying concept, we briefly summarize the procedures that 
yield the values of (u, v )  from the available setting (U, V). 

(i) Given an analytic Cartesian velocity field (u, v). 
(ii) Set up an analytic grid distribution so that the geometry coefficients can be exactly computed. 
(iii) Calculate the contravdant velocity field (U, V) from the transformation relations shown in 

equation (5). 
(iv) Interpolate the value of Y when calculating u and the value of U when calculating v from 

equation (24) by the present algorithm. 
(v) Compare the solutions from step (iv) with the exact solutions given in (i). 

Figure 4. Comparison of cootour plots of U-velocity betmen wmputcd (-) and analyt~c (---) d t s  
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To facilitate the assessment of the proposed area-weighted interpolation, we have worked on the 
velocity field 

u = v = ? + J ?  

and the analytic mapping (x, y)  + ( r ,  q), 

The test case considered and the results shown in Figure 4 validate the effectiveness of the present 
procedures in dealing with the velocity transformation in a skewed grid system. 

6. COMPUTED RESULTS 

For the flux terms and metric tensors, several examples are given below showing the utility of the 
proposed method in handling problems with arbitrarily discretized cells. In these calculations the 
effects of the Reynolds number, grid concentration and relaxation factor on the simulation quality were 
taken into account. 

6. I .  Navier-Stokes equations with analytic solutions 

The h t  case is that of an analytic problem defined in a rectangular domain 0 < x,  y < 1. The 
incompressible Navier-Stokes equations are solved on several continuously refined grids. At the 
boundary points the velocities are specified according to the analytic expressions 

u = -y, (29) 
v = x. (30) 

(3 1) 

With these the analytic pressure distribution in the physical domain is given by 

p = f(2 +J). 
In this problem, attention was directed to confirming whether the proposed schemes work in 
approximating non-linear advective fluxes and metric tensors. Figure 5 plots the contours of pressure 
enor obtained on a mesh containing 80 x 80 nodal points. The good agreement between the analytic 
and numerical results indicates the reliability of the numerical analysis. 

On the basis of computed solutions at nodal points starting from 20 x 20 to 80 x 80, a mesh 
sensitivity analysis was also conducted for Re = 1000. Figure 6 shows the residual reduction against 
the continuously refined grid size, from which the rates of convergence are 1.956 and 1-997 for the 
velocity and pressure respectively. In the present calculation the convergence criterion consisted of 
ensuring that the largest normalized residuals for the three conservation equations were less than 
By invoking the Lax equivalent theorem, the numerical stability is ensured, as the scheme presented 
meets the conditions of convergence and consistency. 

The next two cases involve problems of internal and inflow-out!low types. Although their analytic 
solutions are not available, these problems are presented to confum the capability of the finite volume 
code in handling problems with arbitrarily discretized cells. 

6.2. Laminarjlow in a slcew-driven cavity 

First we considered an incompressible fluid flow in a tilted cavity as shown in Figure 7, which is 
depicted by a parallelogram of length L = 1. This problem has received wide attention because the 
domain discretization is easily implemented. 
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Figure 5.  Error contours for prcssun 

0.01 0.06 Of0 
A %  

Figure 6. Error reductions for velocity and pr#lsurc at diffenmt grid sizes 

We divided the physical domain into two families of mesh lines parallel to one of the disco~ected 
boundaries. ?kro tilt angles, 8=n/4 and 4 6 ,  were investigated. This leads to a uniform but non- 
orthogonal grid system. Boundary conditions of the Dirichlet type are imposed at the cavity wall. We 
specified u = v = 0 everywhere except at the upper boundary, where u = 1,  v = 0. Solutions were 
sought at Reynolds numbers of 100 and 1OOO. In order to ensure that grid-independent results are 
attained, a continuous refinement consisting of 21 x 21,41 x 41 and 81 x 81 cells is necessary. 
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L=l 

X 

Figure 7. Schematic diagram of a tilt cavity 

Figure 8 shows the Cartesian velocity distributions along the centreline CL1 for u and the centreline 
CL2 for v, together with comparison results given by Demirdzic ef aZ. for Re = As seen From 
Figure! 8, the predicted u in a cavity of tilt angle 8 = 30" approaches that of Demirdzic et u Z . ~ ~  for a 
320 x 320 grid system. We also plotted the computed velocities along the centrelines CL1 and CL2 in 
Figure 9 to study the influence of the Reynolds number on the grid dependence. Both tilt angles have 
been investigated. By comparing the computed data in Figures 8 and 9 for different angles 8 = 30" and 
45", we found that the grid dependence seems to exhibit an asymptotic behaviour for the lower 
Reynolds number. Figure 10 depicts two types of convergence histories against the iteration number. 
Noticeable is the wavy route of the error reduction for the maximum mass residuals. Such a 
convergence hstory is believed to be associated with the eigensystem of the coefficient matrix. The 
effects of the grid density, grid skewness and Reynolds number on the solution stability m 
summarized as follows based on the plots shown in Figure 10: with increasing grid numbers, Reynolds 
number and grid skewness the rate of convergence tends to decrease. We also plotted the kinematic 
energy inside the cavity against the iteration number at different grid densities in Figure 11 to 
demonstrate the attainable convergent solution (or steady state). 

-Dedmkic et d.,32Ox320 
NOSI : 21x21 
NOSI : 41x41 _ _ _ _ _ _  

-0.2 0.0 0.2 0.4 0.6 0.8 I .o 
U 

Figure 8(a). Velocity profiles of u along CLI against grid density for 0 = 30" and Re = 100 
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0.3 r , , . , , , , , , , , I . , , ,  

0.2 - - 

- 

NOS1 : 21x21 
NOSI : 41x41 
NOSI : 81x81 

------ 

t . . . . I . . .  . 1 .  * * ' I *  & . . I  
Figure 8(b). Velocity profiles of v along CLZ against grid density for 0 = 30" and Re = 100 

In a fixed domain the physical complexity has a close relation with the high Reynolds number. A test 
problem of higher Reynolds number should therefore be analysed to ensure that the numerical solution 
converges correctly. With this reasoning a flow condition of Re = 3200 was considered in a square 
cavity instead of the skew cavity owing to the lack of comparison data. The m r  reduction, illustrated 
in Figure 12, still proceeds quite well. For the sake of comparison in accuracy we also plotted the 
converged solutions in Figure 13, which agree well with those of Ghia et aL3' 

- 

- - Dcmhdzic et d.,32Ox320 . 
NOSI : 21x21 
NOSI : 41x41 

- --_--- 

4.2 0.0 0.2 0.4 0.6 0.6 1 .o 
U 

F i p  8(c). Velocity profiles of u along CL1 against grid density for 0=45" and Re= 100 
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- Demirdlzic et d., 320x320 
NOSI : 21x21 
NOSI : 41x41 ------ 

t . ' ' ' I ' ' ' I ' ' ' ' I 1 "  ' ' I ' ' ' ' I 
Figure 8(d). Velocity profiles of v along CL2 against grid density for 8 = 45" and Re = 100 

The importance of relaxing the investigated elliptic system is best illustrated by plotting the 
relaxation factor for the pressure, on the basis of the rationale given in equation (15), against the 
iteration number as in Figure 14. From the computed relaxation factors we can conclude that the values 
of the relaxation factor change more rapidly with increasing Reynolds number and tilt angle. On the 
contrary, as the grid number increases, the relaxation parameters seem to vary in a mild manner 
provided that the grid skewness and Reynolds number are kept unchanged. 

-Deminbcic et d.,32Ox320 
NOS1 : 21x21 
NOSI : 41x41 - - _ _ _ _  
NOSI : 81x81 

4.2 0.0 0.2 0.4 0.6 0.8 I .o 
U 

Figure 9(a). Velocity profiles of u along CLI against grid density for 8=30° and Re= loo0 
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As discussed earlier, difficulties do exist in utilizing the contravariant components, notably the 
sensitivity to grid curvature. The implications of the metric and indispensable source terms arising 
from the mapping between two co-ordinate systems must be considered. As a consequence, we 
estimated the computing cost associated with these aspects by considering the cavity flow problem 
with a tilt angle 8 = a/2. The computing costs on a grid system of 40 x 40 nodal points are plotted 
against the Reynolds number. Two grid systems have been investigated, namely the traditional uniform 
orthogonal grid and the curvilinear one which is shown in Figure 15. Based on calculations carried out 

- - - DemirdWc et d., 320x320 
NOSI : 21x21 
NOSI : 41x41 
NOSI : 81x81 

. 
- . - .- - - . _ . - . 
------ - - 

I I I , . I . I I . I I I . I I . . I .  

4.2 0.0 0.2 0.4 0.6 0.8 
U 

Figure 9(c). Velocity profiles of u along CLI against grid density for 8 =45" and Re= 1000 

1 -Deminfifc et n1.,320x320 
NOSI : 21x21 

------ NOSI : 41x41 
NOSI : 81x81 
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Figure 1O(d). 

Figure lqe). Comparison of convergence histories between three grid systems for 0 = 30" and Re = lo00 in terms of maximum 
mass residual 



SEGREGATED SOLUTION ALGORITHM FOR INCOMPRESSIBLE FLOWS 533 

10= - 21x21 
lo" 

- 41x41 - 81x81 

4 Id 

B lo' 

a 

; lo' 
10' 

lo4 

SO0 loo0 I S 0 0  2000 
I k d O M  

F i p  lqf). Comparison of convergence histories bawetn three grid systems for 0 = 45" and Re = loo0 in terms of maximum 
maas residual 

I! 
1& 
? 
P 

21x21 t lo'* 

10" 

0 500 IWO ism 2000 

Figure lO(g). Comparison of convergence histories between three grid systems for 0 = 30" and Re = loo0 in terms of miduals of 
Wand V 

IkIdom 



534 T. W. H. SHEU AND S.-M. LEE 

I oJ 

lo" 

I oJ 

B m' 
P 10'" ,, 
D 

lo'" 

10" 

10" n 
500 IWO 1500 2m 

Itcdom 
Figure lo@). Comparison of convergence histories between three grid systems for 0 = 45" and Re = loo0 in terms of residuals of 

Uand V 

0.040 

0.035 

B 0.030 

B 
i O.OZS j 0.020 

B 0.015 

0,010 - Grid : 21x21 - Grid:41x41 - Grid:81x81 
0.005 

O.Oo0 
500 1w0 1500 2m 2500 3000 

l k d o a  number 
Figure 1 l(a). Comparison of convergence histories of kinetic energy between three grid systems for 0 = 30" and Re = 100 



SEGREGATED SOLUTION ALGORITHM FOR INCOMPRESSIBLE FLOWS 

0.030 . . , , , , . 1 . , , . , , , , , . , , , , , , , 

o.m5[ 

t 3 o m o [  

.II 
B 0.01s 

B 
1 0.010 z - Grid:21x21 - G r i d : l l d l  - Grid: 81x81 

535 

ItedbnaDmbcr 

Figure 1 I@). Comparison of convergence histories of kinetic energy between thrcc grid system for 0 = 30" and Re = loo0 

t 0.035 

0.030 

0.025 

0.020 

0.015 

0.010 

500 

- Grid - Grid 

F i p  1 1 (c). Compmiscm of convergence histories of kinetic m w  bawan thrcc grid systanr for 0 = 4Y and Re = 100 



536 T. W. H. SHEU AND S.-M. LEE 

0.030 

0.025 

h 

f O.O2O 

# 0.015 

I 

Q 

a 
€ 0.010 

2 - Grid : 21x21 - Grid : 41x41 - Grid: 81x81 

0.005 

0.000 
500 1000 1500 z000 2500 

Itemtion number 

Figute 1 1 (d). Comparison of convergence histories of kinetic energy between three grid systems for 0 = 45' and Re = lo00 

10' - SMAX - RESU 104 - RESV 
lo5  - RESP 

loJ  

1 10' 0 * loa 

10' 

10'" 

10" 

10" 
1000 zoo0 3000 1ooo so00 6Ooo 7000 

Itemloas 

Figure 12. Convergence histories of V, P and maximum mass residuals of cavity flow at Re= 3200 
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Figure 13. Comparison of U- and V-velocity profiles of cavity flow at Re = 3200 

- 21x21 
_d__ 41x41 - 81x81 

500 loo0 is00 2000 2500 UXM 
N (itcntlon number) 

Figure 14(a). Comparison of pressure nlaxation factors betwem thnc grid systems for 0 = 30" and Re = 100 
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on an Intel 486/DX33 personal computer with double precision, the difference in CPU time between 
curves 1 and 2 in Figure 16 corresponds to the extra cost needed for the evaluation of newly generated 
source terms, since the convergence histories are exactly the same. The deterioration of the 
convergence arising from the grid curvature is clearly seen from the difference in CPU time between 
curves 2 and 3 in Figure 16. 

6.3. Channelflow with a smooth expansion 

The problem depicted in Figure 17 was selected as the third test problem and also served as the 
target in the fifth workshop of the IAHR.38 The problem is plausible in assessing the effectiveness of 
the proposed scheme both on Reynolds number and on mesh uniformity. The configuration of the 
investigated expansion channel is given by the expression 

where 0 < x < x,,, = Re/3. At the bottom wall we specified the no-slip velocity condition. Owing to 
the flow symmetry, we only considered half of the domain, so that considerable computational time 
could be saved. At the centreline { (x, y) 1 0 < x < xout, y ,  = 1 } we dictated that both the transverse 
gradient and the normal velocity component be zero in order to satisfy the condition of symmetry: 

v = 0. 
au 
- = 0, 
an (33) 

At the inlet, x = 0 and 0 < y < 1,  we continuously supplied the liquid fluid with velocities given by 

24 = $(2Y -31, v = 0. (34) 

loo0 2000 3000 4mm SMM 6wo 

Reynolds number 
Figure 16. Comparison of CPU times for different analysis codes 
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Figure 17. Schematic diagram of smooth expansion channel 

For physical reasons we enforced the following boundary conditions at the exit in order to ensure mass 
conservation: 

The working variables were solved for on mesh systems consisting of 21 x 21 and 41 x 41 grid 
nodes. Two Reynolds numbers, Re = 10 and 100 were studied. The former case was chosen to check 
the influence of the distorted geometry on the proposed method, the latter to assess the convergence 
rate concerning the value of Re. The computed pressures along the wall are illustrated in Figure 18, 
together with the results obtained by Cliffe et ~ 1 . ~ ~  The predicted values show good agreement with the 
benchmark solutions, except near the inlet. Also of note is that because the test Reynolds numbers are 
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Figure 18(b). Pressure distributions along wall for Re= 100 

small, the grid dependence does not necessarily show an appreciable variation between different 
Reynolds numbers. 

The residuals in Figure 19 follow a reduction process similar to that discussed in the previous 
example. Also, we recorded the kinetic energy variations in Figure 20 to check whether flow steadiness 
can be reached. As shown in Figure 21, the computed relaxation factors change comparatively 
regularly at low Reynolds number if more grid nodes are engaged. The variations in these factors, on 
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Figure 19(a). Comparison of convergence histories of U and Y baween two grid systems for Re = 10 
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Figure 19(c). Comparison of convergence histories of maximum mass residual between two grid systcms for Re= 10 
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Figure 20(a). Convergence histories of kinetic energy for two grid systems for Re = 10 
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Figure 20@). Convergence histories of kinetic energy for two grid systems for Re = 100 
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Figure 21(b). Relaxation factors of pressure for two grid systems for Re= 100 

the other hand, become more severe as the Reynolds number increases, since the coefficient matrix 
becomes less diagonally dominant. 

7. CONCLUSIONS 

An extensive study on the present NO-SIMPLE-2D code has been conducted for an elliptic set of 
incompressible Navier-Stokes equations defined in a two-dimensional physical domain. The 
performances regarding solution accuracy as well as convergence rate have been the main concerns 
in this study. Major features and conclusions are as follows. 

1. For geometrical reasons the contravariant components are retained in the equations as working 
variables. In the framework of body-fitted co-ordinate transformation, most analysts employ 
contravariant velocities only in the continuity equation for deriving the Poisson equation for the 
pressure or its correction. For the momentum equations we also choose contravariant velocity 
components as dependent variables. The solution quality computed on a mesh system of arbitrary 
shape will be the same as that yielded by Cartesian co-ordinates with a uniform mesh size if the 
metric data resulting from the co-ordinate transformation can be computed nearly analytically. As 
a consequence, methods capable of accurately computing these geometric quantities and 
maintaining the velocity transformations between the two grid systems as analytic as possible 
have been the theme of the present development. A major advantage in favour of using the 
contravaiant velocity formulation is grounded in the fact that a simpler expression for the 
convective fluxes can be retained. This means that the non-linear flux terms that are responsible 
for the numerical instability can be more accurately discretized. In addition, it is advantageous to 
select a reliable discretization scheme, developed in the Cartesian co-ordinate system, and 
directly apply it to a computer programme formulated on the basis of contravariant velocities. For 
effectively reducing the false diffusion errors, a compact multidimensional 1/8 QUICK 
advection scheme involving a stencil of 13 points is utilized in this study. 
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2. For stability reasons the contravariant velocity components and pressure are stored in a staggered 
grid system to prevent e v d d  pressure oscillations from occuning. The goveming equations 
need discretizing at different cells in the present finite volume approach. The Cartesian velocity 
components, on the other hand, are collocated at the pressure node, so an inteqolation procedure 
is indispensable. 

3. The evaluation of curvature tern is indispensable provided that a body-fitted, non-orthogonal 
curvilinear co-ordinate transformation is implemented. The discretization accuracy therefore 
depends largely on how the contravariant/covariant base vectors, Christoffel symbols and 
Jacobian are approximated. In the present study the discretization accuracy has been 
demonstrated from the mathematical derivation as well as from the computed results. 

4. Besides the analytic problem, both inflow-outflow and enclosure cavity flow problems have been 
investigated with success. As far as the grid sensitivity, measured in the skewness and resolution, 
and the Reynolds number of these problems are concemed, there exist different convergence 
routes to enlighten their importance. The effectiveness of employing the variable relaxation factor 
for the pressure equation was also demonstrated. 
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