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Abstract

Purpose — A convection-diffusion-reaction scheme is proposed in this study to simulate the high
gradient electroosmotic flow behavior in microchannels. The equations governing the total electric
field include the Laplace equation for the effective electrical potential and the Poisson-Boltzmann
equation for the electrical potential in the electric double layer.

Design/methodology/approach — Mixed electroosmotic/pressure-driven flow in a straight
microchannel is studied with the emphasis on the Joule heat in the equations of motion. The
nonlinear behaviors resulting from the hydrodynamic, thermal and electrical three-field coupling
and the temperature-dependent fluid viscosity, thermal conductivity, electrical permittivity,
and conductivity of the investigated buffer solution are analyzed.

Findings — The solutions computed from the employed flux discretization scheme for the
hydrodynamic, thermal and electric field equations have been verified to have good agreement with
the analytical solution. Parametric studies have been carried out by varying the electrical conductivity
at the fixed zeta potential and varying the zeta potential at the fixed electrical conductivity.
Originality/value — Investigation is also addressed on the predicted velocity boundary layer and the
electric double layer near the negatively charged channel wall.

Keywords Convection-diffusion-reaction, Convection, Diffusion, Electroosmotic flow,
Poisson-Boltzmann equation, Joule heating, Electric double layer, Forecasting

Paper type Research paper

Nomenclature
Greek symbols E = strength of the applied electric field
¢ = concentration f,f = source term
D; = diffusion coefficient of the ith species, 7 = channel height

m%/s 1 = electrical current density, C/s-m?
D = dielectric constant ky = coefficient of the diffusion term
e = elementary charge, C ky = Boltzmann constant, J/K
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n = buffer ion density, mol/m®

gy = permittivity of vacuum, C/mV

ny = ion density bulk solution, mol/m® A" = Debye length, m
N, = Avagadro number (N, = 6.02 X 10%)  p = density of the investigated fluid, kg/m®
J) = pressure K = =p?\?
Cp = specific heat at constant pressure MT) = electrical conductivity of the buffer
q = Joule heat generation, W/m® solution, s/m
Re = Reynolds number (= ULt/ ) A, = -equivalent ionic conductivity of the
T = absolute temperature, K cations, m’s/mol
Ut = reference velocity, m/s A_  =equivalent ionic conductivity of the
u = velocity vector anions, m?s/mol
u = velocity component along x direction A, = the value of A, at room temperature,
v = velocity component along v direction mPs/mol
z = valence of the ion A_o = the value of A_ at room temperature,
& = surface zeta potential, V mPs/mol
v = Kinematic viscosity, m*/s n, = the number of moles of cation in the
[} ==¢+ ¢ electrolyte, M
p. = space charge density n- = the number of moles of anion in the
P = permittivity of the buffer solution, electrolyte, M

C/mV &(T) = dielectric constant of the electrolyte
b = externally applied electrical potential ~ w(7") = viscosity of the electrolyte, Pa-s
¢y = electrical potential in EDL

1. Introduction

Due to the large surface-to-volume ratio in microchannels, liquid fluids in
microchannels, subjected to an externally applied electrical field, can be affected by
the formation of electric double layer (EDL). Near the charged surface, which is in
contact with an electrolyte, EDL consists of a compact layer of immobile balanced
charges and a diffuse layer of mobile ions. This counter ion shielding layer is normally
characterized by the Debye length, which typically has a value of 10 nm or less. The
interface between the compact (or Stern) layer and the diffuse layer, in which liquid
velocity is equal to zero under the zero pressure gradient condition, is called the shear
plane. In diffuse layer, counter ions in excess can cause the fluid to convect under the
externally applied force. This electroosmotic phenomenon was observed by Reuss
(1809). Such a bulk flow nature is now known as the direct consequence of
electroosmosis since moving ions can make their surrounding fluids to flow by virtue
of the fluid viscosity. The microchannel flow in EDL, which differs very much from the
conventional Navier-Stokes flow, warrants therefore a fundamental study.

Thanks to the emerging micro-electro-mechanical system techniques,
electroosmotic flows have been found in many complex microfluidic networks for
the purposes of loading, mixing, and flushing. Due to the emerging lab-on-a-chip
microfluidic devices, numerous experimental and computational studies have been
conducted in the past for increasing our understanding of the electroosmotic
phenomena in microchannels. Most of the former investigations addressed the
hydrodynamic behavior that is featured with the plug-flow velocity type. The Joule
heating in electrohydrodynamic field cannot only cause the electrolyte temperature to
increase but can also result in a larger temperature gradient, which may dramatically
affect electroosmotic flow, transport of bio-sample and sample separation. In addition
to the low column separation efficiency, reduction of resolution and loss of the injected
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samples, instability of low-Reynolds-number electrokinetic flows with the high
gradient of electrical conductivity may occur inside the microchannel, which is
subjected to a strong electric field (Lin ef al., 2004; Storey, 2005).

With the advent of high-performance computing facility and better knowledge
about EHD in the design of MTAS, numerical investigation of Joule heating effect on
the electroosmotic flow and the study of electrophenetic transport of solutes in
microfluidic channels have become one of the focal research attentions in the area of
EOF (Tang et al.,, 2003, 2004, 2006; Horiuchi and Dutta, 2004; Garai and Chakraborty,
2009; Singh et al, 2008; Arnold et al, 2008). To optimize the DNA hybridization
performance in microchannel, within which fluid flow will be driven by electrokinetic
and pressure forces, one can also simulate the EOF equations (Das and Chakraborty,
2007; Das et al., 2006). As the first step to investigate the onset of instability due to the
time-dependent electric and hydrodynamic properties, which cannot result in
negligible gradients (temperature-dependent electrical conductivity, for example) in
solutes, electrohydrodynamics will be studied in the microchannel by taking the
Joule heat into account in the formulation of energy equation. This work is therefore
aimed to elucidate some insights of the formation of EDL and to enlighten its relation
to the developed velocity boundary layer. The competition among the viscous force,
pressure gradient force, and electrokinetic body force due to the EDL formed
immediately adjacent to the bounding wall will be explored numerically.

The rest of this paper is organized as follows. In Section 2, the coupling equations for
the hydrodynamic, electrical and thermal field variables are described at length. Joule
heating will be taken into account in the energy equation. In addition to the inertia, viscous,
and pressure gradient forces in the hydrodynamic system, the electrokinetic body force is
also considered in the equations of motion for the calculation of solute acceleration and,
then, the velocity in the resulting electrohydrodynamic system. The locally analytic
convection-diffusion-reaction (CDR) scheme applied to approximate the spatial derivative
terms shown in the system of six coupled equations will be described in Section 3 and is
then verified in Section 4. The predicted results for the problems investigated at different
conductivities and wall zeta potentials will then be discussed in Section 5. Finally, some
conclusions drawn from this study will be summarized in Section 6.

2. Working equations

We will investigate the electrokinetic fluid flow, subjected to a wall zeta potential, at
different electric conductivities in a straight microchannel to address the Joule heating
effect on the electroosmotic flow velocity. A full coupling of the equations among the
electric, hydrodynamic and thermal fields will be considered. For an incompressible
electrolyte flow, subjected to an externally applied electric field, the continuity equation
and Navier-Stokes equations can be expressed in terms of the electrolyte density (p),
hydrodynamic pressure (p) and velocity (u) given below:

V-u=0 €))
g—?+(u-V)u=—%Vp+vV2u+f 2)

The source term f(= p,E) in equation (2) denotes the electrokinetic body force due to
the formation of EDL along the no-slip bounding surface (Probstein, 1994), where p,



is the local electric charge density. The strength of the applied electric field E can be
normally expressed by the negative gradient of electrical potential ®:

E=-Vo 3

At the steady state, ® can be modelled by the following Poisson equation according to
the theory of electrostatics:

Vied) = — 2 )
€0

In the above, go( = 8.854 X 10~ C/V-m) and & denote the permittivity of vacuum and
fluid medium, respectively. Note that equation (4) is normally used to describe the ion
and potential distributions in diffuse layer.

One can separate ® into the electrical potential ¢, which is developed due to the
externally applied electric field, and the electrokinetic potential . Based on this
decomposition of solution variables, equation (4) can be rewritten as the sum of the
following two equations (Masliyah, 1994):

V- (MD)V) =0 5)
V2 (e(T)) = —Z—; ©6)

In this study we assume that the electrical conductivity of the investigated electrolyte
depends on the temperature as A7) = A, (T)n, + A_(T)n_ S/m. Here,
A (T) (= Ayq + 0.0250, (T — 298.13)m*S/mol) and A_(T) (= A_o+ 0.025A_
(T — 298.13)m*S/mol) are denoted as the ionic conductivity of the cation and anion
of the electrolyte, respectively (Weast ef al, 1986). As for n, and 7_, they represent
the mole concentrations of cation and anion present in the electrolyte. Also, the fluid
permittivity is assumed to vary exponentially with the absolute temperature 7" as
&(T) = (305.7 exp(— 77/219))/e.; (Tang et al., 2006). Since the electrolyte under current
investigation is classified to be symmetric and univalent, p, can be represented by the
following expression (Probstein, 1994):

_ Zngez @
pe = o sinh ( T T) )

In the above, no( = 6.02 x 107 1/m®) is the density of positive or negative ion in the
buffer, e(= 1.6 x 10~ '°C) denotes the electron charge, and z(=1) is the valence.
In equation (7), &, is known as the Boltzmann constant ( = 1.38 x 10~ 2 J/K). Under the
above conditions, equation (6) can be rewritten as follows for ¢ (Hunter, 1981):

V2 () = 210% Ginh <ﬂ> ®)

€0 kb T

In the presence of an externally applied pair of electric field (—a¢/0x, — 9 /9y) and
electrokinetic field (— a4/ox, — 94/0y) in the diffuse layer, Navier-Stokes equations can
be expressed as follows:
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For modelling the Joule heating effect in EOF, one can adopt the consistent scaling
introduced in Nithiarasu and Lewis (2008). In this study we normahze the dependent
and independent Varlables in a d1fferent way glven by ¥ = x/H v =y/H,
t" = = (Urest)/H, M = u/Uses, v' = = 0/Uset, p _p/PUref I-L = (1) thres,
l// = (zey)/(ky T), 7’l+ = 7’l+/7’l0, T=n_ /7’!(), Uret = = (erete0€Pres)/ (resl). The
resulting dimensionless Workmg equations, in addition to equation (1), are

summarized as follows:
(A( )—"5) <A(T>—"5) ~0 an

0 9 9 2H%z%e’n
2 ( ( )—"’) ( () "’) _2ZE Gy a2
0x kb Eref€Q
ow ou  du_ p 1 0 1 ou
dt+u -H)@_ ax+Reax<( ¥ ) Re ay<() )
13)
2Hzenos1nh(¢f) 0 9 2noky, Tsinh(y) 0 o
pU?ef ox pUref ax
v v v _ d ov 1 9
E—I—u@—l—v@— ay+Re 0x <“(T)ax) Re oy (M( )ay>
(14)
2Hzen051nh( ) 0 q,’) n 2noky Tsinh(y) o 1/;
pUref ay pUref ay

where Re is defined by ( pUyeH )/ urer. Note that all superscripts “*” have been omitted
for the sake of brevity. The electrolyte viscosity under current investigation is assumed
to vary with the temperature according to w(7") = 2.761 X 10~ ®exp(1713/T") Pa- s/ tiret
(Tang et al., 2006).

In mixed formulation, the divergence-free constraint equation (1) will be solved
together with the momentum equations (13) and (14). A direct employment of the
incompressibility constraint equation will, however, increase both of the matrix
condition number and matrix size. To overcome this computational difficulty, we adopt
the segregated approach by reformulating the mass conservation equation in terms of the
pressure variable by virtue of (9/0x)(13) + (3/0y)(14) and, then, employing equation (1).



The resulting pressure Poisson equation, which is derived to replace the mass
conservation equation (1), is as follows:

S Y G N LA SR s LAWY L

Vp_ax[ (dt+ T y) ax(M(T)ax) <() > (ax M)}
0 [ (2 3 () 4 L1
G ) () 1 (u05) - (55

(15)

Since the permittivity () and electrical conductivity (A) in the buffer solution are both
dependent on the temperature, energy equation for modeling the time-evolving
temperature needs to be derived. By taking into account the Joule heat for obtaining an
accurate temperature distribution in the electroosmotic flowfield, the governing
equation, cast in its dimensional form, for the conservation of thermal energy is given
below according to the first-law of thermodynamics:

dT oT d oT 0 oT

In the above, ¢, is the specific heat capacity, %, the thermal conductivity and g the Joule
heat. Note that heat generation due to the viscous dissipation is normally quite small and
can be neglected. According to Ohm’s law, generation of energy due to Joule heating can
be expressed as ¢ = (I-I)/A(T) (Tang et al., 2003), where I denotes the electrical current
density in the solution. In the current study, the electrical current density is resulted from
EA, which is due to the electric field applied to the conductive solution. As for p,u, it
results from the net charged density moving along with the fluid flow. In other words, the
electrical current density I can be expressed as:

I=pu+ ATE (17)

Substituting equation (17) for I into Ohm’s law and, then, into equation (16), the energy
equation for 7T can be derived as follows:

oT oT oT d oT
oG o) = (D5 45 (v )

L +E AT + (vpe + EyNT))
NT)

(18)

Based on the chosgn normalization quantities given by 7" = (T — Tred/(To — Tred,
k™= k(T ks, n = Ny /N, n* =n_/ng, the dimensionless energy equation
containing the Joule heat is derived as follows:

oT  oT  oT _ 1 [d oT\ | 0 0T
T i (O5) s (0]

H(up, + E;X(T)? + H(vp, + E,N(T))?
pCZ?Uref(TO - Tref)/\(T)

(19)
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It is worthy to note that the conservation equations for incompressible electrolyte
solution, ionized fluid flow with the electroosmotic body force, the Laplace equation for
the external electric field, the Poisson-Boltzmann equation for the zeta potential, and the
conservation of energy with Joule heat can be cast into the following generalized form:

G +ud, +vd, =TV +f (20)
The definitions of all field variables ¢, diffusivities I, and f are tabulated in Table .

3. Numerical model
Unlike the Newtonian fluid flow, velocity gradient of EOF in the microchannel can be
very large near the bounding wall. To sharply resolve this high-gradient velocity,
we present below the computationally very accurate and stable CDR scheme.

The model equation suitable to represent each equation in the electrohydrodynamic
system can be generally expressed as follows:

b+ ude +vd, — VG4 ch=f 21)

For simplicity, calculation of the above CDR differential equation is subjected to a
specified boundary value of ¢. In the above, k£ and ¢ denote the diffusion coefficient and
the reaction coefficient, respectively. In what follows, the values of «, v, k£ and ¢ will be
assumed to be uniform. By applying the operator splitting method of Peaceman and
Rachford (1955), the solution for equation (21) can be step-by-step calculated from the
two equations given below:

ud, — kg, +cd* =11 22)
v = kg + e =1 23)

In the above, f1 = f* — v, +k¢> and fo = 1 — ud) +kq,’>

Thanks to the above two equatlons we are led to know that the key to accurately
solve equation (21) depends on the chosen discretization scheme for the following
model equation:

”d_)x - k‘{’xx + C‘;B 2]7 (24)

Our strategy of approximating equation (24) is to employ its general solution given
below:

Px) = 1M + cpe™* +];[ (25)

where A12 = (u = Vu? + 4ck)/2k and ¢; and ¢y are two arbitrary constants. By
applying the artificial viscosity model, the discrete equation for equation (24) at an
interior node 7 is expressed as:

( 21/;4 Z; )¢11+2( )¢’ (Zh 72 )¢z+1 f (26)

where /2 is the mesh size. The exact solutions given by i1 = cre™MeMig coe "Zf‘e Ao |
(f/0), i = cre™ + coe™¥ + (f/c) and -1 = cre MM 4 cye Mo AN 4 (f/c) are
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then substituted into equation (26) to get the following close-form expression for the
coefficient 7 shown in equation (26) (Sheu et al., 2000):

= 2 {0/3 + ¢/6 cosh(A;)cosh(Az) + u/2h sinh(Xl)cosh(Xz)} @)

cosh(A)cosh(As) — 1

where:

o uh uh\?  ch?
(A1, A2) = (%» (ﬁ) +7)

Approximation of dp/0x or dp/9y term in non-staggered grids can normally result in
spurious even-odd oscillations (Patankar, 1980). It is therefore essential to suppress
these erroneous checkerboarding pressure solutions when solving the incompressible
viscous equations in collocated grids. In this study, M,;(= h¢,) and N;j(= 12 ) will
be implicitly calculated from the following two implicit equations to eliminate the
even-odd decoupling problem (Sheu and Lin, 2003):

aoMji1 + BoMj + yoMj-1 = ao(Pjs2 — djs1) + bo(di1 — &)

+eo(d — 1) +do(dj1 — dj-2)

(28)

and:

arNji1 + BiIN; + miNjo1 = a1djs + i + a1 + didj—1 + e1dj—2 (29)

Provided that (o, Bo, Yo, @0, bo, co, do, €0) = (1/5, 3/5, 1/5, 1/60, 29/60, 29/60, 1/60) and
(o1, B1, v1, @1, by, c1, db, e1) = (1, 11/2, 1, 3/8, 6, —51/4, 6, 3/8), the approximated
equations for ¢, and ¢, can be shown to have the sixth-order accuracy.

The implicit equations for M and N at the nodes located immediately adjacent to the
boundary points can be derived by specifying dy = e¢; =0 and ag = a; = 0 at the
nodes next to the left and the right boundaries, respectively. The values of (a, Bo, Yo,
g, bo, co, do, e0) = (3/10, 3/5, 1/10, 1/30, 19/30, 1/3, 0) and (1/10, 3/5, 3/10, 0, 1/3, 19/30,
1/30) can be analytically derived for the nodal points located next to the left and the
right boundaries, respectively, by expanding the terms shown in equation (28) in
Taylor series. Similarly, the coefficients shown in equation (29) for N; can be exactly
derived as (aq, By, 1, @1, by, €1, dy, e1) = (1,10, 1, 0, 12, — 24, 12, 0).

For effectively solving the incompressible momentum equations, which are coupled
with the transport equations for the energy, electric field and electrokinetic potential,
we apply in this study the regularized solution algorithm proposed previously in
Sheu and Chiu (2007). The idea of developing this iterative algorithm is to replace the
incompressible constraint equation with the differential equation derived from
equation (15). One can refer to Sheu and Chiu (2007), which detailed the currently
applied Divergence Free Compensated solution algorithm, for additional details.

4. Verification study
There are very few analytic solutions available in the literature for the microchannel
flow equations, subject to a combined action of electroosmotic force and an imposed



pressure gradient, for us to validate the code. In addition to the analytic problem given
in Chakraborty (2006), we will choose in this study the electroosmotic/pressure driven
problem of Dutta and Breskok (2001) to validate the employed scheme. Since the
channel height (%) is much shorter than the channel length, the resulting steady-state
channel flow is assumed to be fully developed. Given these assumptions, the
dimensionless streamwise momentum equation, subject to the dimensionless
electroosmotic potential ¢, can be simplified as Dutta and Breskok (2001):

o _aU dw
aE  am? am?
where U= /Uses, p * = (pM)(uUred), € = x/h and m = y/h. Note that " is governed by
@2y "(dn? = Bsinh (ap™), where « is the ionic energy parameter and B(= (wh)¥/«a)
has association with the Debye-Hiickel parameter w( = 1/A ) or the Debye length A *.

The electroosmotic potential has been analytically derived to have the expression as
follows in Hunter (1981):

b= % tanh ! [tanh (%) exp (— \/@n*) }

Note that 7 (=1 — |n|) denotes the normalized distance measured from the wall.
It can be observed from Figure 1 that the predicted zeta potential agrees well with the
exact solution (31).

Under the non-zero pressure gradient condition, one can integrate equation (30) to
get the following dimensionless velocity profile in the mixed electroosmotic/pressure
gradient flow (Dutta and Breskok, 2001):

30)

(62Y)

0 -}l.lI.II.II.Il..l.Il.lll.ll.l...l.ll.ll.ll.ll.l'.
" o
Exact [16]
-0.2 |‘ . Present
*
> 04l
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5
S
=
<
< 0.6
N
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—1%
| | 1 | 1 I |
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Figure 2.

Comparison of the
predicted and exact
velocity profiles for the
cases investigated at
different pressure
gradients y

1 dp” x
Um=—5 gz 0=7") 1=’ (32)
Provided that the zero pressure gradient condition is considered, equation (31) has been
studied previously by Burgreen and Nakache (1964). Note that the case investigated at
dp *1dé = 0 corresponds to the pure plug-like flow, which has been experimentally
observed in Dutta and Breskok (2001). Analysis will be carried outat & = 1and g = 10*
for the cases with two favorable pressure gradients y(=dp “/dé = —0.5 and — 1.0),
two adverse pressure gradients ( = dp “/dé = 0.5 and 1.0) and zero pressure gradient.
One can clearly see from Figure 2 that the computed velocity distributions in the mixed
electroosmotic/pressure driven flow field compare favorably with the analytic solutions,
given by equation (32), computed at the five chosen values of dp “/dé.

5. Discussion of results

The electroosmotic fluid flow under current investigation is bounded by two parallel
silica walls, which are both immersed in an aqueous solution and are negatively charged
by way of hydration. The resulting charged surfaces can attract positive ions (or counter
ions) moving towards the wall and form, therefore, a Stern layer (or compact layer),
which shields the surface charges. The negative charges in the solution will, on the other
hand, be repelled from the solid walls. Because of the thermal motion, ions of

Exact [24]
02 u Present
0 1 1 1 1 1 Il L L L
0 0.2 0.4 0.6 0.8 1

>



opposite-sign are not bound to the wall surface but will rather be dispersed in the vicinity
of wall surface. Such a charge separation is the outcome of electrostatic force and
thermal motion in the respective Stern layer and diffuse layer (or Gouy-Chapman layer).
Due to the formation of an EDL, the spatially varying electrical potential within the
channel is changed from zero at a location far from the wall and reaches the maximum
magnitude in regions near the wall. An electric field will then be established in the
vicinity of solid-liquid interface due to the attraction-and-repulsion of positive charges.

In this study, we intend to know how the applied electric field and the established
electrical potential field in the solution due to attracting-and-repelling charges to/from
the wall can affect the hydrodynamic behavior in the microchannel. The immobile
positive ions are seen in the Stern layer and the mobile ions show their presence in the
diffuse layer. We are also aimed to know the distance, measured from the wall, beyond
which the surface charges can no longer affect the ion distribution in the solution. We
will later on compare the predicted Debye length and A * = (8mge %2 2/(Dk, 1)) V2
(Dutta and Breskok, 2001), where 7, is the ion density in the bulk solution, %; the
Boltzmann constant, and D the dielectric constant. The Debye length is set as
215 % 10~ “m for the ion concentration of NaCl at room temperature 298°K.

In the straight channel of width 1 x 10” *m and length 5 x 10~ *m schematic in
Figure 3, the electric potential with an unit voltage is applied at the left entrance and
the right exit is grounded. With this externally applied electric field, the positive ions
within the EDL tend to move towards the cathode end. The ions moving along the
streamwise direction can, in turn, cause the electrically driven flow motion to occur in
the channel due to fluid viscosity.

The working medium we consider in this case is NaCl, which has the following
properties, namely, the concentration (10~*M), density (1,000 kg/m®), dielectric
constant (78.4) and specific heat (4,180 J/kg-K). The governing equations derived in
Section 2 will be solved subject to the following prescribed boundary conditions at the
channel inlet, channel outlet, and the no-slip walls, respectively.

Inlet:
d d d 0
T=0 ¢=1, Woo L_W_o @
ax X Ix ox
ou ou 1 (o ou  o%u
=——-9 — =— |— — — 33
ot U 9y Re (ay ay+”“ay2>+fl (33)
{1
y
\
0.5
+ . L '¢ . =
(anode) -0.5 (cathode)
x=50L
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Figure 3.
Schematic of the
investigated microchannel
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Figure 4.

Comparison of the
predicted temperature
profiles T at y = 0 (plane
of symmetry) against the
streamwise coordinate x
for the four investigated
electrical conductivities,
namely, Ay = 100A;,

)\3 = 50)\1y /\2 = 10/\1
and Ay

Outlet:

oT oy ou v _

[ i Pt P (30
Wall:

_ —pmg Mg W _ T_

1/1_507 %—U—O, ay_()? ay_ ) ay_o (35)

Calculation will be carried out at Re = 0.23, Pr (Prandt]l number = (w,.; ¢y)/kyor = 5.9)
and Sc (Schmidt number w,.r/(pA) = 42611) in the uniform mesh with 1001 and 101
nodal points distributed along the x and y directions, respectively. Four different
electrical conductivities, namely, A; = 1.264 x 10~ ° (obtained at room temperature),
Ay = 10A1, A3 = 5077 and A4 = 100, will be investigated with the two zeta potentials
fixed at y = —1 and 1.94.

Figure 4 shows the predicted temperature profiles for 71, 0) along the centerline. It can
be clearly observed from this figure that the predicted temperatures for each investigated
A value keep increasing along the streamwise direction with their peak values found at the
locations that are slightly downstream of the channel inlet. After reaching the peak
temperature, T begins to change very slowly and it will monotonically approach to a
nearly constant value. The Joule heats generated in the fluids are plotted in Figure 5 at the
four investigated conductivities. The predicted Joule heats at the higher values of A are
seen to decrease quickly from the channel inlet and become gradually uniform. The higher
the electrical conductivity, the larger amount of Joule heat can be generated. This explains
why the predicted temperature shown in Figure 4 is found to increase its value with the
electrical conductivities owing to the generation of a larger Joule heat.
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The velocity profiles u« (x, y) plotted at x =0, 1, 2.5, 4, 5 in Figure 6 confirm that the
predicted velocity conserves the mass very well in the current electroosmotic flow
simulation. It is interesting to find from these predicted u-profiles that the velocity
magnitude has a much sharper change than that found in the pressure-driven laminar
flow velocity near the no-slip wall. In an attempt to elucidate the mechanism that
causes such a sharp boundary layer, which manifests the electroosmotic flow, we plot
the computed values of — p,(0 $/0x), — p,(0 P/0Y), — pdyY/0x), and — p(d/0y) against y
in Figure 7 at x = 2.5. It can be seen that the y-component forces are smaller than the
x-component forces. In x-momentum equation (9), the value of — p,(d¢/dx) is greater
than — p,(dy#/9.x) mainly because of sinh(i), which varies dramatically in the vicinity of
y = 0.5 (no-slip wall) and its value becomes nominally unchanged with respect to y in
most of the channel. This explains why EOF exhibits a much sharper streamwise
velocity gradient near the wall than that predicted in the pressure-driven flow that is
investigated at a fairly small Reynolds number.

Discussion of the results is followed by investigating the effect of non-uniform
material properties, which are assumed to be varied with the temperature according to &
(T) = 305.7exp(1713/T), A+ (T) = Ao~ + 0.025A+ (T — 298), w(T) = 2.761 x 10~ °T,
and ky(T) = 0.6 + 25 % 10~ °T, on the streamwise velocity profile u(x, y). For this
reason, we plot « (x = 2.5,y) in Figure 8 for the case investigated at y = —land A = \;
and then compare this velocity with that investigated at room temperature 7' = 298°K.
Since temperature can affect the physical properties A, €, w and k;, we find out from the
predicted results that both &, and A have comparatively uniform contours than those of &
and pu.
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Figure 5.

The plot of the computed
Joule heats against x at the
four investigated electrical
conductivities
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Figure 6.

The predicted velocity
profiles u (x, y) at the five
chosen streamwise
locations for the case
investigated at A4

and ¢y = —1

Figure 7.

The predicted values of
- P@(a qS/ax), - pc’(a d)/ay)y
— p0/dx) and

— p(dy/dy), which are
plotted against the
transverse coordinate y
at x = 2.5, for the case
investigated at y = —1
and A = Ay
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We then investigated the cases at the fixed electrical conductivity A; and at the four
zeta potentials (= —1, — 1.5, —1.94 and —2.5). First, to examine the effect of the
applied zeta potential on the velocity, we plot in Figure 9 the velocity profiles against y
cases investigated at ¢y = —1, —1.5, —1.94, —2.5. The predicted

at x = 2.5 for the
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Figure 8.

Comparison of the
predicted velocity profiles
u (x = 0.5, y) for the

cases with/without
consideration of Joule heat

Figure 9.

Comparison of the
predicted velocity profiles
u (2.5, y) for the cases
investigated at two
different values of
Yy=—1,—15

—-194, —25
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Figure 10.

The predicted temperature
profiles T (x, 0) for the
cases investigated at

the fixed electrical
conductivity Ay

temperature profiles for 7(x, 0) and 71(0.5, y) have been compared and plotted in
Figures 10 and 11. With the increased wall zeta potential, a smaller amount of
Joule heat will be generated and can be added to the fluid. This explains the reason for
the temperature T(x, 0) plotted in Figure 10. For completeness, we also compare
the profiles of s against y in Figure 12 at different wall zeta potentials. According to
Figure 9, which plots # (2.5, ¥), one can clearly see that the predicted u-velocity slope
(or 9u/dy) for the case with i, = —1.94 is sharper than that investigated at
U = — 1. This implies that the boundary layer shown in Figure 13 is thinner for the
case with ¢, = —1.94.

Due to charge separation in the transverse direction, one can observe the EDL that
contains the immobile ions near the Stern layer and the thermally induced mobile ions
in its surrounding diffuse layer. The Debye length which characterizes the thickness of
diffuse layer Ap is inversely proportional to the square of ionic strength I and is
proportional to the square of electrolyte temperature 7, implying that Ap ~ /7" /1. For
this reason, we plot the distribution of 7""*(x) along y = 0.5 in Figure 14 to enlighten
how the Debye length is varied along the streamwise direction.

Since the pressure and electrokinetic forces are dominant in their respective regions,
we plot their ratio in Figure 15. It can be clearly seen from the computed ratio that the
electrokinetic force plays a more important role in the diffuse layer. Apart from the
wall, the electrokinetic force is decreased rapidly to zero. For the sake of clarity, we plot
in Figure 16 the edges of Stern layer, Debye length, and the velocity boundary layer
based on the simulation carried out in the domain with the grid size of 1/200.
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Figure 11.

The predicted temperature
profiles 7" (0.5, v) for the
cases investigated at the
fixed electrical
conductivity A;

Figure 12.
Comparison of the
predicted profiles for i
against y at x = 25
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Figure 13.

Comparison of the velocity
boundary layers for the
cases investigated at

Yoo = —1.94 and —1

Figure 14.

Plot of the temperature

T against x at the plane
of symmetry (at y = 0)
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Figure 15.
The computed ratios of the
electrokinetic and pressure
gradient forces, which are
plotted against y at x = 3

0.5@ =2
04
0.3 -
02 —B—X=0
- —A—X=1
i ——X=25
01 —Oo—X=4
0 L I I I ] I I I
—4E + 07 —2E+07
(—pe00/9X)/(—Ip/dX)
0.5 OONNNNANANNANNANNNNANNANNNNNNN
B Stern layer %
B Debye length
B 9.8x 1077 V= -3
048 A =2.15x10
0.46 __ velocity boundary layer
0.44
0.42 - diffuse layer
0_4_|||||||||||||||||||||||
0 1 2 3 4

Figure 16.

The predicted edges of the
diffuse layer, velocity
boundary layer and
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6. Concluding remarks

In this study the mixed electroosmotic/pressure-driven flow in the straight
microchannel is studied with the emphasis on the Joule heat in the equations of
motion. The nonlinear behaviors resulting from the hydrodynamic, thermal and
electrical three-field coupling and the temperature-dependent fluid viscosity, thermal
conductivity, electrical permittivity, and conductivity of the investigated buffer
solution are analyzed. In the non-staggered grids, the locally analytic one-dimensional
CDR scheme is applied in the predictor-corrector two steps to predict the sharply
varying field variables without rendering numerical oscillations. The solutions
computed from the employed flux discretization scheme for the hydrodynamic, thermal
and electric field equations have been verified to have good agreement with the
analytical solution. Parametric studies have been carried out by varying the electrical
conductivity at the fixed zeta potential and varying the zeta potential at the fixed
electrical conductivity. Conclusions drawn from the computed solutions are as follows.
Electrokinetic force, which was found to be dominant in the diffuse layer, is rapidly
decreased to zero in the direction towards the channel core. A sharp velocity profile near
the channel wall and the plateau-like velocity profile in the channel core are therefore
developed. The maximum temperature along the streamwise direction was predicted at
a location slightly downstream of the middle channel, followed by a monotonic decrease
in the direction towards the channel exit. Since the region immediately adjacent
to the channel wall plays a dominant role in determining the EOF phenomena,
we have computed the edges of diffuse layer, velocity boundary layer, in addition to
the calculation of Debye length, to reveal the electroosmotic flow structure.
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