Wave Equation

One dimensional second-order hyperbolic wave equation(Classical wave

equation)
Uy = Czuxx

One dimensional first-order hyperbolic linear convection equation
u,+cu, =0

it describes a wave propagating in x direction with velocity C.

Initial condition u(x,0) = F(x) ,(-00 < x < 00)

The solution is u(x,t)=F(x-ct)

— )Euler explicit methods
p
n+1 n n n
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At AX
truncation error o(At,Ax)  1st order accuracy

if ¢>0, for stable solution,backward differencing is used

if ¢<0, forward differencing is used
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At 2Ax
truncation error o(At, ( Ax)z) Ist order accuracy

n
u:
= _ 0

Von Neumann analysis shows unconditional unstable(Homework)

(= )upstream differencing method

L T,
I ISt R = R ; c>0
At Ax
Truncation error o(At,Ax)
At cax (At (Ax)°
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(Homework)Von Neumann analysis shows for stability
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if v=1— the unstream scheme reduces to u;" =ul, from the

modified equation
—This differencing scheme satisfies the shift condition

(= )Lax Method (1954)

n+l l n n
u. Z(U +Uj_])+cuj+l_uj‘1:()
At 2AX

* Explicit one-step method

j j+l




i (Ax)
First order accuracy o(At, (At))
* Stability condition [¢f<1
(Ax)
At
may not appraoch to zero as Ax,At — 0

* modified equation is

2
U, +Cu, :%(l—u)uXX +M(l—vz)um +...
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* Not uniformly consistence since

« Large disspiation error where v # 1,it can be seen by comparing
the upstream differencing scheme.

« Satify shift condition

+ Amplification factor G = cos f—1ivsin

* Relative phase error % yan (‘; tan )
€ —pv

(P*HYEuler Implicit Method

n+l n n+l n+l
] Iy ot 1 _
At 2Ax
* Implicit

* First-order accuracy with truncation error o(At,(Ax)")

* Unconditional stable

* A system of tridiagonal matrix to be solved by Thomas algorithm

* Capable of permitting large time step which will produce large
truncation error

* Modified equation is

U, +cu, = (%czmjum —EC(AX)2 +%c3 (At)z}uXXX o

* Not satisfy shift condition
l1-1vsinf
1+ v*sin’ B
- Relative phase error % _ tan” (~vsin f)
9, —-pv

* High dissipation for intermediate wave number
« Large lagging phase error for high wave number

 Amplication factor G =




(<r)Leap Frog Method

n+l n—1 n n
u; —u; U —u_
J AP 2 S Y
2At 2Ax
* explicit

U, +Cu, :%C(Ax)2 (v*-1)u

Three-time level scheme
Second-order accuracy with truncation error o( At)2 | Ax)z)

Stability requirement ‘u{ <1
Modified equation is

c(Ax) (90" —100” +1) U ...

1
w120
Predominantly exhibit dispersive errors which is typical in second
order accurate method
No dissipative truncation terms such that the algorithm is
neutrally stable and errors caused by improper B.C. or computer
round-off error won't be damped.

1
Amplication factor G =+(1-v”sin’ #)? —ivsin 2

tan”'| 7Y siry . 1/2]
Relative phase error % = [ i(l_u " 'B)
9, - v
Disadvantages
(1)Initial conditions must be specified at two-time levels
(2)Leap frog nature of differencing (u?” # f (uj” )) such that two

independent solutions develop as the calculation proceeds.
(3)Additional storage may be required due to the three-time level
scheme

(7t )Lax-Wendroff Method

n+1 n

u u” u" . —u" ¢ (At
LU YO Z(u‘gl—zuj”Jru?l)
At 2AX Q(Ax) .
"." Employing wave equations
2
Uy =C Uyy

1}+1
]

ui" =uj +utAt+%utt (At)’ +o[(At)3}

in the Taylor expansion of u

and employing second-order central difference expression for
u,and u,,

Explicit one-step scheme



* Second order accuracy with truncation error o((At)’,(Ax)")
« Stability requirement ‘u{ <1
* Modified equation is

1 2 1 3
U, +CU, = —gc(Ax) (1-0*)u, —gc(Ax) O(1=0" Uy + .o
» Satisfy shift condition
« Amplication factor G

G=1-0" (l—cosﬂ)—iusinﬂ

tan”! |:—U siny }
1-0°(1-
- Relative phase error V L [1-0*(1-cos B)
9, —Bv
* Predominantly lagging phase error except for large wave number
(0.5)0'5 <v<l

(" )Two-Step Lax-Wendroff Method

n+1/2 1 n n
uj+l/2—5(uj+l+uj) .
+

Step 1: cHt T
P At/2 AX
n+l1 n n+1/2 n+1/2
u;  —u; u; —u;_
Step 2:— Lotz H2
At AX

* Applied for nonlinear equations such as inviscid flow equations

* Two step method

* Three-time level method

* Second-order accuracy with truncation error o((At)*,(Ax)")

« Stability requirement ‘U{ <1

« Step 2 is leap frog method for the latter half time step

* When applied to linear wave equation, two-Step Lax-Wendroff
method =original Lax-Wendroff scheme.(Homework)

* Modified equation and amplification factor are the same as
original Lax-Wendroff method.

(" )MacCormack Method (1969)
; e owi_oa At N
Predictor step :u!*'=u! 'Cﬂ(u " )

1 a1 CAt/ oh o
e N+l n n+1 n+1 n+1
Correct step ‘Ul :E{uj +[uj —A—(U- —Uj, )ﬂ

]

* Widely used for solving fluid flow equations
* A variation of two-step Lax-Wendroff scheme which removes the
necessity of computing unknowns at grid points j+1/2,j-1/2.



« Partically useful when solving nonlinear P.D.E.

* Explicit,two step method

* In predictor step,forward differencing is employed for u,
In correct step,backward differencing is employing for u,

* In moving discontinuities problems,the differencing can be
reversed.

« MacCorwack scheme is equivalent to the original Lax-Wendroff
scheme for the present linear wave equation

* Truncation error
Stability limit

modified equation

amplification factor = those of Lax - Wendroff scheme

(7¥)Upwind Method (Warming and Beam 1975)

. — At
e ntl__.n n n .
Predictor step :u'=u’ -cA—(uj —ul,) s 0
Correct step :
1 — CAt; — ~—=\ CAt
n+l _ n n+1 n+1 n+1 n n n
uj —5{“1 e —“j—l)—ﬂ(“fzui-‘*“i-z)} !

* A variation of MacCormack method

* Backward differencing is applied to both predictor and corrector
steps

* second-order accurate with truncation error
o((At)”,(At)(Ax),(Ax))

* Substitute predictor equation in corrector equation to obtain one-
step algorithm

n+1

n n n 1 n n n
u =uf —o(u] —uj_])+50(u—1)(uj —2u], +uf,)
* Modified equation

XXX

U, +Cu, :%C(Ax)2(l—u)(2—u)u

4
-%0(1-0)2 (2-0) Uy, +...
« Satisfing shift condition at v=1,v=2

 Amplication factor G
G :1—21){U+2(1—u)sin2 g}sinzg—iusinﬂ{1+2(l—u)sin2 g}

» Stability limit 0 < v <2

* Predominantly leading phase error for 0 < v < 1; lagging phase
error for 0 < v<1

+ upwind and Lax-Wendroff method have opposite errors



foro< v<1
—Considerable reduction of dispersive error will occur if a linear
combination of two methods are used.

(1 )Time-centered implicit method (Trapezoidal differencing method)

19
T :uj”——(u
4

J n+1+ur.1

j+l j+

uft —u,) (4-60)
* Implicit method
» Second-order accurate with truncation error o((At)",(Ax)")

* Unconditional Stable
* Modified equation

M 3 2 2
u, +Ccu, =— ¢ (At) +C(AX) ]UXXX
12 6
B 4 3 2 2 4 4
e’ e (ay’ (ax)” | ¢ (ay) ]uxm
120 24 80

* No implicit artificial viscosity
* Explicity artificial viscosity may be necessary to add to prevent
the solution from blowing up

« Amplication factor G = I_(H/ﬂ
1+ ('% ) sin 8
* Modified equation and phase error can be found from Beam and
Warming(1976)
* Tridiagonal coefficient matrix must be solved at each new time
step

(4 — )Rusanov (Burstein-Mirin)method (1970)
. 1 n n 1 n n
Step l.ufjl/zzg(u +uj)-§u(u u?)
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_ﬂ(uj+2 —4ul, +6u] —4u’ +uH)

* Explicit,three-step method
* w 1s added to stabilize the scheme
since the stability limits are

o<1



and 40° — v < w <3
* Third-order accurate
* Modified equation

3

c(Ax

U, +cu, = —u(ﬂ—m}ﬂfjuw
24 v

c(ax)*
120
» Reducing dissipation — @ = 40* — v*
2 2
Reducing dispersion —s ¢ = (407 +1)(4-0 %

« Amplication factor G

(—Sa)+4+1502—4u4)u +
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* leading or lagging phase error depending on the free parameter w.

(1 = )Warming-Kulter-Lomax (WKL)method (1973)

2
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Stepl-uj =U; —Eu(ujﬂ—uj)

J ] J
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* MacCormack methods for first two steps; Rusanov method for the
third step
* Same stability limit bound and modified equation as Rusanov
method
* Third-order accurate method at the expense of additional
computing complexity
* Explicit
* WKL method has same advantage over Rusanov method that the
MacCormack method has over the two-step Lax-Wendroff
method

n n n
+6U; —4uj71+uj72)



Conculsion:

* Second-order accurate explicit schemes(Lax-Wendroff,upwind
schemes) give excellent results with a min of computational effort

* Implicit scheme is probably not the optimum choice.

* Explicit schemes seem to provide a more natural F.D. approximation
for hyperbolic P.D.E. which possess limited zones of influence.

* Implicit methods are more appropriate for solving a parabolic P.D.E.
since it normally assimilates information from all grid points located
on or below the characteristics t=const.



A.1-D Heat Equation

Parabolic one-dimensional heat equation(diffusion equation)
Uy = OLuxx
with [.C.u(x,0)=f(x)
B.C. u(0,t)=u(1,t)=0
is used as the model equation

(— )Simple explicit method
ui" —uj . uf, —2ui+uj,
At (Ax)’
* Explicit,one step method
» First order accurate with truncation error o [ At ( Ax)z}

+ Stability limit 0<, =%t <1
QT

* Modified equation is

2
AX
u —au, = —lazAHa( ) U
2 12

+Ba3 (At)’ —éazAt(Ax)z +ﬁa(Ax)4}u

XXXXXX

* No dispersive error
It is usually the behavior of other schemes for the heat equation

« Amplification factor G
G=1+2 (cos -1)
it has no imaginary part and hence no phase shift

* Exact amplification factor Ge
Ge=e
where =k, /\x

* highly dissipative for large =~ when =1/2

* Not properly model the physical behavior of a parabolic PDE
since the interior solution at point P can be calculated without the
knowledge at the boundary.
Howerer,for parabolic equation,the solution should depend on the
B.C..Since parabolic heat equation has the characteristic t=const
such that the solution at t=const depends on everything which
occured in the physical domain at all earlier times.



(= )Richardson's Method
ujt —ul _ uf,, —2uj +uj,
2At (Ax)’
* Explicit,one step method
* Three-time level scheme

* Second-order accurate with truncation error ol:At2 ,sz]

* Unconditional unstable

(= )Laasonen method (1949)
ui” —uj =a uf —2ui" +u

At (Ax)’
* Implicit

n+1
j-1

* First-order accurate with truncation error O[A'[,( Ax)z}

* Unconditional stable
* Modified equation

AX ?
u—au, = lozzAt+—0{( ) T
2 12

+Ba3(m)2 ) +ﬁa(Ax)4}r .......

 Amplitication factor G
G =[1+2y(1—cos [3)]_1

(P Crank-Nicolson method (1947)
Defining central differencing scheme

2.n _ ..n n n
quj —Uj+1_2Uj +Uj_1

n+l n+l n+l
Ui’y —2Uj +Ujy

R §fu;‘ + §fu;‘“
B

n n n
uf —2uf+uly,

* Implicit method
* Unconditional stable
* Second-order accuracy with truncation error o[( At ( Ax)z}

* Modified equation is



2
u —au, = a(4%) U {ioﬁ (At) +La(Ax)4}u Foonnn
12 12 360

 Amplification factor G
G- 1-v(1—-cosP)
1+y(1—-cosP)

(=1 )Generalized explicit,Laasonen and Crank-Nicolson method
ur_H—l _

i u;‘: @ [
At (Ax)z

05U} +(1-0)57u] |

where
=0 explicit method(1)
=1 Laasonen method(3)
0= % Crank-Nicolson method(4)

* Usually, it is first-order accurate with the truncation error
of At,(ax)’|

* Modified equation
u—au, = (e—y)azAHM u
t XX 2 12 XXXX

1 1 1
{(92 ~0+ 1) (at) +g(9—5)a2At(Ax)2+%a(Ax)4}uXWX+....

(** )Richtymer and Morton (1967)combined method
—u! i -ult Sult

n+1
J J

(1+6)-—1 g —a
At At (Ax)

* First order accurate with truncation error o [ At ( Ax)z}

* Modified equation

u—au, =|- o-L azAt+£(AX)2 Uy Fooev
2 12

(- )DuFort-Frankel method
u;H—l — u?_l o n n+l
- (U —uj =

u" +u’

24t (Ax) )

* Replacing uf = l(u;‘“ +ul” ) in Richardson's method
2

* Explicit method
* Three-time level scheme



fost o0 05
* To be a consistent scheme AVAX —>0 asAt,Ax—> 0
* Modified equation

3 2
U —au, = [%Q(AI)Z - ‘ (At) }uxxxx

(Ax)°

4
{La(Ax)“ L (a0 42 (%} }u ‘.

360 X
* Amplification factor G
o 2y cos i(l — 4y sin’ [3)%
1+ 2y
 Unconditional stable

(" )Alternating-Directional Explicit (ADE) method
(1)Saulyev,V K. (1957)

n+l n n n+l n n+l
Stepl:uj _ui:a[ui“_uj —uj+uj_1J

At (Ax)2
Marching the solution from the left boundary to the right

n+l

boundary u}”lis determined explicitly from known u;7

n+2 n+1 n+2 n+2 n+1 n+1
Step2:uj - U :a[um —Uu;" - u; +uj_l]

At (Ax)’
Marching the solution from the right boundary to the left

boundary u}”zis determined explicitly from known uj-lflz

* Three-time level

* Truncation error o[( At)2 i Ax)2 ,(At Ax)z}

* Unconditional stable
(2)Barakat and Clark (1966)
P'nH - P'n 24 n+ n+ n n
a (M%)’ (PP =R+ PR

q;‘ﬂ —QT _ (24 (qn _qr_1 _qr_1+1 n qp+1)
At (AX)2 j-1 ] ] j+l
The calculation procedure is simultaneously marched in both
directions,the solution
u;wl — %( p;Hl + q?+1)
* Unconditional stable
» Truncation error o[(At)2 ,(Ax)z}




(3)Larkin (9164)

n+1 n
P Y _ @ (P-”,”—P.““—u'?+u'?)

At (AX)2 j-1 ] J j+l
qr_1+l_ur_1 a . .
e )

(7+)Keller Box and modified Box method
(1)Keller Box (keller 1970)
u, =aou,,
Define v=u,

{ u, =v
—
U, =av,

° X °
X] ° X
1 °
tn
uf) _uf)_ n n n
JAXjJ ! =V =—(v]+v},) (7-33)
u" —ujn ] ]
B 2 o - -5 a n n— n
2Atn = AX; [V’ 1 jIZJ_ AX, (Vi +vi ' =Vl -vi) (739)
n 1 n n
uj_l _E(ul +uj‘l)
Where .
L
v; ? :E(Vj +v))
* The system of (7-33),(7-34) can be written in block tridiagonal
form with 2x2 blocks

* Solved by block elimination scheme
« Implicit,second order in accuracy

(=~ )Modified Keller Box method



J -1

i ik SRV %(le ) (7-35)

= L(Vr_1 +y™! _V?q —VTfll) (7-37)

vV vi*, vt similar as (7-35),(7-37) by advancing j by 1

Il S i j
%/_J
can be eliminated from(7-37)  are written

from(7-35) at(n+1),(n) in terms of u's
respectively

n+l _

n+l
+Ajuj+1 =C

j
AXj _2_a
Atn+1 AX]
_ AXj-l—l 2a
i= —
Atn+1 AXj+1
AXJ' AXj+1 2 20
i= + +——+
At At ij ij+1

n n
i1 —Y;

n+l

]

where B =

U -y u
C,=2a +2a
AX; AX

j j+l

AX; AX
(o o )

n+1 n+1

j+l

* Second-order in accuracy even in nonuniform spacing(Homework)
* Crank-Nicolson is second-order in accuracy in uniform spacing



B.2-D heat equation
U, = (U, +uy, )

The direct extension of 1-D numerical scheme to 2-D problems has the
following difficulties.

(1)For explicit method,the stability limit becomes more restrictive,thus it
1s more impractical

(2)For implicit method,the coefficient matrix is no longer tridiagonal,the
equation solver requires substantially more computing time.

(— )Alternating-Direction-Implicit (ADI) method
Peaceman, Rachford (1955)
Douglas (1955)

n+/2 _n

step 112 =S+ i
2
umt g2 N A
step 2: % _ a<5xzuinj1/z N 5;“2}‘)
2

* Two-step splitting scheme
* step 1:tridiagonal matrix is solved for each j row of grid points
(1.e. for each j, 1=0—1,,,)
* step 2:tridiagonal matrix is solved for each 1 row of grid points
(i.e. Vi, jJ=0—J0x)
* Second-order accurate with truncation error
o[(At)2 ,(Ax)° ,(Ay)z} (Homeowrk)
 Amplification factor G
c [l—rX (l—cosﬂx)][l—ry (l—cosﬂy)}
[ (1=cos g, ) ][ 141, (1-cos 3, )

* Unconditional stable




(= )Splitting or Fractional-Step method (Yanenko,N.N.,1971)

n+/

n+
step 1: —1’ 52u /
At OxU; ;
s
U’n+l n+%
step 2:—2 b _ g 82yunt!

A% x4 1,

* First-Order accurate with truncation error o[( At),(ax)",( Ay)z}

(= )Hopscotch method

Ist step:at each point which (i+j+n=even)
u gyl
i,j ij _ a[62un +62 nJ]
At ’

u/ is calculated explicitly

2nd step:at each point which (i+j+n=o0dd)

n+l

ui,] ulJ _ 2. n+l 2. .n+l
Tt LU
n+1
* u;; appears to be implicit,but no simulation equations are to
be solved since uf;,u,ull,ult are known in 1st sweep

* Explicit method
» Truncation error o[(At),(Ax)z ,(Ay)z} (Homework)

* Unconditional stable

j

4 ] ® ® > i+j+n=0dd
¢ i+j+n=even
3 o { ® L
2
® ® o
l o o ° ° |
1 2 3 4 5 6 7

n=0 for example



Conclusions:

* In general,implicit methods are more suitable than explicit
methods

* For 1-D heat equation,Crank-Nicolson method is recommended.

* For 2-D,3-D heat equation,ADI scheme of Douglas and Gum

and Keller box and modified box methods give excellent
results.



Inviscid Burgers‘ Equation

The model nonlinear equation is hyperbolic equation

u, +uu, =0 (4-129)
or

u +F =0
or

u, +Au, =0 (4-131)

where A=A(u)= d%u 1s the Jacobian matrix and the eigenvalues of A

are all real.
Inviscid Burgers® equation is the simplified form of parabolic viscous
Burgers’ equation
u, +uu, =pu
without considering the viscous effect.

* (4-129) can be viewed as a nonlinear wave equation where each point
on the wave front can propagate with a different speed.

* Jenuine solution of (4-131) is one in which u is continuous but the
bounded discontinuity in the derivatives of u may occur.

 Shocks and rarefactions are frequently encountered in high speed flow
governed by nonlinear Burgers® equation of hyperbolic type.

*  Weak solution of (4-131) is a solution which is genuine except along
a surface (x,t) space across which the function u may be
discontinuous.

The existence of shock waves in inviscid supersonic flow is an
example of a weak solution.

Aim: Develop the requirements for a weak solution (or the requirements
necessary for the existence of a solution with a discontinuity)

«  The spaced-centered algorithms for inviscid Burgers’ equations
(Euler equation) were historically important.
* All centered second order accurate schemes refer to the Lax-
Wendroff algorithm (It is the unique second order explicit scheme for
the linear convection equation on a three point support)
-It plays the essential role as guideline for all schemes attempting to
improve certain of its deficiencies.
-The generation of oscillations at discontinuities is the weakness.
*  Model equation
(a)Conservative form-U, +F, =0



(b)Quasi-linear form-U, + AU, =0 ; A =0F/oU

Lax-Friedrichs (1954) scheme is the first numerical discretization of
Euler equations.

Numerical flux

-An essential property of the discretized schemes
-Foru,+F =0

It has the property J'utdx = %J-udx = —( Fron— F,-*,I/z)
i i

Ensure the integral depends on the fluxes within the domain and
not depends on the fluxes within the domain-numerical fluxes are
functions of u at the mesh points.
All the second-order, three-point central schemes of the Lax-
Wendroff family have rather poor dissipative properties and
generate oscillations around sharp discontinuities.
In order to remove high frequency oscillations around discontinuities
in second-order central schemes Von Neuman and Richtmeyer (1950)
introduced the concept of artificial viscosity. This introduction of
artificial viscosity should obtain the porperty.
(1)locally around the discontinuity- can simulate the physical
viscosity on the scale of mesh.
(i1)In smooth region- can be negelected (i.e., of the order equal or
higher than the truncation error)
(ii1))Requiring additional dissipation to avoid the appearance of
expansion shocks where the sonic transitions occur.
Any upwind scheme can be written as a central scheme plus
dissipation terms(Can be verified)
The added dissipation terms introduce an upwind correction to the
central schemes, removing non-physical effects arising from the
central discretization of wave propagation phenomena which arises
mianly around discontinuities (A sudden change in the propagation
direction of certain waves)
The upwind scheme are defined in function of the signs of the
propagation velocities.
The introduction of second-order non-linear upwind algorithm can
control and prevent the appearance of unwanted oscillations (TDV)
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u is continuous in D, and D,
Let w(x,t) be a test function which is continuous and has 1°st continuous
derivative.
It vanishs on boundary B.
Then
”(ut +F, ) w(x,t)dxdt = 0
D

t

A
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Integrating by parts
'L‘!.(Ut + F, ) wdxdt +'|[J2.(Ut + F, ) wdxdt +!W([U]%+[F]%jds =0

since u, +F, =0 over D1, D2, and w is arbitrary.
Then along the discontinuity surface  (x,t)

dt dx
A E
[u] 3 +[Fl =0
or [u]cosa, +[F]cosa, =0 (4-1306)

where  :along between normal of  and t axis
,:along between normal of  and x axis
(4-136) is the condition that u is a weak solution for Burgers‘ equation



(A)Explicit method
(— )Lax Method (1954)
u, +F =0 1sthe model equation

since u(x,t+At):u(x,t)+At(ﬂ) Foe,
2P

Then

u(x,t+At)=u(x,t)+At(-F)  +....

ie,

u;m :%(u?+1 +u;‘_1)—%%(|:jil - an_l)

where F = u? / 2 in inviscid Burgers‘ equation

The amplification factor is G
At
G =cosp—1i—usinf
Ax
* First order accurate

Stability limit <1

max

At
—u
AX

(=~ ) Lax-Wendroff method (1960)
since u, =—F,
Then

_ 0 __
__ﬁx(F”ut) ﬁx(Aut)
o
=~ (AF
é’x( X)
Since
2 2
u(x,t+At)=u(x,t)+At(@j JAufou
ot),, 2 ot ‘it
Then
2
u(x,t+At)=u(x,t)—At£+A—ti(Aﬁj .......
ox 2 ox\ ox
or
n+ n At n n 1 At ’ n n n n
uj™ = uj _E(Fm_ﬁl)*}(&j {Aji(':m_':j )-A" (F,
or
0 At .
U; 1_uj :_E( j+1/2 j—l/z)

u? +u?
where A" = A(J—J“]
j+1/2 2

since in inviscid Burgers® equation, F=u?/2,A =u



then
1
J+/ 2( ul“)
1
Aj% :E(uj +uH)

* First second-order method for hyperbolic equation
« Amplification factor
2
G :I—ZK%UJ (l—cosﬂ)—Zi%u sin S

+ Stability limit |2ty |<1
AX

* Disperasive nature is evidenced through the presence of
oscillations near the discontinuity(Homework)

(=) MacCormack Method

predictor: u =ul - At(FJnH_F )
1 o At |
. n+l1 n n+l1 n+l1 n+l1
corrector: y’ :E[uj +u _E(F’ ~F" )}
or uJ =U; —E(Fj E?l)
AX

«  Easier to apply then Lax-Wendroff scheme because the
Jacobian doesn‘t appear

«  Amplification and stability limit are the same as Lax-
Wendroff scheme.

*  non-linear Lax-Wendroff scheme

For the nonlinear Burgers* equation

At *
+1 _
U? —U? - AX(FJH/z Fj*1/2>

At At
:'E{[ i+2 A1+1/2( i i)j|_‘:l:i—]/2 _EA‘ 12 (F F_ ):|}

requires the evalua‘uon of Jacobian A,
by (Harten, 1983)

F. —F )
=1l 1 ifu,, —-u =0
A1+1/2 u., —u, i+1
=A(u) ifu,, =y



At
n+l1 n_
j _uj - _&(Fjﬂ/z - Fj—l/z)

where the numerical flux FJ+1 B

. At
Fiop = Fj+% _EAJ-Z% (UJ+1 _ui)
*  Richtymer two step method and Morton (1967)

M

or y

1 )
ully = > (u + um) e (Fljl ") (First order accuracy)

(LF scheme)
At (

u =ut = (R —FNY 2) (Second order accuracy)
AX

i+1/2 i-1/2

(Leap-Forg scheme)
O(AX,At) at (intl)
«  MacCormack scheme with artificial dissipation
Predictor step:
n+1 n At n n At n n n
uj :uj AX (FJ+1 I:j )+ AX |:D|+l/2( i+1 _ui) _Di—l/z (ui —U ):|
Corrector step:
n+l At n+l n+l At n+l n+l n+l n+l
UJ = U, _E( F; I:j—l ) AX |:D|+1/2 ( i+1 — Y ) DI 1/2 ( ui—l) :|
The associated numerical flux becomes

“AV) _ n n+l 1 n+l n+l n+l
I:j+1/2 - 2(F|+1 F )_E[Diﬂ/z (ui+1 )+ D|+1/2( i1 Ui )}
Where Von Neumann-Richtymer artificial viscosity model for D

is employed with  =1.96.
—Oscillations at the shock are damped out.

*

. +1 *
Ul = _T( Fion = ijl/z)

I:j*+1/2 = ;(F + Fj+l)

«  switched differencing in predictor and corrector steps.

+  providing good resolution at discontinuities. The best
resolution of discontinuities occures when the difference in
the predictor is in the direction of propagation of
discontinuity.

*  High frequency errors generated at discontinuity, indicated
by the mass flux error, is typical of all the central second
order alogrithm.

—Requiring the introduction of mechanism to damp out the
high frequency error.
(P) Rusanov (Burstein-Mirin) Method

step 1:ut),, = ;(uyﬂ +u;)—%%(ﬁil R

where numerical flux



2 At
step 2:y =" 222 (EO _ _EO
p 2 =y 3AX(F )

j+1/2 i-1/2
u?+l=U?_i%( 2R, + TR~ TR +2F], )
step 3: -%%( Fe) - Fj(fl))

explicity added fourth derivative terms for stability

v@w\

*  Third-order accurate
«  Amplification factor

G=1- (At jsm P a)(l cosﬂ)+ﬂumnﬂ

AX 2
1
x{l+ (1- cosﬂ|: }}
3
. Stability limit =" " <!

4v' v <w<3
«  Overshot exists on both sides of discontinuity.

(<1) WKL Method (1973)

step 1:ul) = v —%%(F;‘H F)
step 2:ul? = %{u;‘ +ul? —%%(Fjﬂ) -FY )}
u;‘“:u;‘—i§( —2F, +TF], = TF], +2F],)
step 3: Zi)t((Ffﬂ) FC )
-2—(’;(u?+2 4ul, +6u] 4u;‘_1+u;‘_2)

explicity added to control stability



*  Third-order accurate

«  First two levels are employed by MacCormack method

«  Advantage over Rusanov technique is that only values at
integral mesh points are evaluated.

«  Same stability limit as Rusanov method

(**)  Tuned Third-order method
The parameter  in ('), (=) and explicit artificial terms are
replaced by
a)p+]/2 n n
- 54 (uj+2 _3uj+1
where o}, are chosen to min the dissipative or dispersive errors

" _ (4V?¢1/2 + 1)(4 = Vj2+1/2%

jE2 —

n
oy
n n j-1/2 n n no_.n
+3uf —uf, )+ o (uf,, =3u] +3uf, —u,)

The effective Courant numbers  are
A
T A+ 450) VAX

Viap = %(im +A AL+ ﬂJ—Z)AyAX

and 1is the local eigenvalue

1
Vie = Z(;tju +4

(B) Implicit method
(— ) Time-centered implicit method (trapezoidal method) (Beam
and Warming 1976)

u +F =0
since from (4-58)
Nt n At n n+
up =+ () + (u) 1]j+o[(m)3}
then

At [&an (ﬁFj““
U =ul—— | = | +|—=—
! 2 [ ax X

since F=F(u)
Beam and Warming (1976) suggested

Fn+1 an_i_(%jn(unﬂ_un):Fn+An(un+1_un)




Thus

n+ A\ oF " 12 n+ n
Uj 1:Uj —7{2[5j +5|:A(Uj I—Uj)}}

If x derivatives are replaced by second-order central

differences,
_MAL WUt AtAT, -
4AX 4AX
H
=—£( o F )——AtA?l u", +u”+ AtAY u"
2AX I+ - i-1 ] 4AX j+l

The tridiagonal system is solved by Thomas algorithm
*  Explicit Damping

w
_g(u}‘+2 —4u’,, +6u] —4u] +u?72)  O<w<l

1s added since there is no even derivative term in the
modified function.

The algorithm can be written in the delta form as -
Let Au;=u!" —uf

n n+1
me -2

Local linearization for F is
Fj“” =F'+ A Au,

AtA? AtA A
S [— Au; , +Au; + —= Auj,, = __t(anH B Fl'n‘l)
4AX 4Ax 2AX

«  Simpler
«  Tridiagonal coefficient matrix, the R.H.S. doesn‘t require the
multiplication of the original algorithm

(= )Euler Implicit method (Beam and Warming, 1976)
n+1
u™ =u" +At(@J
ot

n+1
—u™=u" —At(ﬂj
OX

If the same linearization is applied, then

(_%Ju?ﬁf +ul" +(%}U?ﬂ
< X

_ At n n AtAJr]fl n n AtA?H n
__2Ax(':j+1 _F“){ aax | T A Y

«  Tridiagonal system of coefficient matrix




«  Unconditional stable
«  Explicit damping is added to insure the usable result.

Conclusion

For inviscid Burgers equation
* Implicit method is inferior to explicit method
(1)more computation required per time step in implicit method
(2)transient is usually desired
(3)when discontinuities are present, explicit methods are
superior to those of implicit methods using central
differences
* Explicit MacCormack ‘s scheme is recommended.



