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Chapter Three   Cloud Microphysics 
               “… fleecy plies dissolved in dew drops…”42 

 
As noted in the Introduction, cloud physics consist of two branches: cloud 

microphysics and cloud dynamic. While the topic of this book is the latter, it is 
impossible to divorce a discussion of dynamics from a-knowledge of the 
microphysics. Just as the discussions in Chapters 5-12 assume a certain level of 
background knowledge of atmospheric dynamics, so do they assume some 
background in cloud microphysics. To provide this background, the present 
chapter summarizes the aspects of cloud microphysics that are crucial to the 
discussions of later chapters. First, we describe some of the basic 
microphysical process that are involved in the formation, growth, shrinkage, 
breakup, and fallout of cloud and precipitation particles.43 In sec. 3.1, we 
describe the microphysics of warm cloud, where the temperature is everywhere 
above 0oC. Section 3.2 ex-tends the review of microphysical processes to cold 
clouds, in which the temperature drops below 0oC and both ice and liquid 
particles may exist. After this review of the individual microphysical processes 
that may occur in clouds, we consider in Secs. 3.3-3.6 how these microphysical 
processes occur simultaneously in a real cloud and how they may be linked to 
the cloud dynamics through a set of water-continuity equations. 

 
 

3.1   Microphysics of Warm Clouds 
3.1.1   Nucleation of Drops 

 
The particles in a cloud form by a process referred to as nucleation, in which 

water molecules change from a less ordered to a more ordered state. For 
example, vapor molecules in the air may come together by chance collisions to 
form a liquid-phase drop. To see how this process takes place, consider the 
conditions required for the formation of a drop of pure water from vapor. This 
case is called homogeneous nucleation to distinguish it from the case of 
heterogeneous nucleation, which refers to the collection of molecules onto a  
 

42 Goethe realizes that clouds are composed of microscopic particles. 
43 these microphysical processes are described in more detail in basic texts on cloud microphysics, such 

as Fletcher(1966), Mason(1971), Pruppacher and Klett (1978), and Rogers and Yau (1989). The physics 

of ice is presented comprehensively by Hobbs(1974). 
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foreign substance. If the embryonic drop of pure water has radius R, then the 
net energy required to accomplish its nucleation is  
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lvlvl nRRE µµπσπ −−=∆                (3.1) 

 
The first term on the right is the work required to create a surface of 

vapor-liquid interface around the drop. The factor σvl is the work required to 
create a unit area of the interface. It is called the surface energy or surface 
tension. The second term on the right of (3.1) is the energy change associated 
with the vapor molecules going into the liquid phase. It is expressed as the 
change in the Gibbs free energy of the system. The Gibbs free energy of a 
single vapor molecule is μv, while that of a liquid molecule is μl, and the 
factor nl is the number of water molecules per unit volume in the drop. If the 
work required to create the surface exceeds the change in Gibbs free energy 
(∆E > 0), the embryonic drop formed by chance aggregation of molecules has 
no chance of surviving and immediately evaporates. If, on the other hand, the 
work required to create the surface is less than the change in Gibbs free energy 
(∆E < 0), then the drop survives and is said to have been nucleated. 

It can be shown44 that 
 

(3.2) 
 

where kB is Boltzmann's constant, e is the vapor pressure, and es is the 
saturation vapor pressure over a plane surface of water. Substituting this 
expression into (3.1), seeking the condition for which the work required to 
change the drop's surface is exactly matched by the change in Gibbs free 
energy (∆E=0), and rearranging terms, we obtain an expression for the critical 
radius Rc at which this equilibrium condition holds. This expression is 

 
                                                          (3.3) 
 

and is referred to as Kelvin’s formula.45 This radius is evidently crucially 
dependent on the relative humidity( defined as e/es×100%). Air is said to be 
saturated whenever the relative humidity is 100%( e/es=1). However, it is clear 
from (3.3) that it is impossible for a cloud droplet to form under saturated 
44 See problem 2.19 of Wallace and Hobbs (1977). 
45 Named after Lord Kelvin, who first derived it. 
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conditions since Rc → ∞ as e/es → 1. Rather, the air must be supersaturated 
(e/es>1) for Rc to be positive. The greater the supersaturation [defined, in 
percent, as [(e/es－1)×100%], the smaller the size of the drop that must be 
exceeded by the initial chance collection of molecules. 

It should be noted that Rc is also a function of temperature. Not only does T 
appear in the denominator of (3.3) explicitly, but σvl and es are functions of T. 
However, at atmospheric temperatures, the dependence of Rc on temperature is 
comparatively weak. In view of the primary dependence of Rc on ambient 
humidity, it is not surprising that the rate of nucleation of drops exceeding the 
critical size Rc is a strong function of the degree of supersaturation. 

 

 
Figure 3.1 A spherical-cap embryo of liquid (L) in contact with its vapor (V) and a nucleating surface 

(C). (From Fletcher, 1966. Reprinted with permission from Cambridge University Press.) 

 
The rate at which the vapor molecules collide to form aggregates of various 

sizes can be computed using principles of statistical quantum mechanics 
applied to an ideal gas whose molecules are in a state of random motion.46 This 
rate of formation of drops exceeding the critical size is the nucleation rate. It is 
found to increase from undetectably small values to extremely large values 
over a very narrow range of e/es. The value of e/es at which this rise occurs is in 
the range of 4-5. Thus, the air must be supersaturated by 300-400% for a drop 
of pure water to be nucleated homogeneously. Since supersaturation in the 
atmosphere seldom exceeds l%, one concludes that homogeneous nucleation of 
water drops plays no role in natural clouds. However, the physics of the process 
are nonetheless relevant, as will become evident below. Heterogeneous 
nucleation is the process whereby cloud drops actually form. The atmosphere is 
filled with small aerosol particles, and molecules of vapor may collect onto the 
surface of aerosol particles as illustrated ideally in Fig. 3.1. If the surface 
 

46 See Chanter 2 of Fletcher.(1996) 
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tension between the water and the nucleating surface is sufficiently low, the 
nucleus is said to be wettable, and the water may form a spherical cap on the 
surface of the particle. A particle onto which the molecules collect in this 
manner is referred to as a cloud condensation nucleus (CCN). 
If a CCN is insoluble in water, the physics governing the survival of an 

embryonic cloud droplet are the same as in the case of homogeneous nucleation. 
It can be shown that Eq. (3.3) still applies, but Rc has the more general 
interpretation in that it refers to the critical radius of curvature of the 
embryonic drop. Since the radius of curvature of the droplet forming on a 
particle is greater than what it would be if the same number of molecules were 
to aggregate in the absence of the particle (Fig. 3.1), the aggregation of the 
vapor molecules has a greater chance of producing a drop exceeding the critical 
radius. If the aggregated water molecules form a film of liquid completely 
surrounding a particle, then a complete droplet is formed whose radius is larger 
than it would be in the absence of the nucleus. Clearly, the larger such a 
nucleus is, the more likely is the survival of a drop formed by a film around it. 
For this reason, the larger the aerosol particle, the more likely it is to be a site 
for drop formation in a natural cloud. 
If the cloud condensation nucleus happens to be composed of a material that is 

soluble in water, the efficacy of the nucleation process is further enhanced. 
Since the saturation vapor pressure over the liquid solution is generally lower 
than that over a surface of pure water, e/es is increased. According to (3.3), the 
critical radius is then reduced, and nucleation is easier to achieve at the ambient 
vapor pressure. 
There are generally more than enough wettable aerosol particles in the air to 

accommodate the formation of all cloud droplets. However, the physics of the 
nucleation process just described indicate that the first droplets in a cloud will 
tend to form around the largest and most soluble CCN. The sizes and 
compositions of the aerosol particles in a sample of air thus have a profound 
effect on the size distribution of particles nucleated in a cloud. 
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3.1.2   Condensation and Evaporation 
 

Once formed, water drops may continue to grow as vapor diffuses toward 
them. This process is called condensation. The reverse process, drops 
decreasing in size as vapor diffuses away from them, is called evaporation. 
Particle growth by condensation and evaporation may be represented 
quantitatively by assuming that the flux of water vapor molecules through air is 
proportional to the gradient of the concentration of vapor molecules.47 In this 
case, the vapor density ρv (defined as the mass of vapor per unit volume of air) 
is governed by the diffusion equation 
 

(3.4) 
 

where Dv∆ρv is the flux of water vapor by molecular diffusion and Dv is the 
diffusion coefficient (assumed constant) for water vapor in air. The 
concentration of vapor around a spherical pure-water drop of radius R is 
assumed to be symmetric about a point located at the center of the drop, and the 
diffusion is assumed to be in a steady state. Under these assumptions, ρv 
depends only on radial distance r from the center of the drop, and (3.4) reduces 
to 
 

(3.5) 
 

The vapor density at the surface is ρv(R). As r→ ∞, the vapor density 
approaches the ambient or free-air value ρv(∞). The solution to (3.5) satisfying 
these boundary conditions is 
 

(3.6) 
 

If the drop has mass m, the flux of molecules causes its mass to increase or 
decrease at a rate given by 
 

(3.7) 
 
 
 

47 This assumption is called Fick's first law of diffusion. 
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where Dvdρv/dr│R is the flux of vapor in the radial direction across a spherical 
surface of radius R. Substitution of (3.6) into (3.7) yields 
 

(3.8) 
 

Since m∝R3, there are two unknowns in (3.8), ρv(R) and either m or R. 
Conditions in the environment (r = ∞) are assumed to be known. To obtain a 
solution for m or R, other relationships are needed. First, a heat-balance 
equation is introduced. In the condensation of water vapor on a drop, latent heat 
is released at a rate difm&L , where L is the latent heat of vaporization. Assuming 
that heat is conducted away from the drop as rapidly as it is being released, we 
have by analogy to (3.8) 
 

(3.9) 
 

where κa is the thermal conductivity of air and T is temperature. 
The equation of state for an ideal gas applied to water vapor under saturated 

conditions over a plane surface of pure water is 
 

(3.10) 
where Rv is the gas constant for a unit mass of water vapor, and es and ρvs are 
the saturation vapor pressure and density over a planar surface of water. Since 
es depends only on temperature,48 it is evident from (3.10) that ρvs is a known 
function of T. If it is then assumed that the vapor density at the drop's surface is 
given by the saturation vapor density, we may write 
 

(3.11) 
 

and (3.8), (3.9), and (3.11) can be solved numerically for mdif, T(R), and ρv (R). 
These equations can, moreover, be combined analytically for the special case of 
a drop growing or evaporating in a saturated environment (i.e., for the case in 
which e(∞ ) = es[T(∞ )]). In this special case, use is made of the 
Clausius-Clapeyron equation:49 
 

(3.12) 
 

48 See pp.72-73 of Wallace and Hobbs (1977). 
49 See p.95 of Wallace and Hobbs (1977). 
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Combination of (3.10) and (3.12) yields 
 

(3.13) 
 
Then (3.8), (3.9), (3.11), and (3.13) may be combined50 under saturated 

environmental conditions to obtain 
 

(3.14) 

 

where S~  depends on the humidity of the environment, FK on the heat 
conductivity, and FD on the vapor diffusivity. More specifically, S~  is the 
ambient supersaturation (expressed as a fraction): 
 

(3.15) 
 
The other factors are given by 
 

(3.16) 
 
and 
 

(3.17) 
 

From (3.14)-(3.17), it is evident that the diffusional growth rate of a drop 
depends on the temperature and humidity of the environment and on the radius 
of the drop. 
The relation (3.11) used in deriving (3.14) assumes that saturation at the drop's 

surface may be approximated as if it obtained over a plane surface of water (i.e., 
that the growing drop were large enough for the curvature of the drop's surface 
to have negligible influence upon the equilibrium vapor pressure). The drop has 
also been assumed to be sufficiently dilute with respect to dissolved nuclei or 
other impurities that the drop may be regarded as being composed of pure water. 
For very small drops, however, curvature and solution effects must be included. 
If a drop is growing on a water-soluble nucleus, ρv(R) becomes 
 

(3.18) 
 

50 See pp.99-102 of Rogers and Yau (1989) for details of the derivation. 
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where the term Ra /ˆ  represents the effect of drop curvature on the equilibrium 
vapor pressure above the drop. The factor â  is given by 
 

(3.19) 
 

where σvl is the surface tension of liquid-vapor interface and ρL is the density of 
liquid water. The term Rb /ˆ  represents the effect of salt dissolved in the drop 
on the equilibrium vapor pressure above the drop. The factor b̂  is given by 
 

(3.20) 
 

where ivH is the van’t Hoff factor,51 ms and Ms are the mass and molecular 
weight of the dissolved salt, respectively, and Mw is the molecular weight of 
water. 

Replacing (3.11) with (3.18) leads, following steps similar to those leading to 
(3.14), to the equation 
 

(3.21) 
 

 
which applies when the air is saturated. When the air is unsaturated, (3.8), (3.9), 
and (3.18) must be solved numerically to obtain difm&  for the evaporation rate 
of the drop. 
When drops are falling relative to the surrounding air, the diffusion of vapor 

and heat is altered. To account for this process, the right-hand sides of (3.8) and 
(3.9) may be multiplied by a ventilation factor VF. In this case, (3.14) and 
(3.21), the growth/evaporation rate under saturated conditions become 
 

(3.22) 
and 
 

(3.23) 
 
respectively.52 
 

51 This factor is equal to the number of ions into which each molecule of salt dissociates. See p. 162 of 

Wallace and Hobbs (1977). 
52 See pp. 440-463 of Pruppacher and Klett (1978). 
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3.1.3   Fall Speeds of Drops 
 

Growing cloud droplets are subject to downward gravitational force. This 
force can lead to their fallout as precipitation particles. The gravitational force 
on a drop is, however, largely offset by the frictional resistance of the air. As a 
particle is accelerated downward by gravity, its motion is increasingly retarded 
by the growing frictional force. Its final speed is called the terminal fall speed V. 
For drops of water in air, V is a function of the drop radius R. Generally V is 
negligible until the drops reach a radius of about 0.1 mm. This is usually 
considered to be the threshold size separating cloud droplets, which are 
suspended in the air indefinitely, from falling precipitation drops. The smallest 
precipitation drops (taken by con vention53 to be those 0.1-0.25 mm in radius) 
are called drizzle. Drops >0.25 mm in radius are called rain. Drizz1e and 
raindrops have terminal fall speeds that increase with increasing drop radius. 
We will represent this function as V(R). For drops <500 μm in radius, V 
increases approximately linearly with increasing drop radius (Fig. 3.2). For 
larger drops, V(R) increases at a lower rate (Fig. 3.3), becoming a constant at a 
radius of about 3 mm. This asymptotic behavior is associated with the fact that 
a drop becomes increasingly flattened, into the shape of a horizontally oriented 
disc, at larger sizes (see Fig. 4.2). 

 
 

 
 

Figure 3.2   Fall velocity of water drops < 500 µm in radius for various atmospheric 
conditions. (From Beard and Pruppacher, 1969. Reprinted with permission from the 
American Meteorological Society.) 
 
 
 

53 See the Glossary of Meteorology (Huschke, 1959). 
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Figure 3.3   Fall velocity of water drops > 500 µm in radius. (From Beard, 1976. 
Reprinted with permission from the American Meteorological Society.) 
 
 
 

3.1.4 Coalescence 
3.1.4.1 Continuous Collection 
 

Cloud drop growth by coalescence with other drops can be envisioned in 
terms of a drop of mass m falling through a cloud of particles of mass m ′ . The 
water contained in the particles of mass m ′  is assumed to be distributed 
uniformly through the cloud with liquid water content m′qρ (g m-3), where m′q  
is the cloud water mixing ratio (mass of cloud water per mass of air). As it falls, 
the particle of mass m is assumed to increase in mass continually at a rate given 
by the continuous collection equation, 
 

(3.24) 
 

where V represents the fall speed of the drops of masses m and m ′  (Figs. 3.2 
and 3.3), ρ is the density of the air, Σc(m, m ′ ) is the collection efficiency, and 
Am is the effective cross-sectional area swept out by a particle of mass m. The 
absolute value notation is used in (3.24) since it is only the relative motion of 
the particles that matters for collectional growth. For the case of a large drop 
collecting smaller drops, the absolute value symbol is redundant since the fall 
velocity of the larger drop always exceeds that of the smaller drops. However, 
(3.24) may also be used to calculate the increase of mass of a smaller drop 
coalescing with larger drops. If the absolute value were not used in that case, 

( ) ( ) ( )mm,mmm mmcol
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negative growth would be calculated. Moreover, as will be seen below, (3.24) is 
applied also to cold clouds where in some special cases (e.g., an ice particle 
collecting water drops) the fall velocity of the larger particle may not be the 
greater of the two. 

For the purpose of calculating collectional growth, water drops are usually 
assumed to be spherical. In that case, the factor Am in (3.24) is given by 
 

(3.25) 
 

where R and R′ , are the radii of drops of mass m and m ′ , respectively. This 
area is based on the sum of the drop radii since any drop centered within a 
distance R + R′of the center of the drop of radius R can be intercepted by that 
drop. 
 

 
Figure 3.4   Collision efficiency for collector drops of radius R1 with droplets of 
radius R2. The dashed portions of the curve represent regions of doubtful accuracy. 
(From Wallace and Hobbs, 1977.) 
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The collection efficiency is the efficiency Σc(m, m ′ ) is the efficiency with 
which a drop intercepts and unites with the drops it overtakes. It is the product 
of a collision efficiency and a coalescence efficiency. The collision efficiency 
(Fig. 3.4) is determined primarily by the relative airflow around the falling drop. 
Smaller particles may be carried out of the path of a larger particle (efficiency < 
1), or small particles not in the direct path of a large particle may collide with 
the large particle if they are pulled into its wake (efficiency > 1). The 
coalescence efficiency expresses the fact that a collision between two drops 
does not guarantee coalescence; the drops may bounce off each other or remain 
united only temporarily. Under most conditions, coalescence efficiency is high, 
especially if the droplets are electrically charged or if an electric field is present. 
The electrical conditions are often met in clouds, and little else is known about 
the coalescence efficiency. Hence, the most common practice in theoretical or 
modeling studies is to assume a coalescence efficiency of unity. The collection 
efficiency then reduces to the collision efficiency. 

A more general version of (3.24) may be written for the case in which a 
particle of mass m is falling relative to a population of particles of varying size. 
For that case, the generalized continuous collection equation is 

 
 
(3.26) 
 
where N ( m ′ ) d m′  is the number of particles per unit volume of air in the size 

range m ′ to m ′+ d m ′ . 
 
 
 
 
3.1.4.2   Stochastic Collection 
 

Cloud drop growth by coalescence is actually not a continuous process, as 
assumed in (3.24), but rather proceeds in a discrete, stepwise, probabilistic 
manner. In a time interval ∆t drops of a given initial size do not grow uniformly. 
Some may undergo more than the average number of collisions and thus grow 
faster than others. Consequently, a drop size distribution develops. 

The probabilistic nature of collection may be accounted for by considering 
the size distribution N(m,t), where N(m,t) dm is the number of particles per unit 
volume of air in mass range m to m + dm at time t. The change in N(m,t) with 
time is computed as follows. The rate at which the space within which a 
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particle of mass m ′  is located is swept out by a particle of mass m is given by 
the collection kernel, defined as 
 

(3.27) 
 

The probability that a particular drop of mass m will collect a drop of mass 
m′ , in time interval ∆t is 
 

(3.28) 
 

where it is assumed that ∆t is small enough that the probability of more than 
one collection in this time is negligible. Making use of (3.27) and (3.28), we 
note that the mean number of drops of mass m that will collect drops of mass 
m′  at time ∆t is 

(3.29) 

Rearranging this expression we obtain 
 

(3.30) 
 

which expresses the rate at which the number of drops of mass m is reduced as a 
result of coalescence with drops of mass m ′  per unit volume of air. It follows 
that the rate of decrease of the number concentration of drops of mass m as a 
result of their coalescence with drops of all other sizes is given by the integral 
 

(3.31) 
 
By reasoning similar to that given above we may express the rate of 

generation of drops of mass m by coalescence of smaller drops as 
 

(3.32) 
 
where the factor of 1/2 is included to avoid counting each collision twice. The 

net rate of change in the number density of drops of mass m is obtained by 
subtracting (3.32) from (3.31) and may be written as 
 

(3.33) 
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This result is referred to as the stochastic collection equation. 
Computations may be made with (3.33) starting with some arbitrary initial 

drop size distribution N(m,0). The result obtained by integrating (3.33) over 
time yields the drop size distribution altered by the stochastic collection process. 
In addition to the initial distribution, one must also assume reasonable values of 
the collection efficiencies and fall velocities appearing in (3.31) and (3.32). For 
realistic conditions, it is generally found that a large portion of the liquid water 
accumulates in the tail of the distribution. An example of such a calculation is 
shown in Fig. 3.5. The drop size distribution at successive times is plotted as 
mass distribution gm≡mN(m), rather than number distribution N(m), so that the 
area under each curve is proportional to the total liquid water content in the 
distribution. The mass distribution is plotted versus the radius of a drop of mass 
m on a logarithmic scale. This plotting convention emphasizes the result that a 
large portion of the liquid water becomes concentrated in the large drops as 
time progresses. The two peaks in the mass distribution after 30 min 
correspond to the amount of water contained in cloud droplets (radii ~ 10-3 cm) 
and raindrops (radii ~ 10-1 cm). The two dashed lines following the centers of 
the two peaks correspond to the means of the number and mass concentrations. 
The mean of the number distribution follows the cloud droplet peak. This result 
illustrates that the cloud droplets are far more numerous than the raindrops but 
that the latter nonetheless contain a large part of the liquid water after half an 
hour of stochastic collection. Stochastic collection can thus quickly convert 
cloud water to rainwater. 
 

 

 

Figure 3.5   Example of the evolution of a drop size distribution as a result of 

stochastic collection. gm is the mass distribution function; R is the drop radius. 
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The two dashed lines show the radii (Rn and Rg) corresponding to the means of 

the number and mass distributions, respectively. (From Berry and Reinhardt, 

1973. Reprinted with permission from the American Meteorological Society.) 

 

 

Figure 3.6   The probability PB(m) that a drop of radius R breaks up per unit time. 
Based on empirical foumula of Srivastava (1971). 
 
 
 
3.1.5   Breakup of Drops 
 

When raindrops achieve a certain size, they become unstable and break up 
into smaller drops. Breakup has been studied in the laboratory, and empirical 
functions based on the experimental data are used to describe breakup 
quantitatively.54 One empirical function is the probability PB(m) that a drop of 
mass m breaks up per unit time. It is nearly zero for drops less than about 3.5 
mm and increases exponentially with size for radii greater than this value (Fig. 
3.6). The function shown in the plot is 
 

(3.34) 
 

where R is the radius in millimeters of a drop of mass m and PB(m) is in s-1. A 
second empirical function is QB( m ′ ,m), which is defined such that QB( m ′ ,m) dm 

( ) ( )RPB 4.3exp1094.2 7−×=m
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is the number of drops of mass m to m + dm formed by the breakup of one drop 
of mass m′ . QB( m ′ ,m) is approximately exponential. It is given by 
 

(3.35) 
 
 
 
54 The formulation of breakup presented in this subsection was developed by Srivastava (1971). 

 
where the radii are in cm. The empirical functions PB(m) and QB( m ′ ,m) can be 
used to determine the net effect of breakup on the drop size distribution N(m,t). 
The net rate of production of drops of mass m by breakup implied by these 
functions is 
 

(3.36) 
 
 

 
 
 
3.2   Microphysics of Cold Clouds 
3.2.l   Homogeneous Nucleation of Ice Particles 
 

Ice particles in clouds may be nucleated from either the liquid or vapor phase. 
Homogeneous nucleation of ice from the liquid phase is analogous to 
nucleation of drops from the vapor phase. An embryonic ice particle can be 
considered a polyhedron of volume αi4πR3/3 and surface area βi4πR2, where R 
is the radius of a sphere that can just be contained within the polyhedron, and αi 
and βi are both greater than unity but approach unity as the polyhedron tends 
toward a spherical shape. By reasoning analogous to that leading to (3.3), the 
expression for the critical radius Rci of the inscribed sphere is 
 

(3.37) 
 

where σil is the free energy of an ice-liquid interface, ni is the number of 
molecules per unit volume of ice, and esi is the saturation vapor pressure with 
respect to a plane surface of ice. The saturation vapor pressures of liquid and 
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ice in the denominator and the free energy in the numerator are all functions of 
temperature. The critical radius is thus a function of temperature. 
 
 
 
 
 

55 Larger drops freeze homogeneously at slightly higher temperatures than smaller ones (Rogers and 

Yau, 1989, p.151). 
 

Theoretical and empirical results indicate that homogeneous nucleation of 
liquid water occurs at temperatures lower than about -35 to -40℃, depending 
somewhat on the size of the drops being subjected to the low temperature.55 
This thresho1d lies within the range of temperatures in natural clouds, which 
may have cloud-top temperatures below -80℃. It is therefore possible, in a 
natural cloud, to have unfrozen liquid (i.e., supercooled) drops in the 
temperature range of 0℃ to about -40℃. However, wherever the temperature 
in the cloud is below about -40℃, any liquid drops that happen to be present 
freeze spontaneously by homogeneous nucleation. This conclusion is consistent 
with the fact that at temperatures below -40℃ atmospheric clouds are always 
composed entirely of ice, in which case they are said to be glaciated. 
In principle, an ice particle may be nucleated directly from the vapor phase in 

the same manner as a drop. The critical size for homogeneous nucleation of an 
ice particle directly from the vapor phase is given by an expression similar in 
form to (3.3). In this case, the critical size depends strongly on both 
temperature and ambient humidity. Theoretical estimates of the rate at which 
molecules in the vapor phase aggregate to form ice particles of critical size 
indicate, however, that nucleation occurs only at temperatures below -65℃ 
and at supersaturations ~ 1000％. Such high supersaturations do not occur in 
the atmosphere. Since liquid drops would nucleate from the vapor phase before 
these supersaturations were reached, and since the liquid drops thus formed 
would freeze homogeneously below -40℃, it is concluded that homogeneous 
nucleation of ice directly from the vapor phase never occurs in natural clouds. 
 

 
 
3.2.2   Heterogeneous Nucleation of Ice Particles 
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From observations of the particles in clouds it is readily determined that ice 
crystals form at temperatures between 0℃ and -40℃. Since homogeneous 
nucleation does not occur in this temperature range, the crystals must form by a 
heterogeneous process. As in the case of heterogeneous nucleation of liquid 
drops, the foreign surface on which an ice particle nucleates reduces the critical 
size that must be attained by chance aggregation of molecules. However, in the 
case of drops nucleating from the vapor phase, the atmosphere has no shortage 
of wettable nuclei. In contrast, ice crystals do not form readily on many of the 
particles found in air. The principal difficulty with the heterogeneous 
nucleation of the ice is that the molecules of the solid phase are arranged in a 
highly ordered crystal lattice. To allow the formation of an interfacial surface 
between the ice embryo and the foreign substance, the latter should have a 
lattice structure similar to that of ice. Figure 3.7 illustrates schematically an ice 
embryo which has formed on a crystalline substrate with a crystal lattice 
different from that of the ice. There are two ways in which the embryo could 
form. Either the ice could retain its normal lattice dimensions right to the 
interface, with dislocations in the sheets of molecules, or the ice lattice could 
deform elastically to join the lattice of the substrate. The effect of dislocations 
is to increase the surface tension of the ice-substrate interface. The effect of 
elastic strain is to raise the free energy of the ice molecules. Both of these 
effects lower the ice-nucleating efficiency of a substance. These effects, 
moreover, are temperature dependent in the sense that the higher the 
temperature, the more the surface tension and elastic strain are increased. 
 

 
 

Figure 3.7   Schematic illustration of an ice embryo growing upon a crystalline 
substrate with a slight misfit. Dislocations of the interface are indicated by arrows. 
(From Fletcher, 1966. Reprinted with permission from Cambridge University Press.) 
 

There are several modes of action by which an ice nucleus can trigger the 
formation of an ice crystal. An ice nucleus contained within a supercooled drop 
may initiate heterogeneous freezing when the temperature of the drop is 
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lowered to the value at which the nucleus can be activated. There are two 
possibilities in this case. If the cloud condensation nucleus on which the drop 
forms is the ice nucleus, the process is called condensation nucleation. If the 
nucleation is caused by any other nucleus suspended in supercooled water, the 
process is referred to as immersion freezing. Drops may also be frozen if an ice 
nucleus in the air comes into contact with the drop; this process is called 
contact nucleation. Finally, the ice may be formed on a nucleus directly from 
the vapor phase, in which case the process is called deposition nucleation. 

From the above considerations, it is evident that the probability of ice 
particle nucleation should increase with decreasing temperature and that 
substances possessing a crystal lattice structure similar to that of ice should be 
the most likely to serve as a nucleating surface. In this respect, ice itself 
provides the best nucleating surface; whenever a supercooled drop at any 
temperature ≦0oC comes into contact with a surface of ice it immediately 
freezes. Other than ice, the natural substances possessing a crystal lattice 
structure most similar to that of ice appear to be certain clay minerals found in 
many soil types and bacteria in decayed plant leaves. They may nucleate ice at 
temperatures as high as -4℃ but appear to occur in low concentrations in the 
atmosphere. Most ice particle nucleation in clouds occurs at temperatures lower 
than this. In general, particles in the air on which ice crystals are able to form 
are called ice nuclei. Measurements can be made to indicate how many ice 
nuclei can be activated by lowering the temperature of a sample of air in an 
expansion chamber.56 Generally, these measurements do not distinguish among 
condensation, immersion, contact, or deposition nucleation, nor do they 
indicate the composition of the nuclei. They also do not indicate the effect of 
varying the humidity. However, extensive measurements of this type indicate 
that the average number of ice nuclei NI per liter of air generally increases 
exponentially with decreasing temperature according to the empirical formula 
 

(3.38) 
 

where αI varies with location but has values in the range of 0.3-0.8. Note that 
according to this relationship, there is only about one ice nucleus per liter at 
-20oC. For a value of αI = 0.6, the concentration increases by approximately a 
factor of ten for every 4℃ of temperature decrease. 
 
 
 

( )TaN II −Κ°= 253ln
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56 See p.184 of Wallace and Hobbs (1977) for a description of the technique. 

 
3.2.3   Deposition and Sublimation 
 

Growth of an ice particle by diffusion of ambient vapor toward the particle is 
called deposition. The loss of mass of an ice particle by diffusion of vapor from 
its surface into the environment is called sublimation. These processes are the 
ice-phase analogs of condensation and evaporation. However, since ice 
particles take on a variety of shapes, the spherical geometry assumed in 
evaluating the growth and evaporation of drops by vapor diffusion (Sec. 3.1.2) 
may not always be assumed in calculations of the change of mass of ice 
particles. Diffusion of vapor toward or away from nonspherical ice particles is 
accounted for by replacing R in (3.8), and thus in (3.14) and (3.22), by a shape 
factor C~ , which is analogous to electrical capacitance.57 Thus, the analog to 
(3.8) is 
 

(3.39) 
 

where ρvsfc is the vapor density at the particle’s surface. It follows that the 
analogs to (3.14) and (3.22) are 
 

(3.40) 
 

and 
 

(3.41) 
 
 

respectively. iS~ , FKi and FDi are the same as S~ , FK, and FD in (3.15)-(3.17) 

except that L is replaced by the latent heat of sublimation Ls in (3.16), and es(∞) 
is replaced by the saturation vapor pressure over a plane surface of ice esi(∞) in 
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(3.15) and (3.17). The relations (3.40) and (3.41), like (3.14) and (3.22), apply 
only when the air is saturated (in this case with respect to ice). As in the case of 
drops, difm&  must be obtained numerically if the air is unsaturated. 
 

57 The analogy between the vapor field around an ice crystal and the field of electrostatic potential 

around a conductor of the same size and shape was first applied by Houghton (1950). See Hobbs (1974) 

for further notes on the origin of the analogy. 

 
The shape, or habit, adopted by an ice crystal growing by vapor diffusion is a 

sensitive function of the temperature T and supersaturation iS~  of the air.58 

These growth modes are known from observations in the laboratory and in 
clouds themselves. The basic crystal habits exhibit a hexagonal face. Let a 
crystal be imagined to have an axis normal to its hexagonal face. If this axis is 
long compared to the width of the hexagonal face, it is said to be prismlike. If 
this axis is short compared to the width of the hexagonal face, the crystal is said 
to be platelike. The basic crystal habits are illustrated schematically in Fig. 3.8. 
The habits change back and forth between prismlike and platelike as the 
ambient temperature changes (Table 3.1). The effect of increasing the ambient 
supersaturation is to increase the surface-to-volume ratio of the crystal. The 
additional surface area gives the increased ambient vapor more space on which 
to deposit. The multiarmed, fernlike crystals that appear at temperatures of –12 
to -16oC have six main arms and several secondary branches (Fig. 3.8c). They 
may be thought of as hexagonal plates with sections deleted to increase the 
surface-to-volume ratio of the crystal. They occur in the temperature range 
where the difference between the saturation vapor pressure over water (an 
approximation to the actual vapor pressure in many cold clouds) and the 
saturation vapor pressure over ice (an approximation to the condition at the 
surface of the crystal) is greatest. 
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Figure 3.8   Schematic representation of the main shapes of ice crystals: (a) 
columnar, or prismlike; (b) plate; (c) dendrite. (Adapted from Rogers and Yau, 
1989.) 

 
58 See Chapters 8 and 10 of Hobbs (1974). 

 
3.2.4   Aggregation and Riming 
 

If ice particles collect other ice particles, the process is called aggregation. If 
ice particles collect liquid drops, which freeze on contact, the process is called 
riming. The continuous collection equation (3.24) may be used to describe the 
growth of ice particles by aggregation or riming.  

Aggregation depends strongly on temperature. The probability of adhesion 
of colliding ice particles becomes much greater when the temperature increases 
to above -5℃, at which the surfaces of ice crystals become sticky. Another 
factor affecting aggregation is crystal type. Intricate crystals, such as dendrites, 
become aggregated when their branches become entwined. These facts are 
known from laboratory experiments and observations of natural snow. The 
sizes of collected snow aggregates are shown as a function of the temperature 
at which they were observed in Fig. 3.9. The sizes increase sharply at 
temperatures above -5℃, while aggregation does not appear to exist below -20
℃. A secondary maximum occurs between -10 and -16℃, where the arms of 
the dendritic crystals growing at these temperatures apparently become 
entangled. In correspondence to these observations, the collection efficiency for 
aggregation is often assumed to be an exponentially increasing function of 
temperature in calculations using (3.24) or (3.26). 
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Table 3.1 
Variations in the Basic Habits of Ice Crystals with Temperature 

 Types of crystal at slight water  
Temperature (oC) Basic habit Supersaturation 

0 to – 4 Platelike Thin hexagonal plates 

– 4 to – 10 Prismlike 
Needles (– 4 to – 6 oC) 
Hollow columns (– 5 to – 10 oC) 

– 10 to – 22 Platelike 
Sector plates (– 10 to – 12 oC) 
Dendrites (– 12 to – 16 oC) 
Sector plates (– 16 to – 22 oC) 

– 22 to – 50 Prismlike Hollow columns 
Source: Wallace and Hobbs (1997). 

 
 
 

 
Figure 3.9   Maximum dimensions of natural aggregates of ice crystals as a 
function of the temperature of the air where they were collected. ×indicates 
crystals collected from an aircraft. Circles represent crystals collected on the 
ground. (From Hobbs, 1973b. Reprinted with permission from Oxford 
University Press.) 
 



3-24 

 
 

Figure   3.10 (a) A lightly rimed needle; (b) densely rimed column; (c) 
densely rimed plate; (d) densely rimed stellar; (e) lump graupel; (f) cone 
graupel. (From Wallace and Hobbs, 1977.) 

The collection efficiency for riming is not well known theoretically or 
empirically, but it is generally thought to be quite high and often assumed to be 
unity in calculations using (3.24) or (3.26). If the ice particle is viewed as the 
collector and the liquid drops as the collected particles in (3.24), the degree of 
riming that is achievable is determined primarily by the mixing ratio of the 
liquid water ( m′q ). Lightly to moderately rimed crystals retain vestiges of the 
original crystal habit of the collector (Fig. 3.10 a-d). Under heavy riming the 
identity of the collector becomes lost, and the particle is referred to as graupel, 
which may be in the form of lumps or cones (Fig. 3.10e and f). 
 
 
 
3.2.5   Hail 
 

Extreme riming produces hailstones. These particles are commonly 1 cm in 
diameter but have been observed to be as large as 10-15 cm. They are produced 
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as graupel or frozen raindrops collect supercooled cloud droplets. So much 
liquid water is accreted in this fashion that the latent heat of fusion released 
when the collected water freezes significantly affects the temperature of the 
hailstone. The hailstone may be several degrees warmer than its environment. 
This temperature difference has to be taken into account in calculating the 
growth of hail particles, which is determined by considering the heat balance of 
the hailstone. 

The rate at which heat is gained as a result of the riming of a hailstone of 
mass m is  

(3.42) 
 

The factor colm&  is the rate of increase of the mass of the hailstone as a result 
of collecting liquid water. It is given by (3.26). The hailstone is assumed to be 
spherical with radius R. Lf is the latent heat of fusion released as the droplets 
freeze on contact with the hailstone. The second term in the curly brackets is 
the heat per unit mass gained as the collected water drops of temperature Tw 
come into temperature equilibrium with the hailstone. The factor cw is the 
specific heat of water. If the air surrounding the particle is subsaturated, the 
temperature Tw is approximated by the wet-bulb temperature of the air, which is 
the equilibrium temperature above a surface of water undergoing evaporation at 
a given air pressure.59 This temperature may be several degrees less than the 
actual air temperature when the humidity of the air is very low. If the air 
surrounding the particle is saturated Tw = T(∞). 

The rate at which the hailstone gains heat by deposition (or loses heat 

by sublimation) is obtained from a modified form of (3.8) 

 
(3.43) 

 
where VFs is a ventilation factor for sublimation, and Ls is the latent heat of 
sublimation. 

The rate at which heat is lost to the air by conduction is obtained from a 
modified version of (3.9), which may be written as 
 

(3.44) 
 

where VFs is a ventilation factor for conduction. 
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In equilibrium we have 
 

(3.45) 
 

which upon substitution from (3.42)-(3.44) may be solved for the hailstone 
equilibrium temperature as a function of size. As long as this temperature 
remains below 0℃ , the surface of the hailstone remains dry, and its 
development is called dry growth. The diffusion of heat away from the 
hailstone, however, is generally too slow to keep up with the release of heat 
associated with the riming (depositional growth is much less than the riming). 
Therefore, if a hailstone remains in a supercooled cloud long enough, its 
equilibrium temperature can rise to 0℃. At this temperature, the collected 
supercooled droplets no longer freeze spontaneously upon contact with the 
hailstone. Some of the collected water may then be lost to the warm hailstone 
by shedding. However, a considerable portion of the collected water becomes 
incorporated into a water-ice mesh forming what is called spongy hail. This 
process is called wet growth. During its lifetime, a hailstone may grow 
alternately by the dry and wet processes as it passes through air of varying 
temperature. When hailstones are sliced open, they often exhibit a layered 
structure, which is evidence of these alternating growth modes. 
 
 
59 See pp.75-76 of Wallace and Hobbs (1977) 

3.2.6   Ice Enhancement 
 

When the concentrations of ice particles are measured in natural clouds, it is 
often found that there are far more ice particles present than can be accounted 
for by the typical concentrations of ice nuclei activated by lowering the 
temperature of air in expansion chambers.60 Figure 3.11 compares some 
measurements of ice particle concentrations in cumuliform clouds with the 
concentration of ice nuclei expected from expansion-chamber measurements to 
be active at the cloud-top temperature. The latter concentration is calculated 
from (3.38). The cloud-top temperature is the lowest temperature anywhere in 
the cloud and hence provides an estimate of the maximum possible ice nucleus 
concentration in the cloud according to (3.38). The actual particle concentration 
is seen typically to exceed the maximum possible nucleus concentration by one 
or more orders of magnitude. 

csf QQQ &&& =+
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These high concentrations are found in many cold clouds. They do not, 
however, occur in uniform spatial and temporal patterns within a cloud. A 
common characteristic is that they occur in older rather than newly formed 
portions of clouds, and they are found in association with supercooled cloud 
droplets. They are most likely to be found when the size distribution of the 
droplets is broad, with largest drops exceeding about 20 µm in diameter. The 
high concentrations develop initially near the tops of clouds, and the high 
concentrations may develop suddenly (e.g., the concentration may rise from 1 
to 1000 l -1 in less than 10 min). 
The microphysical process, or processes, by which the concentrations of ice 

particles become so highly enhanced relative to the number of nuclei which 
would appear to be active according to (3.38) are not certain. Some hypotheses 
that have been suggested are61 
(i) Fragmentation of ice crystals. Delicate crystals may break into pieces 

as a result of collisions and/or thermal shock. 
 
 
 
60 For a more complete account of the observations and hypotheses regarding the occurrence of high ice 

particle concentrations in clouds, see Hobbs and Rangno (1985,1990) and Rangno and Hobbs 

(1988,1991). 
61 For a more full discussion and many references to the literature, see the Hobbs and Rangno papers 

mentioned in the previous footnote. 

 
(ii) Ice splinter production in riming. It has been found in laboratory 

experiments that when supercooled droplets >23 µm in diameter collide with an 
ice surface at a speed of ≧ 1.4 m s-l at temperatures of -3 to –8 ℃, small ice 
splinters are produced.62 
(iii) Contact nucleation. It is thought that when certain aerosol particles come 

into contact with supercooled droplets they can cause nucleation at higher 
temperatures than they would through other forms of nucleation. 
(iv) Condensation or deposition nucleation. There is evidence that the 

icenucleating activity of atmospheric aerosol particles by either condensation or 
deposition nucleation is greatly increased when the ambient supersaturation 
rises above 1% with respect to water. Ice nucleus counters whose data lead to 
the expression in (3.38) are usually operated near water saturation. A pocket of 
high supersaturation in a cloud might be favorable for the sudden appearance of 
a large number of ice particles. 
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The latter two mechanisms, (iii) and (iv), do not require the pre-existence of 
ice particles and may thus help to account for the sudden appearance of high 
concentrations in cloudy air at relatively high temperatures. 

 
CLOUD TOP TEMPERATURE (0oC) 

Figure 3.11   Maximum ice particle concentrations observed in mature and 
aging maritime (open humps), continental (closed humps), and transitional 
(half-open humps) cumuliform clouds. The line represents the concentrations 
expected at the cloud-top temperature. (From Hobbs and Rangno, 1985. 
Reprinted with permission from the American Meteorological Society.) 
 
62 The laboratory experiments were performed by Hallett and Mossop (1974). This ice-enhancement 

process is often called the Hallett-Mossop mechanism. 

3.2.7   Fall Speeds of Ice Particles 
 

The fall speeds of ice particles encompass a wide range. Observations show 
that these speeds depend on particle type, size, and degree of riming and that 
the more heavily rimed a particle, the more its fall speed depends on its size. 
Individual snow crystals (lower curves of Fig. 3.12) and unrimed to moderately 
rimed aggregates of crystals (Fig. 3.13) drift downward at speeds of 0.3-1.5 m 
s-1, with the aggregates showing a tendency to increase slightly in fall speed as 
they approach 12 mm in dimension. Graupel fall speeds increase sharply from 
1 to3m s-1 over a narrow size range of 1-3 mm (upper curve of Fig. 3.12 and 
Fig. 3.14). Empirical formulas for fall speeds of snow and graupel for the data 
set represented in Fig. 3.12 and Fig. 3.14 are listed in Table 3.2. These formulas 
apply near the earth’s surface. They do not take into account the fact that the 
fall speed also depends on the density of the air through which the particles are 
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falling. The dependence on air density has been determined experimentally and 
theoretically.63 

 

 
 

Figure 3.12   Terminal fail speeds of snow crystals as a function of their 
maximum dimensions. Open circle (uppermost curve) indicates graupel fall 
speeds. Other curves are for rimed crystals (dot in circle), needles (filled circle 
with slash), spatial dendrites (triangle), powder snow (×), and dendrites (filled 
circle). (From Nakaya and Terada, 1935.) 
 
 

63 See, for example, Bohm (1989). 
Hailstone fall velocities are an order of magnitude larger than those for snow 

and graupel. At a pressure of 800 mb and a temperature of 0℃, they obey the 
empirical formula64 

(3.46) 
 

where Dh is the diameter of the hailstone in cm. This formula was obtained for 
hailstones in the size range 0.1-0.8 cm. Over this range, the fall speeds 
indicated by (3.46) are roughly 10-50 m s-1. These large values imply that 
updrafts of comparable magnitude must exist in the cloud to support the 
hailstones long enough for them to grow. Hence, hail is found only in very 
intense thunderstorms, of the types considered in Chapters 8 and 9. 
 
 

( ) 8.01 9 hDmsV ≈−
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Figure 3.13   Terminal velocity and maximum dimension measurements for 
unrimed to moderately rimed aggregates. Combinations of: sideplanes (a type 
of branched crystal), bullets and columns (circles, dotted curve); sideplanes 
(triangles, solid curve); radiating assemblages of dendrites (asterisks, dashed 
curve); dendrites (squares, dash-dot curve). (From Hobbs, 1974, based on data 
from Locatelli and Hobbs, 1974. Reprinted with permission from Oxford 
University Press.) 
 
 
 
 
 

64 From Pruppacher and Klett (1978, p.345), based on data of Auer (1972). 

 
 
 
 
 

Table 3.2 
Empirical Relationships between the Terminal Velocities v(in ms-1) of Solid 

Precipitation Particles and Their Maximum Dimension Dm (in mm) 
 Type of particlea v- Dm relationship
Graupel and 
Graupe-like 

Cone-shaped graupel v = 1．2 65.0
mD  
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Hexagonal graupel v = 1．1 57.0
mD  

Graupel-like snow of lump type v = 1．1 28.0
mD  

Graupel-like snow of hexagonal 
type 

v = 0．86 25.0
mD  

snow 

Combination of sideplanes, plates, 
bullets, and columns 

v = 0．69 41.0
mD  

Sideplanes v = 0．82 12.0
mD  Unrimed aggregates 

Radiating assemblages of dendrite 
or dendrites v = 0．8 16.0

mD  

Densely rimed 
aggregates 

Radiating assemblages of dendrites 
or dendrites 

v = 0．79 27.0
mD  

Densely rimed columns  v = 1．1 56.0
mD  

Source: Locatelli and Hobbs (1974). 
a Based on Magono and Lee’s (1966) classification. 
 
 

 
 

Figure 3.14 Terminal velocity and maximum dimension measurements for 
graupel and graupel-like snow. Cone-shaped graupel (circles, dash-dot curve); 
hexagonal graupel (triangles, dashed curve); graupel-like snow of hexagonal 
type (asterisks). (From Hobbs, 1974, based on data from Locatelli and Hobbs, 
1974. Reprinted with permission from Oxford University Press.) 
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3.2.8   Melting 
 

Ice particles can change into liquid water when they come into contact with 
air or water that is above 0℃. A quantitative expression for the rate of melting 
of an ice particle of mass m can be obtained by assuming heat balance for the 
particle during the melting. According to (3.45), this balance may then be 
written as 
 

(3.47) 
 
where melm ′&  is the rate of change of the mass of the ice particle as a result of 

melting. The first term on the right is the diffusion of heat toward the particle 
from the air in the environment. The second term is the rate at which heat is 
transferred to the ice particle from water drops of temperature Tw that are 

collected by the melting particle. The third term, sQ& , is the gain or loss of heat 

by vapor diffusion [given by (3.43) in the case of a spherical hailstone]. If both 
the air and drop temperatures exceed 273 K, then both the first and second term 
in (3.47) contribute to the melting. 
3.3   Types of Microphysical Processes and Categories of Water 

Substance in Clouds 
 

From the foregoing review of cloud microphysics (Secs. 3.1and 3.2), it is 
evident that water substance can take on a wide variety of forms in a cloud and 
that these forms develop under the influence of seven basic types of 
microphysical processes:    
 

1. Nucleation of particles 
2. Vapor diffusion 
3. Collection 
4. Breakup of drops 
5. Fallout 
6. Ice enhancement 
7. Melting 

 

( )[ ] ( ) swwFcaf QTcVTRL &&& +Κ−+Κ−∞=− 2732734 colmel mm κπ
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These individual processes may sometimes be isolated for study in numerical 

models or in the laboratory. However, in a natural cloud several or all of these 

processes occur simultaneously, as the entire ensemble of particles comprising 

the cloud forms, grows, and dies out. Thus, the various forms of water and ice 

particles coexist and interact within the overall cloud ensemble. It is the 

behavior of the overall ensemble that is of primary interest in cloud dynamics, 

and it is generally unnecessary to keep track of every particle in the cloud in 

order to describe the cloud’s gross behavior. At the same time, it is also 

impossible to ignore the microphysical processes and accurately represent the 

cloud’s overall behavior. To retain the essentials of the microphysical behavior, 

it is convenient to group the various forms of water substance in a cloud into 

several broad categories of water substance: 

 

 Water vapor is in the gaseous phase. 
 

 Cloud liquid water is in the form of small suspended liquid-phase 
droplets (i.e., drops that are too small to have any appreciable terminal 
fall speed constitute cloud liquid water and therefore are generally carried 
along by the air in which they are suspended). 

 
 

 Precipitation liquid water is in the form of liquid-phase drops that are 
large enough to have an appreciable fall speed toward the earth. This 
water may be subdivided into drizzle (drops 0.1-0.25 mm in radius) and 
rain (drops >0.25 mm in radius), as defined in Sec. 3.1.3. 
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 Cloud ice is composed of particles that have little or no appreciable fall 

speed. These particles may be in the form of pristine crystals nucleated 
directly from the vapor or water phase, or they may be tiny particles of 
ice produced in some form of ice enhancement process. 

 
 Precipitation ice refers to ice particles that have become large and heavy 

enough to have a terminal fall speed ~0.3 m s-1 or more. These particles 
may be pristine crystals, larger fragments of particles, rimed particles, 
aggregates, graupel, or hail. To simplify the description of the gross 
behavior of a cloud these particle types are sometimes grouped into 
categories according to their density or fall speed. Such groupings are 
arbitrary; however, a commonly used scheme (employed in discussions 
below) is to divide these particles into snow, which has lower density and 
falls at speeds of ~0.3 - 1.5 m s-1 (see Figs. 3.12-3.13); graupel, which 
falls at speeds of ~1 - 3 m s-1 (see Figs. 3.12 and 3.14); and hail, which 
falls at speeds of ~10 - 50 m s-1 [see Eq. (3.46)]. 

 
According to these categories of particles, the water substance in a sample of 

air may be represented by eight mixing ratios: 
 

qv ≡ mass of water vapor / mass of air 
qc ≡ mass of cloud liquid water / mass of air 
qd ≡ mass of drizzle / mass of air 
qr ≡ mass of rainwater / mass of air 
qI ≡ mass of cloud ice / mass of air                   (3.48) 
qs ≡ mass of snow / mass of air 
qg ≡ mass of graupel / mass of air 
qh ≡ mass of hail / mass of air 

 
The evolution of a cloud can be characterized in terms of fields of these 

mixing ratios of water substance. The various categories are interactive. For 
example, drops grow at the expense of vapor during nucleation and 
condensation, precipitation ice grows at the expense of cloud and precipitation 
liquid water during riming, rainwater is produced at the expense of 
precipitation ice during melting, and so on. The many conversions of water 
substance from one form to another in a given sample of air are illustrated in 
Fig. 3.15 for a cloud whose water substance is divided into water vapor, c1oud 
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liquid water, rainwater, cloud ice, snow, and graupel. Also indicated are the 
possible gains or losses by precipitation fallout. The six categories in Fig. 3.15 
are a subset of the eight listed above, drizzle and hail being omitted. This 
six-category scheme is frequently used in cloud dynamics. Sometimes hail 
rather than graupel is used as the sixth category. To be perfectly general, all the 
categories should be included. It is easy to see from Fig. 3.15 that the number 
of interactions to be considered would increase greatly by expanding to a 
seven- or eight- category scheme. It is for this reason that the number of 
categories is often limited to six or less. 
 

 
 
3.4   Water-Continuity Equations 
 

In cloud dynamics one is concerned with the overall development of a cloud, in 
which any combination of the categories of water substance defined above and 
any combination of the microphysical processes linking the various categories 
(as shown in Fig. 3.15) may be present simultaneously in the context of a 
particular set of air motions. It is therefore necessary to have a way to keep 
track of all of the processes in some systematic way. For this purpose, the 
water-continuity equations (2.21) are used. They allow one to account 
numerically for the amount of water contained in the form of vapor and in the 
form of particles of different types and sizes throughout a cloud, as it evolves. 
This system of equations is referred to as a water-continuity model. In (2.21), 
each category of water is assigned a mixing ratio qi, where the subscript i refers 
to a particular category of water and the mixing ratio is defined as the mass of 
water of category i per unit mass of air. The total water substance in a parcel of 
air is then given by the sum of the water contained in each of the categories: 

 
(3.49) 

 
where n is the total number of categories into which the total water qT in the 

air parcel has been divided. 
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Figure 3.15 Conversions of water substance from one form to another in a bulk water-continuity model in which there are 

six categories of water substance. Dashed lines indicate various interactions leading to production of graupel: collection 

of cloud ice by rain freezes the ice by contact nucleation and produces either snow or graupel; or riming of snow by 

collection of either cloud water or raindrops can also lead to production of graupel. In the model, the mass of ice 

produced by these two processes passes temporarily through the snow category. (Adapted from Rutledge and Hobbs, 

1984. Reproduced with permission from the American Meteorological Society.) 

 
There is no limit to the number of categories into which the total water in a 

parcel of air can be divided. To begin with, we can divide the water into the 
eight categories listed in (3.48). Each of these categories, however, can be 
further subdivided. The cloud liquid water, drizzle, and rainwater categories 
can be subdivided according to drop size. Each drop size category can be 
further subdivided according to such factors as the type of nucleus on which the 
drops -formed, chemical composition of the drops, etc. The snow category can 
be subdivided by type of particle (columns, plates, aggregates, ice splinters, 
etc.), and these particle types can be further subdivided according to particle 
size, density, or other factors. The graupel may be subdivided by size and shape 
(some graupel particles are cone shaped while some are lumpy), and hail may 
be subdivided by particle size, whether it is spongy or hard, and other factors. 
Obviously, calculations can become highly complex if all of these subdivisions 
are employed. Generally the strategy in cloud dynamics is to identify and use 
only the categories and subcategories of water substance that are essential to 
keep account of in the particular problem being considered. Hence, practically 
every water-continuity model employed is tailored to the problem at hand. 
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Once the n categories to be used in a particular water-continuity model have 
been established, the source terms on the right-hand side of (2.21) must be 
formulated to allow for all the possible interactions among the different 
categories of water (e.g., the interactions shown for the six-category model in 
Fig. 3.15). The source terms are formulated in terms of the seven basic cloud 
microphysical mechanisms mentioned earlier (nucleation, vapor diffusion, 
collection, particle breakup, fallout, ice enhancement, and melting). Two 
general strategies have been employed to formulate the source terms. In bulk 
models, the liquid and ice water mixing ratios are grouped into categories 
according to particle type only. In explicit models, the hydrometeors are 
subdivided according to size within each particle-type grouping. The following 
sections summarize the salient features of these two types of models. 
 
 
3.5   Explicit Water-Continuity Models 
3.5.1   Genera 
 
Hydrometeors may be grouped into categories according to particle type as in 

(3.48). In an explicit water-continuity model, one or more of these categories 
are subdivided according to particle size. Since the mass of water contained in 
particles of different sizes is calculated, the size distributions of particles are 
able to evolve naturally in each air parcel associated with the cloud. The only 
disadvantage of the explicit model is computational. A large number of size 
categories (~10-100) and associated interactions have to be included to 
represent the size distribution of the particles of a given category of water 
substance accurately. From a physical standpoint, the explicit method is the 
more direct approach. The microphysica1principles reviewed in previous 
sections can be applied directly to the calculation of the size distributions 
within a given category of water substance. 
 
 

3.5.2   Explicit Modeling of Warm Clouds 
3.5.2.1   Drops Subdivided by Size 
 

We consider first clouds without ice. Therefore, none of the ice categories in 
(3.48) are relevant; qI = qs = qg = qh = 0. The cloud and precipitation liquid 
water categories are combined into a single total liquid water mixing ratio qL 
≡ qc + qd + qr. The total liquid water content is thus viewed as a continuous 
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spectrum of drops, ranging from small, freshly nucleated cloud droplets to large 
raindrops. The size distribution is represented by N(m), where N(m) dm is the 
number of particles per unit volume of air in mass range m to m + dm, in which 
case 
 
(3.50) 
 
For computational purposes the size distribution is approximated by k discrete 

mass categories so that qL is approximated by 
 
(3.51) 
 
The water continuity in the cloud may then be expressed by k + 1 equations65 
 

Dt
DNi = -Ni∇．v + Ni + Di + Ci + Bi + Fi            (3.58) 

             i = 1,……, k 
and 

 
(3.53) 
 

The first term on the right-hand side of (3.52) represents changes in Ni 
associated with air motions. It expresses the decrease (increase) in 
concentration associated with the expansion (contraction) of the volume of air 
within which the population of drops is located. The remainder of the terms in 
(3.52) represent the microphysical processes affecting the drop size distribution. 
They express the changes in the concentration of drops in size range i resulting 
from nucleation from the vapor phase Ni, vapor diffusion (condensation or 
evaporation) Di, collection Ci, drop breakup Bi, and sedimentation (or fallout) Fi. 
These microphysical processes correspond to the first five of the seven basic 
microphysical mechanisms listed in Sec. 3.3. The remaining two on that list, 
ice enhancement and melting, do not apply in a warm cloud. 
 
 
 
65 This type of water-continuity model was used in early studies by Takeda (1971), Ogura and 

Takahashi (1973), and Soong (1974). 
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The nucleation term Ni in (3.52) is calculated by first making assumptions 
about the characteristics of the condensation nuclei present in the air. Then the 
appropriate concentration of drops is nucleated according to the supersaturation 
of the air and the relations governing nucleation (Sec. 3.1.1). The diffusion 
term Di represents the rate of change in the number concentration of drops 
resulting from differing diffusional growth or evaporation rates of drops in 
adjacent size categories. This rate of change is expressed by 
 
(3.54) 
 
where difm&  is the diffusional growth (or evaporation) rate of an individual 

drop of mass m. If the air is saturated with respect to liquid water, difm&  is given 

by (3.22). If not, it is obtained by solving (3.8), (3.9), and (3.11) numerically. 
The term Di maybe thought of as the convergence of number concentration of 
drops as a result of the growth rate difm&  varying with drop size. The collection 
term Ci in (3.52) is given by the stochastic collection equation (3.33), which 
may be written for the i-th drop size category as 
 
 
(3.55) 
 
 
The rate of production of drops of mass mi by breakup Bi can be expressed 

according to (3.36) as 
 
 
(3.56) 

 
 

Finally, the sedimentation term Fi in (3.52) represents the local accumulation 
of drops of mass mi at a point as a result of their fall speeds. It is given by 
 
(3.57) 
 

where Vi is the terminal velocity (defined to be positive downward) of a drop of 
mass mi. 
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3.5.2.2   Variable Drop Composition 
 

During the early stages of drop growth, the condensation nucleus around 
which the drop formed may become dissolved and affect the rate of growth of 
the drop by vapor diffusion. To account for this effect, we can further subdivide 
the drop size distribution according to nuclear mass n, with N(m, n) dm dn 
representing the number of particles of mass m to m + dm and nuclear mass n to 
n + dn per unit volume of air.66 The distribution could be further subdivided if 
nuclei of different types of dissolved substances were considered. For the 
purpose of illustration, we will consider the nuclei all to consist of the same 
substance but to be of different sizes. Each of the k discrete categories of drop 
size can then be subdivided into l discrete categories of nucleus size. The 
subdivided water-continuity equations are then 
 

Dt
DNij = -Nij∇．v + Nij + Dij + Cij + Bij + Fij            (3.58) 

 
where i =1, …, k, j = 1, …, l, and 
 
 
                                                       (3.59) 
 
 

The change in the concentration Nij of drops in size category i and nucleus 
category j as a result of nucleation is represented by Nij and calculated by 
postulating a spectrum of nuclei to be present in the air initially and activating 
them in accordance with the supersaturation of the air and the relations 
governing nucleation (Sec. 3.1.1). The change in the concentration Nij of drops 
in size category i and nucleus category j as a result of vapor diffusion Dij is 
given by  
 

Dij                                      (3.60) 
 
 

66 Subdivision of the drop size spectrum according to the size of condensation nuclei has been used by 

Silverman (1970), Tag et al. (1970), Arnason and Greenfield (1972), Clark (1973), and Silverman and 

Glass (1973). Further details of the technique can be found in these articles. 
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which is similar in form to (3.54). However, the drop growth rate difm&  in this 
case is given, under saturated conditions, by (3.23), which takes into account 
solution effects in depositional growth. If the air is unsaturated, it is obtained 
by numerical solution of (3.8), (3.9), and (3.18). The collection term Ci is 
conceptually more difficult when the nuclear composition of drops is accounted 
for. Appropriate assumptions must be made concerning the coalescence or 
noncoalescence of the nuclei of coalescing drops. If the nuclei are assumed to 
coalesce whenever two parent drops coalesce, the nuclear mass n of the newly 
formed drop is determined by adding the n’s of the coalescing drops.67 In this 
case, the stochastic collection equation is 
 
 
 
(3.61) 
 
where the first term on the right-hand side is the rate of formation of drops of 

mass mi and nuclear mass nj by coalescences of drops with masses smaller than 
mi and nj. The second term is the rate of removal by combinations of drops mass 
mi and nuclear mass nj with other drops. Drop breakup Bij is also conceptually 
difficult. One must assume something about what happens to the nucleus 
during the breakup process in order to calculate this term, and there is no 
standard way to do this.68 Finally, the sedimentation Fij is expressed by 
 
 
(3.62) 
 

which is similar to (3.57). 
 
 
 
 
 
 
 
 
67 Suggested by Silverman (1970). 
68 One attempt to include this effect was made by Silverman and Glass (1973). 
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3.5.3   Explicit Modeling of Cold Clouds 
 

In an explicit water-continuity model of cold clouds one must subdivide the 
ice categories listed in (3.48) as well as the liquid categories. This case is 
particularly complex since the liquid-phase drops in each size category 
potentially may interact with ice particles of every size and type. A staggering 
multiplicity of interactions is possible. Nonetheless, explicit water-continuity 
models have been developed that treat a substantial subset of the possible 
microphysical interactions that can occur in a mixed-phase cloud. Figure 3.16 
indicates the categories of hydrometeors included in one example of such a 
model.69 The categories of particle types in this model parallel those of the 
six-category model illustrated in Fig. 3.15, except that cloud ice has been 
subdivided into pristine “ice crystals” and “ice splinters,” the latter being the 
product of a postulated ice-enhancement mechanism. The other categories, 
“cloud droplets,” “drops.” “snowflakes,” and “graupel,” correspond to the 
categories cloud liquid water, rainwater, snow, and graupel in Fig. 3.15. The ice 
crystals are subdivided into categories of crystal habit (plates, columns, and 
dendrites), where the crystal habit is determined by temperature. The graupel 
particles are subdivided according to particle density, ranging from 0.1 to 0.8 ×
103 kg m-3. Size distributions are computed for each particle category or 
subcategory. Stochastic collection concepts are used in the generation of drops 
from cloud droplets, snowflakes (aggregates) from ice crystals, and graupel 
from the riming of ice crystals. Graupel is also allowed to form when drops 
freeze. 
 

3.6 Bulk Water-Continuity Models 
 

As noted in Sec. 3.5.1, the disadvantage of the explicit water-continuity models 
is that one has to keep track of so many individual categories of water. The 
basic idea of bulk water-continuity models is to assume as few categories of 
water as possible in order to minimize the number of equations and calculations 
in the water-continuity model. To accomplish this simplification, the shapes 
and size distributions of particles must be assumed and the basic microphysical 
processes must be parameterized. This method is used extensively in cloud 
dynamics and the following subsections outline its essential features. 

 
69 This example is from Scott and Hobbs (1977). Another cold-cloud explicit water-continuity model 

was developed by Hall (1980). 
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Figure 3.16 Microphysical interactions among different categories of water 
substance in an explicit model of a mixed-phase cloud. (From Scott and Hobbs, 
1977. Reprinted with permission from the American Meteorological Society.) 

 

 
 
3.6.l   Bulk Modeling of Warm Clouds 
 

The simplest type of cloud is a warm, nonprecipitating cloud. The minimum 
number of categories that describe it is two: vapor, represented by qv, and cloud 
liquid water, represented by qc. The total water-substance mixing ratio, qT = qv + 
qc, is conserved, and the water-continuity model (2.21) consists simply of the 
two equations 
 

(3.63) 
 
 

(3.64) 
 

where C represents the condensation of vapor when C > 0 and evaporation 
when C < 0. 

For a warm precipitating cloud, rain is included as an additional category of 
water substance (drizzle is ignored). The water-continuity model (2.21) then 
consists of three equations: 
 

(3.65) 
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(3.66) 
 
 

(3.67) 
 

where qr is the mixing ratio of rainwater, as defined in (3.48), Cc is the 
condensation of cloud water, Ec is the evaporation of cloud water, and Er is the 
evaporation of rainwater. Ac is the autoconversion, which is the rate at which 
cloud water content decreases as particles grow to precipitation size by 
coalescence and/or vapor diffusion. Ec is the collection of cloud water, which is 
the rate at which the precipitation content increases as a result of the large 
falling drops intercepting and collecting small cloud droplets lying in their 
paths. Fr is the sedimentation of the raindrops in the air parcel; it is the net 
convergence of the vertical flux of rainwater relative to the air. All of the terms 
on the right of (3.65)-(3.67) are defined to be positive quantities, except for Fr, 
which is positive or negative depending on whether more rain is falling into or 
out of the air parcel. According to this model, cloud water qc first appears by 
condensation Cc. Vapor is not condensed directly onto raindrops. Once 
sufficient cloud water has been produced, microphysical processes can then 
lead to the autoconversion (Ac) of some of the cloud water to rain. After 
autoconversion has begun to act, the amount of precipitation can then increase 
further through either Ac or Kc, or both. Once sufficient rainwater qr has been 
produced, the additional microphysical processes Er and Fr can become 
active.70 
To calculate the microphysical sources and sinks of rainwater, Ac, Kc, Er, and Fr, 
in terms of the mixing ratios qv, qc, and qr, several key assumptions are made 
about the raindrops. First, the terminal fall speeds (defined to be positive in the 
downward direction) of individual raindrops are related to drop diameter D 
such that 
 

(3.68) 
 
 

70 The bulk warm-cloud water-continuity model, consisting of the three categories vapor, cloud water, 

and rain interrelated by autoconversion and collection, was proposed by Kessler (1969). Virtually all 
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bulk water-continuity models used today are a direct outgrowth of the concepts introduced in Kessler’s 

seminal monograph. 
where V(D) is given by an empirical curve like that in Fig. 3.3. Second, it is 
assumed that all the rain in a parcel of air falls with the mass-weighted fall 
velocity 
 

(3.69) 
 
 

where m(D) is the mass of a drop of diameter D, and N(D) dD is the number of 
drops per unit volume of air with diameter D to D + dD. Third, the precipitation 
particles are assumed to be exponentially distributed in size: 
 

(3.70) 
 

where No is an empirically determined constant. This distribution is called the 
Marshall-Palmer distribution.7l A typical value of No in rain is ~ 8 ×106 m-4. 
The quantity λr is a function of the total rainwater mixing ratio qr. Its value is 
determined by inverting the integral: 
 

(3.71) 
 

The above assumptions allow the microphysical source/sink terms Kc, Er, 
and Fr to be calculated. According to the continuous collection equation (3.24), 
the rate of increase of the mass m of an individual raindrop of diameter D is 
given by 
 

(3.72) 
 

where Σrc is the collection efficiency of raindrops collecting cloud drops. The 
variables Σrc and V(D) are assumed to be known empirically. The fall velocity 
of the cloud liquid water is assumed to be zero, in accordance with the 
definitions given in Sec. 3.3. Σrc is usually taken to be ~1, which is an 
approximation that is representative of the majority of rainfall situations (Sec. 
2.5.1). The depletion of cloud water by collection Kc by all of the raindrops in a 
parcel of air is computed from the integral 
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71 After Marshall and Palmer (1948), who analyzed images of a large sample of raindrops collected on 

treated filter paper. 

 
(3.73) 

 
where N(D) is assumed to have the exponential form (3.70). The bulk rate of 
evaporation of rainwater mass from all raindrops Er is computed in an 
analogous manner from the integral 
 

(3.74) 
 

where difm&  is the rate of evaporation by diffusion of vapor mass away from a 
single raindrop of diameter D falling through unsaturated air. A relationship for 

difm&  as a function of D must be obtained by numerical solution of (3.8), (3.9), 
and (3.11). It is not given in general by (3.22), which applies only when the air 
is saturated (i.e., in cloud). Often the rain is falling below cloud base, where the 
air is quite unsaturated. 
The mass-weighted fall speed of the rain, given by (3.69), can be used to 

calculate the sedimentation of raindrops in the air parcel according to 
 
 

(3.75) 
 

The autoconversion rate Ac is usually assumed to be proportional to the 
amount by which the cloud liquid water mixing ratio exceeds a selected 
threshold; that is, 
 

(3.76) 
 

where aT is the autoconversion threshold (often assumed arbitrarily to be 1gkg-1) 
and α~  is a positive constant when qc > aT and 0 otherwise.72 Thus, whenever 
cloud water exceeds the threshold amount, it is converted to rainwater at an 
exponential rate. 
 
 

72 This autoconversion formulation was postulated intuitively by Kesslre (1969) as part of his basic 

warm-cloud bulk parameterization scheme. Other autoconversion formulas have been developed from 
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the physics of droplet coalescence (Cotton, 1972; Berry and Reinhardt, 1973). Cotton (1972), however, 

showed that Kessler’s simple formula works about as well as the other formulas. 

 
3.6.2   Bulk Modeling of Cold Clouds 
 

The bulk water-continuity model described in the previous subsection can be 
extended to cold clouds by adding the categories of cloud ice, snow, and 
graupel, represented by the mixing ratios qI, qs, and qg defined in (3.48).73 We 
thus obtain the six-category water-continuity scheme illustrated in Fig. 3.15. 
The water-continuity equations (2.21) may then be written as 
 
 

(3.77) 
 
 

(3.78) 
 
 

(3.79) 
 

 
(3.80) 

 
 

(3.81) 
 
 

(3.82) 
 
 

where the S terms represent all of the sources and sinks associated with 
ice-phase microphysical processes, except for the sedimentation of snow and 
graupel, which are represented by terms Fs and Fg, respectively. The term δ4 is 
defined as 
 

(3.83) 
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73 This extension of the bulk water-continuity method to cold clouds was developed by Lin et al. 

(1983). 
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Thus, it is assumed that, if the air temperature drops below –40oC, all 
supercooled water freezes by homogeneous nucleation (Sec. 3.2.1) and hence 
all the terms in the liquid-water part of the model are set to zero. 

The terms on the right in (3.77)-(3.82) include all of the possible interactions 
among the six categories of water, as illustrated in Fig. 3.15. Among these 
interactions are several bulk collection terms of the form (3.73). These 
represent graupel collecting cloud water and rain water, snow collecting cloud 
ice, etc. There are also several evaporation terms of the form (3.74). These 
include the sublimation and depositional growth of snow, graupel, and cloud 
ice. In addition, there are melting terms representing the increase of rainwater 
mixing ratio as a result of the melting of snow and graupel. The process of 
shedding liquid water collected by but not frozen to the surface of graupel or 
hail particles is also included. There are also three-way interactions that can 
occur, such as rain collecting cloud ice to produce graupel or hail. 
To obtain mathematical expressions for the Fg, Fs, and S terms in (3.77)-(3.82), 

the same types of basic assumptions are made about the precipitating ice 
particles as were made for raindrops in the warm-cloud scheme. Crude 
assumptions are made regarding the collection efficiencies of ice particles, 
since very little is known about them. For riming (i.e., ice particles collecting 
liquid particles), the collection efficiency is usually assumed to be ~ 1. The 
collection efficiencies of ice particles collecting other ice particles is sometimes 
assumed to be a function of temperature that drops off exponentially from a 
value ~1 at 0oC to zero at lower temperatures. This assumption mirrors the 
observation of more frequent aggregation of falling particles as they near the 
melting level (Fig. 3.9). The precipitation particles are assumed to be 
exponentially distributed, as in (3.70), but with different values of No. For 
example, No might be assumed to be ~ 8 ×106- 2 ×107 m-4 for snow,74 ~ 4 ×106 
m-4 for graupel,75 and ~ 3 ×104 m-4 for hail.76 The fall speeds of snow and 
high-density ice particles are assumed to be known empirically as functions of 
particle diameter, as in (3.68), and the precipitation in a parcel of air is assumed 
to fall with the mass-weighted fall velocity, similar to that expressed by 
(3.69).77 
 

 
74 This value exhibits a temperature dependence. See Houze et al. (1979).  

75 See Rutledge and Hobbs (1983, 1984). 
76 See Lin et al. (1983). 
77 See Lin et al. (1983) for further details of how the cold-cloud bulk parameterization terms may be 
formulated. Rutledge and Hobbs (1983) give a concise summary of the technique.  


