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|. Introduction

Knowledge of the factors that set an UPPEIF bound
on the intensity of hurricanes

. Emanuel, K. A., 1986: An air-sea interaction theory for
tropical cyclones. Part 1. J. Atmos. Sci., 43, 585-604.



Such an upper bound is determined by the product of

a. The maximum possible latent heat input from ocean
to atmosphere

b. Thermodynamic efficiency proportional to the
temperature difference between the sea surface and
lower stratosphere

Directly related to the maximum possible pressure deficit
In the eye



Purpose?

 To derive an exact equation for the maximum pressure
drop

a. Accounts for fully reversible thermodynamics and the
effects of water substance on density

b. Point out that the equation has N O solution under
certain conditions



1. The relation for minimum
central pressure



1. Constraints on the distributions of entropy, total water
and angular momentum

2. Constraint on the variation of entropy at the surface



Consider a steady-state axisymmetric hurricane
over an ocean with uniform temperature.




e Assume that outside a frictional boundary layer, and

except at large radii in the outflow, three properties of the
flow are conserved

a. Angular momentum per unit mass (M)
b. Total entropy (s)
c. Total water (liquid plus vapor, Q)



e sand Q are functions of M alone, I.e., they are constant
along the same M surface in the hurricane.



The central pressure equation
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Solutions?
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The maximum pressure drop that can be
sustained by a given inward increase In vapor
mixing ratio

y =exp[A(y — B)] (22)

Includes the pressure dependence of the core
mixing ratio itself
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FiG. 1. The left- and right-hand sides of (22) as a function of y, for 4 = (0.5 and B
= (L8, The central pressure deficit would be given by ¥, if there were no isothermal
expansion effects, V) and 1> denote the equilibrivum solutions of (22),



Which one iIs the solution of our
INTEREST?



J | y = exp[A(y B)]

Core mixing ratio

y=y -

Ambient pressure
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FiG. 1. The left- and right-hand sides of (22) as a function of y, for 4 = (0.5 and B
= (L8, The central pressure deficit would be given by ¥, if there were no isothermal
expansion effects, V) and 1> denote the equilibrivum solutions of (22),
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FIG. 3. (a) Minimum sustainable central pressure (mb) of tropical cyclones as a function of sca
surface temperature {T;) and entropy-weighted mean outflow iemperature (1), s:_r.uming reversibie
thermodynamics and an ambient surface relative humidity of 80%. The asterisk denoles mean
August conditions in the near-equatorial western North Pacific. (b} As in (a) but for a surface
relative humidity of 75%.



I11. Hurricanes in the supercritical
regime



 From (18), the nature of processes that might actually

[IMIt hurricanes in the supercritical regime may be
speculated:

d.

Inflow In supercritical hurricanes is not
approximately isothermal.

The outflow may not match up with the ambient
environment.

The assumption that all of the dissipation occurs in
the inflow layer and at large radii in the outflow

breaks down and internal dissipation becomes
Important.



e Hurricanes occurring over oceanic mixed layers of finite
depth are known to cool the sea surface temperatures by
upwelling and mixing; this may limit hurricane intensity
under some conditions.



Suppose for the present that whatever process
limits the intensity of hypercanes nevertheless
results in storms of extraordinary intensity.

What do they look like?



1. Hypercanes would penetrate large distances into the
stratosphere due to the very high core values of the moist

entropy.

2. The ratio of the radius of maximum winds to the outer
radius would be relatively small in hypercanes.

For Ts =40C, TO =-73C, =>13 km
RH=0.8 and x=0.5

For Ts = 30C, TO =-73C, => 2 km
RH=0.8,,and x=0.9



V. Conclutions

1. Emanuel had derived an exact equation (18) governing
the minimum sustainable central pressure of hurricanes in

this paper.

2. The Carnot cycle derivation shows that the ONly
approximations necessary in deriving (18) are

a. No radial temperature gradient in the mixed layer

b. No dissipation except within the inflow and at large
radii in the outflow



V. Conclutions

3. Mature storms that might occur in the supercritical
regime, called Hypercanes, would extend very high into
the stratosphere and have either very large outer radii or

very small eyes.



V. Conclutions

4. Holding the temperature of the lower stratosphere
constant, sea surface temperatures would have to be 6C
to 10C warmer than present values to sustain hypercanes.

a. Some estimates indicate middle Cretaceous tropical
sea surface temperatures as much as 7C warmer than
at present.

b. Hypercanes might have been possible at that time,
unless the lower stratosphere was also substantially
warmer.



V. Conclutions

5. The solutions to (18) under present conditions give quite
reasonable estimates of the central pressures of the most
Intense storms on record (Emanuel, 1987), indicating that

the upper bound provided by (18) is actually achieved in
a small number of storms.

6. Isatropical cyclone of extraordinary intensity and large

internal dissipation actually POSSIDIE in the
supercritical regime?



THE END



APPENDIX A

Expressions for Moist Entropy and Moist
Static Energy Valid in Saturated and
Unsaturated Air



The following quantity can be shown to be conserved
during reversible moist or dry adiabatic expansion:
Low

= [Epd'i‘ GF‘,I}]“T"F ?

— Rylnps — wR, In(RH), (Al)

where C,y and C, are the heat capacities of dry air and
liguid water, respectively, { 15 the total water content,
L, 1s the heat of vaporization (a function of tempera-
ture), w the vapor mixing ratio, Ry and R, are the gas
constants for dry air and water vapor, respectively, and
RH 15 the relative humidity.

Differentiation of (Al) yields

Tds = (Cpa + QCMT + Lydw — *4L dp, + walL,
o

. LTW dT = wR,Td In(RH) — R,T In(RH)dw. (A2)

The last term of (A2) vanishes since reversible changes

in w can only ocour at RH = 1. The temperature de-
pendence of L, is given by

dLu = {EF. - l:',l:ldr,

where C, is the heat capacity of water vapor at constant
pressure. Also, the Clausius-Clapevron equation may
be written:

dr de, de dRH)

Lu?=RﬂTE_E=RU o RH

since ¢; = ¢/RH. Using these two expressions in (A2)
gives
Tds = (Cpg + WCp + IC)AT + L dw

R

de
— —dps — wR,T —. A
Pa Pa— W e (A3)



Finally, we note that since w = aya,, where ay and
o, are the specific volumes of dry air and water vapor,
respectively, (A3) can be written

Tds = (Cpg + WCpy + IC)AT + Lodw — agdp, (A4)

which is a direct statement of the first law of thermao-
dynamics written as entropy changes per unit mass of
dry air. This proves that (Al) is a uniformly valid
expression for entropy of moist air.

A uniformly conserved moist static energy can also
be derived from (135). Using the hydrostatic equation,
this is

h=(Cpa+ QCHT + Low + (1 + Qgz. (AS5)
It follows from (AS5) that for reversible processes
dh = [G.Fﬂ' + QCaT 4+ Lodw + wdl, + (1 + Q]gdf
= (Cps + QCMT + Lydw + w(Cpy — C)dT

+ {1 + Negdz
= (Cpg + WCp + IC)T + Lydw — agdp = 0.
(A6)

The last line of the above is simply a statement of the
first law of thermodynamics. This shows that A is con-
served for hydrostatic reversible displacements.



APPENDIX B

Maxwell’s Relations for Reversible Moist
Processes



We begin with the first law of thermodynamics,
which can be obtained by differentiating (2) and mak-
ing use of the Clausius-Clapeyron equation. The result
15

Tds = —agdp + (Cpg + QCHdT
+dlL,w] + CT InTdQ. (Bl)

This is valid in both saturated and unsaturated air. The
last term on the right arises because the systern is not
closed to exchange of water mass, Before proceeding
further, we rewrite the first term on the right as follows:

—agdp = —dlagp] + pday)
= —a{-::rdpd + :—: ::uL,E] + pdle)

= ~d[R,T + wR,T] + pdleg).  (B2)
Combining (B2) with (B1) yields
Tds = pd{ag) + (Cog + QC)T
+ dl(L, = R.T)w] + CTInTdQ, (B3)

where C, is the heat capacity of dry air at constant
volume,



We next define a moist enthalpy h:

he=pog+ (Cg + COVT + (L, — R.Tw.  (B4)
It then follows from (B3) and (B4) that
dh = Tds + azdp + CT(1 = InT)dQ. (B3)
Using (B3) we then obtain the relations
0.
ra
dh
(ﬂ_-;’)sﬂ = g,
(ﬂ) = GT[l = InT], (B6)
aQ/. .
from which it follows, by cross-differentiation, that
(5),0~ ()
ds ) o, \op/. o
(%)m = (% [CIT1 — 1“T");ﬂ (BT)

Furthermore, since o = a1 + (). (B7) can be written
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Finally, the last term on the right of (B9) can be reex-
pressed using the hydrostatic equation

dep
o = Elp (B10)

where ¢ = gz is the geopotential. Using the chain rule
and gradient wind balance it is possible to show that

(@)
i ﬂp r ﬂp A .
where ® = ¢ + 4V~ and V is the gradient wind. Using
(B11) and (B10), (B9) becomes

dex 1 d
(Eﬁ)u = g3 G =Dl

| o
+1+Q(E)H

The relations (B8) and (B12) are the desired Maxwell's
relations.

(B11)

(B12)



APPENDIX C
Carnot Cycle Derivation of (18)
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Fig. C1. Mustrating the path integral for the Camot cyele.
Poinis ¢ and o' are taken to lie at very large radius.

We begin by writing a Bernoulli Equation for steady
flow: : '

d(% Vﬂ) + adp+ gdz —F-dl=0, (Cl)

where V is the magnitude of the total velocity vector,
F is the vector friction force and | is a unit vector par-
allel to streamlines. It 15 understood that the denvatives -
of (C1) are everywhere along streamlines. We next in-
tegrate (C1) around a closed streamline as indicated in
Fig. Cl. The result is

§ adp = § F-dl, (C2)
which simply expresses a balance between pressure
work and dissipation in steady flow. We also integrate
{C1) between points ¢ and ¢ in Fig. C1. Since z = 0
and ¥ vanishes at both points the result is

5
f adp = JwaﬂL
a o .

(C3)
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Fig. C1. Mustrating the path integral for the Camot cyvecle.
Poinds ¢ and ¢ are taken to e at very large radius.

We next assume that all frictional dissipation occurs
only between points a and ¢ and between points 0 and

¢’ in Fig. C1. Thus
c o
§F-d‘l=f F-d‘l+f F-dl (C4)
[1] o
Combining (C2), (C3) and (C4) results in

J; adp = ﬁadp Ja F - dl. (C5)

Since & = agf(1 + (), it follows that
a = g — ol

Using (C6) in (C5) we obtain
r cegdp = f aegdp — J‘w F-dl
a o f
+ J; aQdp — f aQdp. (CT)
The last two terms of (C7) can be written as

-[" Qu

(C6)
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Fig. C1. Mustrating the path integral for the Camot cyvecle.
Poinds ¢ and ¢ are taken to e at very large radius.

where it is understood that the path of integration is
r—o—0'—-a. Onee again using (C1) to replace adp in the

above, the last two terms in (C7) can be written

—_L“ Qadp = chz{d(% v+ gz) - _F-a'l]
_J' [(% v 4 gz)dg + QF -d]] , (C8)

o

=

where we have made use of the vanishing of z and V
at the end points and the assumption that irreversible

processes act only between ¢ and o' along the integra-
tion path c=o=0'-a.
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Fig. C1. Mustrating the path integral for the Camot cyvecle.
Poinds ¢ and ¢ are taken to e at very large radius.

We once again use (C1) to estimate the frictional
dissipation necessary to close the Carnot cycle. Under
the plausible assumption that the flow is hydrostatic
between o and o, (C1) shows that F-dl = d(*:F?) in
this region. Using this estimate in (C&) and (C7) the
two relations may be combined to give

J: ) agdp
= f agdp — fr {{gz}dﬂ + d({l +0)3 1—'1)‘

=§udﬂrﬂ—3}_u'Q —[%u+ﬂw’n . (T

where Z;* is defined as before.
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Fig. C1. Mustrating the path integral for the Camot cyvecle.
Poinds ¢ and ¢ are taken to e at very large radius.

Finally, we use (15) to eliminate azdp from (C9).
After some integrations by parts, and noting that en-
tropy only changes at the surface and between o and

o', we obtain

Tolse = 3a) = (we = walLs + G,
+CTy (nTy — 1) - g%*] + [% (1+ mrﬂ][ .
(C10)

Using (1) to relate ¥ 1o r and M and noting that M,
= 4 fr., it can easily be seen that (C10) is equivalent
to (17).

In the pseudo-adiabatic case we allow all condensate
to fall out of the system immediately upon forming.
To derive a pressure equation in this case, we start with
{C7) and this time insist that Q0 = w everywhere. Then
(C8) 15 instead written

—r Qedp = r “{d(% Vi +RZ) - F'fﬂ]
= (% I,-"n! -+ ggn)(?ﬁ; — Wyl — fﬂ wF-dl, {CII}

where 1V,* + gz, is evaluated at point 0 and W, and
Wy are defined
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Fig. C1. Mustrating the path integral for the Camot cyvecle.
Poinds ¢ and ¢ are taken to e at very large radius.
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mrwd( ¥+ gz) (C12)

Combining (C12) with (C7) gives

J:ﬂgdﬂ = f cegdp — J:].{I + w)F - dl

+ (372 + g - . €1y
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Fig. C1. Mustrating the path integral for the Camot cyvecle.
Poinds ¢ and ¢ are taken to e at very large radius.

As before, we use the first law to eliminate aydp from
{C13). In the pscudoadiabatic case, the first law can
be written (see Iribarne and Godson, 1973)

—ogdp = Tds' = (Cpa + wCYdT — d|L,w]. (C14)

Unlike the reversible case, s’ is a state variable as well
as a conserved quantity so that its matenal derivative
is the same as its general derivative. Substituting (C14)
into (C13) vields

Tolst = sa) = Lylw, = wy) + C(T, = To)l(w,, ~ W)

_ (% T g;,,)(w,, — W) + J: (1+ w}a(% Iﬂ) .
(C15)

where
]

wdT,

— |
w" - T[ - Tg [
— 1 #
Wy =
d Tj- - Tﬂ a2
This can be directly compared to (C10) which applies
to the reversible case. The main differences are the dif-
ferent definitions of 5 and 5" and the replacement of w,
— w, by weighted vertical averages of w, — wy in the
heat capacity and gravitational terms. This means that
the effects of heat capacity and weight of water sub-

stance are much less in the pseudo-adiabatic than in
the reversible case.

wdT.



Fig, C1. Mustrating the path integral for the Camot cycle.
Points ¢ and o' are taken to he at very large radius.



Clausius-Clapeyron equation

(%j B L
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1. We can speculate on several aspects of the structure of
such storms based simply on their intensity and on some
suppositions about their boundary layer structure.



In the first place, hypercanes would penetrate large
distances into the stratosphere due to the very high
core values of the moist entropy. The distance above
the tropopause of the highest outflow from the eyewall
is approximately

dz
0z = (E)Hﬁs, (28)

where (ds/dz), 1s the rate of increase of moist entropy
with height in the stratosphere. We have neglected wa-
ter loading of the updraft. If we approximate moist
entropy by dry entropy in the ambient stratosphere
and assume that the latter is isothermal with a tem-
perature T, we have

il

7
Bz =~ — &5 (29)

&
The entropy increase 45 is the increase between the
ambient environment and the core along the surface.

Neglecting effects due to the heat capacity of water,
this is [from (2)]

ds = L_F dw — _Eﬂ-ﬁ ].ﬂﬂ,:;.
T,

Using the definition of mixing ratio in the above, (29)
becomes

_RA[ L e (1 o
oz = p Rﬂ?}pﬁ.(x R_H) In.x], (30)

where x = p../ 0.




Several further simplifying assumptions:

. Neglect water loading and the effect of the heat capacity
of water substance in (31) and in the definition of s

. Assume that 'ITO does not depend on the averaging interval

. Assume that the radial pressure gradient is equal to the
radial gradient of the partial pressure of dry air

. Neglect w where it multiplies f 2 in (31)



Angular momentum per unit mass (M)

M=rV +%fr2 (1)

Radius
Azimuthal velocity

Coriolis parameter



Total entropy (s)

s=(C,, +QC,)InT + L%W

~R,Inp, —WR, In(RH) (2)

C,s  Heat capacity of dry air at constant pressure
C, Heat capacity of liquid water

L, Latent heat of vaporization

R4 Gas constant of dry air

W Mixing ratio

RH  Relative humidity



Total water (Q)

Q=w+l (3)

I Mass of liquid per unit mass of dry air



hermal wind equation for
axisymmetric flow

1(oM? oo
%) 7)) @

Using the chain rule

Specific volume (a function of the three
variables p, s and Q)

a(p,s,Q)
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(10)

This constraint on the distributions of s and Q with
respect to M is a direct consequence of the thermal
wind relation and the speC|f|cat|on that S and Q are
functions of M alone. »

!':." . - -
H °
! & .
. i i
subscript 0:as I' — o© N
g rih
. sy’

Fic. C1. Mustrating the path integral for the Camot cycle.
Points o and o' are taken to lie at very large radius.




Constraints on the variation of entropy at
the surface



(T _To)£

1 dM
- 1+Q dQ = _ _T(1—
Y [ — o+ C,[T(L-InT)-T,(1-InT,)]}
oM
10) x —
(10) -
d=gz+=V?

N

1
M=rV +— fr2
S (1)

(10)
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T C| [Ts (1_ InTs) _To (1_ InTo)]} (11)

subscript s: at the surface (z=0)
I, avery large radius

Energetically interpretable as the kinetic energy
that must be used to spin up water mass in the
anticyclonic outflow



On the left hand side, we have

2r2lor

= (ﬂ [+ Q)M ?]

From the gradient wind equation
(Emanuel, 1986)

op 1., 4
Pa,| — | +=fr*@1+
ad(arjz 4 (1+Q)
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+ C[T,(1 = InT,) — Ty(1 — lnT,;,}]] o an

U

dp ﬂ 1 dp 1 .5 5
“‘*(ar) ar [z”’" T/ T+

19+ - ) + (9

¥ {=gza + CIT,(1 = InT,) = Toll = InTy)}}. (14)



The first law of thermodynamics

By differentiating (2) and making use of the Clausius-
Clapevron equation, the first law of thermodynamics
can be written (for saturated and unsaturated processes)

—agdp = Tds — (Coq + CQ)T
— d[L,w] — CTInTdQ. (15)



—agdp = Tds — (Cog + CQ)IT
— d[L,w] — C,TInTdQ. (15)

wf) - QB0

L I(BQ)IH? - T“}( ) G—Q)

X {=gz + C[T(1 —InT,) = Toll = InTy)]}. (14)



3s 5[1 1 L+

T —— e || e
‘2 arl2 ™o

+ Low + (Cpg + Eﬂ}i‘:]
k! 1
+ ﬂ—? [-—gz,} + C{ToInTy — Ta) = Efzﬂz] . (16)

Define an outer radius, r, where P _ 0

or



T,(s,—s,)=(W,—w)[CT. +L, +CT, (InT,” -1)
—% f2r2 — gZS]—% f2r2(l+w,)

(17)
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T ITds
° Sc_sa aO

*
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The central pressure equation and Its
Interpretation



T[S =S, )= (W, —w,)[C T, +L, +CT,"(InT, -1)
—% f2r2 — gzg]—% f2r2(l+w,)

(17)

Evaluated at z = 0 and assumed that air 1s saturated at r = 0
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IN(x) — —2- In(RH)
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=—AF—RH
X

|

1
+_
A

for? (1+ Ca
pda

|

R,T.(1-¢)

(21)

. The 1/x term represents the pressure dependence of the
saturation mixing ratio

RH represents the thermodynamic disequilibrium of the
air-sea system which is the energy source of the hurricane.

. The smaller the relative humidity, the greater the air-
sea entropy difference!!!



% Mean August conditions in the near-equatorial
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FiG. 4. As in Fig. 3 but for solutions of {18) ignoring condensate loading
and heat capacity effects,



Constraints on the distributions of
entropy, total water and angular
momentum



e Assume that conserved variables (s and Q) do not vary
along angular momentum (M) surfaces, when coupled
with the thermal wind balance approximation

* The density of air above the boundary layer has the same
value as the density of parcels lifted reversibly from the
boundary layer

Betts (1982)



The threshold values of A or B beyond which no solutions
exist can be found by requiring that the two curves in
Fig.1 have the same slope at their intersection point

[¥]= exp[ A(Y}- B)] (22)
1= Aexp[A(y—B)]= Ay

~1+InA
i A

A =exp(BA-1), B

No solutions exist for B < B_!!!



Hypercanes

Frc. 2. General solutions of (18) for x (=pa/py), a5 a function of 4 and 8. The
heavy solid curve denotes the critical condition beyond which no solutions exist.



Interpretation of the central pressure
equation
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