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1. Basics 

Cartesian tensor and vector notation (see Stull, p. 57-67, for a detailed description) 
x = xi = (x1, x2, x3)  
unit vector δ i = (δ1, δ2, δ3), in cartesian coordinate normally denoted as (i, j, k) 
repeated indices:  xi xi = (x1

2+ x2
2+ x3

2) 
unit tensor δ ij = 1 for (i=j), and zero for (i≠j) 
alternating tensor ε ijk = 1 when the indices are cyclic sequence 1,2,3 or 2,3,1 or 3,1,2; 

−1 when indices are not cycline 
zero when two indices are the same 

vorticity vector  ηi ≡ ε ijk ∂uk/∂xj ≡∂uk/∂xj−∂uj/∂xk 

V = (u, w), where u and w is horizontal and vertical components of winds (currents).  

Exercise: 
 Express or derive the following vector expression by Cartesian tensor 
Dot product: A•B 
Cross product: AxB 
Del operator:  ∇( ) ≡  

∇•V 
∇xV 
d/dt = ∂/∂t + u •∇ + w∂/∂z 
∇•∇x V = 0 
∇x∇ϕ =0 
V•∇V = ∇(V • V /2) + (∇xV) x V  

Governing equations (see Stull, p. 76-78, for a detailed description) 

Conservation of matter 
∂ρ/∂t + ∂(ρui)/∂xi = 0 , where ρ is specific density (mass per unit of volume) 

Momentum 
∂ui/∂t + uj∂ui /∂xj + 2ε ijkΩj uk = −ρ−1∂p/∂xi −∂Φ/∂xi + ρ−1∂τij/∂xj 
Ω j = (0, ωcosϕ, ωsinϕ), components of the angular velocity of the earth’s rotation 
vector, where ϕ is latitude and ω= 2π  / 24 hr = 7.27 x 10−5 s−1 
Coriolis parameter f=2ωsinϕ, fc=2ωcosϕ 
τij = µ (∂ui/∂xj+∂uj/∂xi)+( µ−µB) ∂uk/∂xk δ ij   

µ: dynamic viscosity, ν = µ/ρ kinematic viscosity, µB ∼bulk viscosity coefficient 
µB ∼0 for most gases & assuming incompressibility ρ−1∂τij/∂xj ≈ ν∂2ui/∂xj

2  
 

In vector form, V = (u, w), the momentum equation can be written as 
du/dt + f kx u = −ρ−1∇p + ν(∇2+∂2/∂z2)u 
dw/dt + fc i •u = −ρ−1∂p/∂z −g + ν(∇2+∂2/∂z2)w 
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Home work: find the values of ν and µ for air and water 

Energy 

Mechanical energy 
uj∂ui /∂xj = ∂(ujuj/2)/∂xi +ε ijkηj uk  [ V •∇ V = ∇( V • V /2 )+ (∇x V) x V ] 
ρ ui  [ ∂ui/∂t + ∂ (ujuj/2+ρ−1p +Φ) /∂xi + ε ijk(ηj + 2Ωj) uk − ρ−1∂τij/∂xj = 0 ] 
→ ∂(ρe)/∂t = −∂ [ui(ρe+p) − ujτij] / ∂xi −ρui∂Φ/∂xi + p∂ui/∂xi− τij∂uj/∂xi  
where e = ujuj/2 = V • V / 2, incompressibility  

τij∂uj/∂xi = τij∂ui/∂xj = τij(∂ui/∂xj+∂uj/∂xi)/2 = ρν(∂ui/∂xj+∂uj/∂xi)2/2 ≡ ρε 

Deriving the above equation in vector notation, ρu • [∂u/∂t + ...]+ ρw [∂w/∂t + ..], 
And the following identities: 

∇• ∇x V = 0;  ∇x∇ϕ =0; V •∇ V = ∇( V • V /2 )+ (∇x V) x V  

∂(ρe)/∂t: storage term 
[ui(ρe+p)] : Energy flux produced by the total pressure (dynamic and static)  
[ − ujτij]: Viscous energy flux produced by molecular scale stresses (small) 
ρui∂Φ/∂xi = ρwg : work of gravity due to vertical motion 
p∂ui/∂xi  :  work of pressure due to expansion or compression  
τij∂uj/∂xi ≡ ρε: ε is dissipation rate per unit mass 

Turbelence and turbulent transport 

Separation of variables: 
fluid motions and associated thermodynamic states are separated into a slowly 
varying mean flow and a rapidly varying turbulent component. The averages of 
variables will be taken in time, assuming that this will be a good representation of 
ensemble average. Thus u = u + u′ , and the mean of u′ = 0.  

The mean of mass conservation, ∂ρ/∂t + ∂(ρui)/∂xi = 0  
→  ( ) 0=∂∂+∂∂ ii xut ρρ  

The mean of momentum equation 

( ) ( )[ ] jjiijiikjijkjiji

jijiikjijkjiji

xxuvuuxxpuxuutu

xxxpuxuutu

∂∂∂−∂−∂Φ∂−∂∂−=Ω+∂∂+∂∂→

∂∂+∂Φ∂−∂∂−=Ω+∂∂+∂∂ −−

''2

2 11

ρρερ

τρρε

 where ( ) τρ ≡∂∂−− jiij xuvuu '' , 

The horizontal component of the above equation can be expressed as  

( ) zpukfdtud ∂∂+∇−=×+ −− τρρ 11 , 

where ( )zuvwu ∂∂−−= ''ρτ  with the horizontal stress variations neglected.
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The mean of K.E. equation 

(1) ( ) ( )[ ] ρερτρρ −∂Φ∂−∂−+∂−=∂∂ iiiijji xuxupeute  

→ an equation for the averaged local change of K.E. per unit mass 
(2) scalar multiplication of the above mean momentum equation with the mean 

velocity iu  

→ an equation for the work done by the averaged velocity 
If this second equation is sub tracted from the first, we get a TKE equation 

Turbulence Kinetic Equation (TKE) 

( )[ ] ερρρ −∂++∂−−∂∂−=∂∂ iiiijji xpeueuwgxuuute ''''''  

where ( ) 2'' ji uue = , molecular stress τij is assumed small compared to the Reynolds 

stress, and that the dissipation acts only on the eddying motion and that its direct 

effect on the mean velocities negligible: 

( ) ijijji xuxuxuv ∂∂∂∂+∂∂≈ '''ε  ( ) ijijji xuxuxuv ∂∂∂∂+∂∂≈0  

The TKE can be simplified by neglecting all eddy transport except those along the 
vertical  

( ) ερρρ −∂+∂−−∂∂•−=∂∂ zpwewwgzuuwte '''''''  

zuuw ∂∂•''  : shear production term of TKE by the reduction of the mean shear 

ρρ ''wg−  : work of buoyancy force 

( ) zew ∂∂ '  : a transport of TKE by turbulent eddies 

( ) zpw ∂∂ ρ''  : energy flux associated with pressure fluctuations 

ε: dissipation 

For a derivation of TKE equation, see Stull p.116, p.120-124  

See Stull p.153-166  

Equations similar to the TKE equation may be constructed for all second-order 
turbulent variables such as ui′uj′ (ui′ui′ is a special case of this), θ′θ′, w′θ′, w′q′, etc.  

zukuw m ∂∂−='' , zkw T ∂∂−= θθ'' , zqkqw e ∂∂−=''  

where km , kT  , ke are eddy transfer coefficients that have the same dimension as the 
molecular diffusivity or viscosity, but their value is generally much larger and they are 
not intrinsic properties of the fluid. Unlike the molecular coefficients, they vary with 
the location, the state of the fluid, the stability and the averaging period. When the 
mean gradient becomes zero, the representation of transports by the above expression 
makes no sense.  
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TKE budget as a function of eddy size 
 

 
Inertial subrange 

Fig. 1 Example of spectral energy budget terms for z/L =-0.29. Shown in (b) are the 
shear and buoyancy production and the dissipation terms as functions of frequency f. 
The shaded curve (labeled ∂Tr(f)/∂f) is equal to minus the sum of the shar, buoyancy 
production and dissipation terms. The Tr(f) curve (a) was obtained by integrating 
∂Tr(f)/∂f. Here Tr(f) is the transfer of energy in f space required to balance the 
production and dissipation. The symbol f is frequency and k is wave number. After 
McBean and Elliott (1975). Such transfer can be thought of as happening 
inertially-large eddies creating or bumping into smaller ones, and transferring some 
of their inertia in the process. This middle portion of the spectrum is called inertial 
subrange. 

One measure of the smallest scales of turbulence is the Komogorov microscale by: 
η = (ν3/ε)1/4 . This scaling assumes that the smallest eddies see only turbulent energy 
cascading down the spectrum at rate ε, and feel only the viscous damping ν. 
ν = 10-5 m2s-1 for air viscosity 
ε = u2 u/L, where u and L are the velocity and length scale of the energy-containing 
eddies. For a convective ABL, u ~ w* ~1 ms-1, and L ~ zi ~ 1 km (ABL depth), hence  
ε = 10-3 m2s-3 
η = (ν3/ε)1/4 = 10-3 m, so turbulent eddies in the ABL range from km to mm in scale. 
The largest eddies are responsible fo r most of the turbulent transport of heat, moisture, 
and momentum, small eddies are mainly dissipative.  

The spectral distribution of energy for this subrange can be obtained following 
dimensional consideration. Let dE=F(k)dk, where k is the wavenumber and dE is the 
energy for the spectrum range between k and k+dk. Then F(k) has the dimension of 
L2T-2 / L-1=L3T-2. If we assume F(k)= εmkn, L3T-2=L2mT-3mL-n. From this we obtain 
m=2/3 and n=-5/3 and thus F(k)= αε2/3k-5/3  , where α is a universal constant. 
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TKE spectra and some observational means to measure it 
 
1. Optical measurements of breaking wave turbulence  

<http://www.udel.edu/ASI-Lab/research/dopplerbreakwave.html> 

With the deve lopment of DPIV techniques that provide improved 
spatio-temporal coverage measurements, we considered it timely to once again return 
to a study of the unsteady breaking of individual waves. In this study we use DPIV 
techniques to measure the velocity and vorticity fields under breaking waves in the 
laboratory. We use the dispersive focussing technique to generate intermediate or long 
packets of deep-water waves. Thus the conditions of the experiments could 
correspond to the breaking of wind waves and swell on the continental shelf, where 
the depth is not directly important for the individual waves but may be for the long 
waves forced by the modulation of the carrier waves. Despite the spatial coverage 
provided by imaging techniques like DPIV, we found that we could not cover the full 
dynamic range and spatial extent of the flow in one image frame. While the desire to 
directly measure the smallest turbulent (Kolmogorov) scales would have required 
frame sizes of O(1) cm, the desire to image the whole flow would have required 
frames of O(1) m. We concluded that detailed studies at the Kolmogorov scales were 
premature before the overall kinematics of the flow were measured, and so we 
decided to conduct a series of measurements designed to characterize the larger 
coherent structures in the flow and look at the integral properties of the flow based on 
the energy bearing scales. Even with this decision it was not possible to image the 
whole flow with sufficient spatial resolution and we decided to build up a “picture” of 
the whole flow with a “mosaic” of individual frames. Since each realization of the 
flow is unique, such a scheme depends on our ability to build up the coherent features 
of the flow and the statistics through ensemble averaging.  

Figure 1 shows ensemble average of the mean velocity vectors, the streamlines 
(along with the magnitude of the velocity) and the turbulent kinetic energy were the 
turbulent velocity is calculated as the departure from the ensemble mean. We have 
shown that an overall description of the turbulence and coherent structures generated 
by breaking waves in the laboratory can be studied using a mosaic of smaller DPIV 
images. The advances in imaging systems since these experiments were conducted 
would permit a finer resolution of the velocity field with fewer fields of view, but it is 
likely that this mosaic approach will still be required to fully represent the flows 
associated with breaking waves of large Reynolds numbers. 

We find that the coherent vortex generated by the breaking wave advects slowly 
in the wave propagation direction with a speed of approximately 0.01C, for at least 50 
periods after breaking. This is consistent with the speed induced by an image line 
vortex above the free surface. The speed of the vortex corresponds to the speed at 



6 

which the fields of turbulent kinetic energy and vorticity propagate downstream. We 
show that this vortex, through well-established mechanisms of wave-current 
interaction, may lead to a persistent region of smooth water at the site of breaking in 
the field.  

 
Figure 1 a) Mean velocity under a breaking wave at different times after the breaking 
event. Note the mean vortex propagating downstream. b) Streamline of the mean flow 
presented in a). c) turbulent kinetic energy density of the turbulence. The high levels 
of turbulence initially generated quickly dissipate. 

 
Our measurements of the kinetic energy and vorticity, and the Reynolds stress, 

show that they decay like t-1, consistent with the earlier measurements of Rapp and 
Melville (1990) and the recent numerical modeling by Chen et al. (1999).  

Measurements of the Reynolds stress, along with the hypothesis of Reynolds 
number independence for large R, can be used to estimate the momentum flux from 
breaking waves into the water column. These estimates are consistent with our earlier 
measurements described in Melville (1994), but are an order of magnitude less than 
those implied by the quasi-steady breaking measurements of Duncan (1981,1983), 
and an order of magnitude larger than those estimated by Phillips et al. (1999) on the 
basis of field measurements of microwave scattering by breaking waves. These 
discrepancies need to be resolved. 
 
2. Acoustic Doppler measurements of breaking wave turbulence  

<http://www.udel.edu/ASI-Lab/research/dopplerbreakwave.html> 

An improved understanding of turbulence and mixing due to wave breaking is 
essential for progress in a number of areas of air-sea interaction. For surface waves, 
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breaking is normally considered to be a sink of energy (and action); although, like any 
disturbance, it may also be a source. Breaking, as a dissipative mechanism when 
momentum is conserved, leads to the generation of currents. The details of the 
near-surface currents depend on the fact that breaking is a source of turbulence for the 
upper mixed layer, and may lead to departures from classical law-of-the-wall velocity 
profiles. Fluxes of heat and gas across the air-sea interface, which are so important for 
weather and climate up to global scales, depend on the levels of surface turbulence, 
which are due in part to breaking. Bubbles entrained by breaking may also contribute 
to gas transfer, and their contribution depends on the depths to which they are mixed 
by the surface currents and turbulence. Breaking provides strong signatures in remote 
sensing of the ocean surface; signatures that depend on processes of wave-current 
interaction associated with wave breaking. For these reasons and more, an improved 
knowledge of the fluid dynamics of breaking is vital to a better understanding of 
air-sea interactions from micro- to global scales (Banner and Peregrine, 1993; 
Melville, 1996).  

The surface-wave zone or upper surface mixed layer of the ocean has received 
considerable attention in recent years. This is partly a result of the realization that 
wave breaking (Thorpe 1993, Melville 1994, Anis and Moum 1995) and perhaps 
Langmuir circulations (Skyllingstad and Denbo 1995, McWilliams et al. 1997, 
Melville et al. 1998) may lead to enhanced dissipation and significant departures from 
the classical ``law-of-the-wall'' description of the surface layer (Agrawal et al. 1992, 
Craig and Banner 1994, Terray et al. 1996). The classical description would lead to 
the dissipation, ε, being proportional to z-1, where z is the depth from the surface, 
whereas recent observations show ε ~ z-2 to z-4 (Gargett 1989, Drennan et al. 1992), or 
ε ~ e-z (Anis and Moum 1995), with values of the dimensionless dissipation (where κ 
is Von Karman constant and u*w the friction velocity in water) up to two orders of 
magnitude higher than the O(1) expected for the law of the wall (Melville 1996).  
Since dissipation estimates are made from measurements over the inertial or 
dissipation subranges of the turbulent scales, it would be desirable to avoid any form 
of Taylor's hypothesis and have an instrument that could make direct spatial 
(wavenumber) measurements over these ranges in the field. To our knowledge, the 
only means of making dense spatial measurements of velocities are either optical or 
acoustical. Experience in the laboratory with Laser Doppler Velocimetry (LDV) 
(Rapp and Melville 1990) and Digital Particle Imaging Velocimetry (DPIV) (Melville 
et al. 1998) led us to believe that optical techniques, while very attractive, may be less 
robust than acoustical systems in the active wave zone of the ocean. Accordingly, we 
decided to pursue acoustical techniques. 
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 The experiments were performed in the 28.7 m-long glass-walled wave channel 
at the Scripps Institut ion of Oceanography. The tank is 0.5 m wide and was filled with 
fresh water to a depth of 0.6 m. Waves were generated by a hydraulic paddle that sent 
a packet consisting of high frequency waves followed by low frequency waves so that 
constructive interference leads to breaking at a time tb at a predetermined location xb 
along the channel (see Rapp and Melville 1990, Loewen and Melville 1991 for 
details). The velocity under breaking waves was measured using a pulse coherent 
Doppler sonar with a range resolution of 1 cm. Figure 2 shows the velocity under a 
typical breaking event measured with the Doppler and a PIV system. It appears that 
most of the velocity field can be identified as either orbital motion due to surface 
waves or turbulence. 

Using two dimensional Fourier techniques, it is possible to decouple the 
turbulence from the wave motion. It is then possible to use common statistical tools to 
analyze the turbulence created by the breaker (Tennekes and Lumley 1972). Figure 2c 
shows the wavenumber spectrum calcula ted on the velocity of figure 2a and b and 
shows a well define inertial subrange in the turbulence. We have then used the inertial 
subrange of the spectrum to determine ε directly. 

 This acoustical technique was also extended to the field where we have 
measured the velocity wavenumber spectra in the upper 40 cm of the ocean under 
various wind and wave conditions. It was found that the kinetic energy dissipation 
levels were consistent with a layer of enhanced turbulence levels near the surface (Fig. 
3).  

The Doppler was subsequently deployed in the surf zone were it demonstrated its 
ability to resolve fluid velocity in extreme conditions and showed that it could be 
potentially employed in a wide range of applications. 

We have presented tests of a pulse-to-pulse coherent acoustic Doppler profiler in 
both the laboratory and the field. It has been stated that the main advantage of the 
Dopbeam over conventional single point velocity measurements is the ability to 
acquire profiles of the fluid velocity with a high sampling rate which leads to 
two-dimensional data where the fluid velocity is a function of range and time. We 
have seen that this permits the study of turbulence in great detail and the collection of 
flow statistics as a function of time.  In the laboratory, direct comparisons of velocity 
and wavenumber spectra from the Dopbeam and DPIV measurements are very good. 
A two-dimensional Fourier transform of the data shows a fairly clear separation of the 
turbulence and the wave field, allowing for appropriate filtering. Spectrograms of the 
turbulence generated by breaking waves show the accelerating propagation of the 
spectral peak with time toward higher wavenumbers (i.e. the breakdown of energy 
containing eddies into smaller scales). Averaging the wavenumber spectrogram of a 
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breaking event over time yields a single wavenumber spectrum. Breaking waves of 
varying strength were studied and the spectra obtained exhibit a -5/3 spectral slope, 
the signature of the inertial subrange in the turbulence. Identifying the inertial 
subrange, and measuring the spectral level permits direct estimates of the turbulent 
kinetic energy dissipation e under breaking waves. In the field, analysis of the data 
shows that the instrument can measure wavenumber spectra and resolve the inertial 
subrange over wavelengths in the range O(0.01-1) m, demonstrating its use for 
measuring turbulent dissipation in the upper mixed layer/surface-wave zone. Since, 
any form of Taylor's hypothesis is avoided by the direct spatial measurement, the 
instrument is not limited to wave conditions which satisfy the requirements of a 
frequency-wavenumber transformation. One limitation of the instrument, however, is 
that it requires the presence of an inertial subrange in the turbulence in order to be 
able to measure the dissipation rate. We conclude that the instrument may prove 
useful for direct field measurements of turbulent wavenumber spectra.  

 

Figure 2  Example of velocity data recorded by the Dopbeam a) and the DPIV b) for 
a breaker with a slope of S=0.656. The color code is the downstream velocity in cm/s. 
The horizontal axis represents the downstream distance from the location of the 
breaker xb, and the vertical axis is the time elapsed from tb, the time of the breaking 
event. c) Corresponding wavenumber spectra. The solid line has a -5/3 slope. 
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Figure 3  a) Example of the vertical velocity recorded by the Dopbeam in the surf 
zone. Note that the bottom is apparent at a range of approximately 1 m. b) 
Wavenumber spectra for both orientation of the Dopbeam in the surf zone. The solid 
line has a -5/3 slope. 
 
3. On probing the inertial subrange. 

Henjes, K., 1999: On probing the inertial subrange. Boundary-Layer Meteorology 
91(3), 367 - 384.  

Abstract  
For an extensive turbulent wind speed data set collected on the open ocean, the 

optimum sampling time is determined to calculate inertial-range spectra. This time 
interval, ca. 6s, corresponds to the turbulent memory time, the minimum period after 
which a given time series can be interpreted as a new independent measurement.  

Separate spectral levels are calculated from the 3 measured vector components. 
Their ratios are compatible with the assumption of an isotropic inertial subrange, but 
scatter considerably. Alignment factors are developed based on Kolmogorov's theory, 
and the aligned spectral levels coincide within a few percent. It is proposed that 
alignment might be a better test for inertiality than the ratio of the spectral levels.  
 
4. Simulation of the Kolmogorov inertial subrange using an improved subgrid model 

Chasnov, J. R., 1991: Simulation of the Kolmogorov inertial subrange using an 
improved subgrid model. Phys. Fluids. A3(1)  
 
 
Statistical description of fluctuating quantities 
 
Correlation function and spectra 
 
Isotropic turbulence 
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Scaling technique  
 
x, y, z = (Lx*, Ly*, Dz*),  t = ω-1t* 
u, v, w = (Uu*, Uv*, UDL-1w*) 
  
Vertical momentum equation 
 
dw/dt + fc i •u = −ρ−1∂p/∂z −g + ν(∇2+∂2/∂z2)w [∂p/∂z+ρg=∂p′/∂z+ρ′g, b′=−gρ′/ρ0 ] 
dw/dt + fc i •u = −ρ0

−1∂ p′/∂z + b′ + ν(∇2+∂2/∂z2)w  
 [  ∂/∂t* + u* •∇*+w*∂/∂z* − (D2/L2∇*2+ ∂2/∂z*2) ] w* =  (1+1/ρs b′ ∂p′/∂z) 

D/L [ ωU/b′     U2/Lb′           νU/D2b′     ]  

 
Reynolds number: Re = UL/ν  [ U/L : ν/D2 = UL/ν (D/L)2 ] 
  

U ∝ D2b′/ν   
 
Froude number: Fr = −U2/Lb′ 
 
Horizontal momentum equation 
 
du/dt + f kx u = −ρ−1∇p + ν(∇2+∂2/∂z2)u 

[  ∂/∂t* + u* •∇*+w*∂/∂z* − (D2/L2∇*2+ ∂2/∂z*2) ] u* =  f kx ( u*-ug
*) 

 [  ω/f     U/fL           ν/D2f          ]  

 
Rossby number: Ro =U/fL 
 
Ekman number: Ek = ν/D2f = Ro/Re (D/L)2 
 
TKE equation 
 

( ) ερρρ −∂+∂−−∂∂•−=∂ zpwewwgzuuwtde '''''''  

 

Flux Richardson number: ( ) ( )zuuwwgRf ∂∂•−= '''' ρρ   

Normally w′u′ • ∂u/∂z<0 and −gρ′w′/ρ = b′w′ can be positive or negative,  
When b′w′ is positive, flow is turbulent 
When b′w′ is negative, then 

Rf  < 1  flow is turbulent (dynamically unstable) 
 Rf  > 1 flow becomes laminar  (dynamically stable) 
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Gradient Richard number: Ri = (−g ρ−1 ∂ρ/∂z) / (∂u/∂z) • (∂u/∂z)  
 Ri < Rc  laminar flow becomes turbulent (Rc = 0.21~0.25) 
 Ri > RT turbulent flow becomes laminar (RT  =1.0) 
Hysteresis effect:  
Ri of nonturbulent flow must be lowered to Rc before turbulence will start, but once 
turbulent, the turbulence can continue until the Ri is raised above RT  
(Kekvin Helmholtz instability, see Stull p. 172-173) 
 
Bulk Richardson number: Rb = (−g ρ−1 ∆ρ ∆z) / (∆u • ∆u) 
 
The Obukhov Length 
Multiplying TKE eqn by (−κz/u*

3), assume constant flux distribution in the surface 
layer, where κ is Von Karman constant 0.35~0.42 
… … … (−κz/u*

3) [−(w′u′) s • ∂u/∂z − g(ρ′w′) s /ρ − ∂(w′e + w′p′/ρ)/∂z− ε] 
 ξ = z/L = (−κzgρ′w′)/(ρu*

3),  L = − (ρu*
3) / [κg (ρ′w′)s] 

L can be interpreted as that proportional to the height above the surface at which 
buoyancy first dominate over mechanical (shear) production of turbulence.  
ξ = z/L = (−κz w*

3)/(zu*
3) is a stability parameter 
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Exam 1. October 2, 2002 
 
From the momentum equation 
∂ui/∂t + uj∂ui /∂xj + 2ε ijkΩj uk = −ρ−1∂p/∂xi −∂Φ/∂xi + ρ−1∂τij/∂xj 
where components of the angular velocity of the earth’s rotation vector Ω j are 
(0, ωcosϕ, ωsinϕ) where ϕ is latitude and ω= 2π  / 24 hr = 7.27 x 10−5 s−1 
Coriolis parameter f=2ωsinϕ, fc=2ωcosϕ 
τij = µ (∂ui/∂xj+∂uj/∂xi)+( µ−µB) ∂uk/∂xk δ ij   

µ: dynamic viscosity, ν = µ/ρ kinematic viscosity, µB ∼bulk viscosity coefficient 
Adopting the convention, V = (u, w) = (u=u1, v=u2, w=u3) 

1. Express the equation ∂ui /∂xi=0 in terms of u, v, w and also in vector form 
2. Assuming µB ∼0 & incompressibility (∂ui /∂xi=0) 

explain why ρ−1∂τij/∂xj ≈ ν∂2ui/∂xj
2  

3. Please write the momentum equation in terms of u, v, w separately.  
4. Express the horizontal momentum equation in vector form 
5. From the horizontal momentum equation, derive the following equation 
du/dt + f kx u −ρ−1∂τ/∂z = −ρ−1∇p , where u is horizontal  τ ≈ −ρ(u′w′ −ν∂u/∂z) 
6. From the following non-dimensional form, e 
[∂/∂t* + u* •∇*+w*∂/∂z* − ( ∂2/∂z*2) ] u* + ∂ (u′w′)/∂z  =  f kx ( u*-ug

*) 

[ ω/f     U/fL          ν/D2f  ]  

explain the physical meaning of the following numbers 
Reynolds number: Re = UL/ν 
Rossby number: Ro =U/fL 
Ekman number: Ek = ν/D2f = Ro/Re (D/L)2 
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Home work 1  October 2, 2002 
Due: Oct. 17, 2002 
1. An array of thermisters measured the temperature field at 200 m as sketched 

below. 

 

a) What is ∂T/∂x, ∂T/∂y? 
b) What are the magnitude and direction of the horizontal vector, ∇T = i ∂T/∂x + 

j ∂T/∂y ? 
c) Assume that DT/Dt = 0 and w = 0.  What is ∂T/∂t if a current meter measures 

a constant velocity of (10 km/day, 10km/day)? 
d) Why is this a good place to make measurements? 

2.  If u(x, t) = a x is the steady, Eulerian velocity field, find Du/Dt and xp(X, t), the 
acceleration and position of a particle initially located at xp = X when t = 0. 

3.  Calculate the deflection due to the Coriolis acceleration of a baseball traveling a 
distance of 60 ft. at a speed of 50 mph. Let ƒ = 10-4 s-1. (Assume that the velocity 
perturbations due to the Coriolis accelerations are small. 

4.  On a planet (not in our solar system) rotating at a speed Ω = 10-2 s-1, typical 
atmospheric (relative) velocities are 100 m s-1.  Roughly, how big should the 
planet be before relative acceleration can be neglected in favor of Coriolis 
acceleration. 

5.  For steady flow, the compressible form of the continuity equation is 
∂(ρu)/∂x + ∂(ρν)/∂y + ∂(ρw)/∂z = 0 

which can also be written  
∂u/∂x + ∂ν/∂y + ∂w/∂z + ρ-1(u∂ρ/∂x + ν∂ρ/∂y + w∂ρ /∂z) = 0 

Do a scale analysis [u = O(u0), ∂(  )/ ∂x = O(L-1), etc.] on this equation to show 
that, if δρ/ρ << 1 where δρ is the order of magnitude of changes in ρ, then the last 
three terms in the above equation can be neglected. 

6. If A = 6 i + 2 j and B = 2 i − 2 j, what is A．B?  Determine a new x–component 
of B so that the two vectors are orthogonal. 

7.  To derive Gauss’ theorem, first note that the following control volume integral 
may be equated to a surface integral upon integration with respect to x. 
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∫∫∫ (∂u/∂x) dxdydz = ∫∫ (u+ − u−) dydz 
The subscripts, + and − denote values on the two bounding surfaces of the control 
volume pierced by the x-coordinate at a common value of (x, z).  Next, note that 
u+ = V．i and u− = −V．i so that 

∫∫∫ (∂u/∂x) dxdydz = ∫∫ V．i dydz 
where the circle in the center of the double integral sign denotes the fact that we 
include the entire surface surrounding the control volume.  By adding similarly 
derived identities, we have  

∫∫∫ {(∂u/∂x) + (∂ν/∂y) + (∂w/∂z)} dxdydz = ∫∫ V．(i dydz + j dxdz + k dxdy) 
To simplify nomenclature, let the volume element, dx dy dz = dV, and a surface 
area element, i dydz + j dxdz + k dxdy = n dA where n = i nx + j ny + k nz is the 
unit vector normal to the area element.  Then the above equation may be written 
in the familiar form. 

∫∫∫ ∇．VdV = ∫∫ V．ndA   
Make a sketch of all the steps in this derivation. Interpret nx, ny, nz and show that 
nx + ny + nz = 1. 

 
8.  The equation in the preceeding problem may be easily generalized so that  

∫∫∫ ∇．(PV)dV = ∫∫ PV．ndA 
where P is any scalar quantity.  Using this equation and a combination of 
equations (2-2) and (2-20), show that 

∂/∂t ∫∫∫ SdV + ∫∫ SV．ndA = − ∫∫ j．ndA 
  


