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Introduction

ais lecture note aims at equipping students with advanced probability theory and statistical
tools. It provides an intermediate level coverage of material suitable for students having taken
introductory statistics.
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Chapter 1

ProbabilityModel and Random Variables

1.1 Sets

We provide a brief review of the notations and operations on sets.

SetOperations

1. Union: A∪ B = {x ∶ x ∈ A or x ∈ B};

2. Intersection: A∩ B = {x ∶ x ∈ A and x ∈ B};

3. Complement: Ac = {x ∶ x ∉ A};

4. Diòerence: A− B = A∩ Bc = {x ∶ x ∈ A and x ∉ B};

5. Symmetric diòerence: A△ B = (A− B) ∪ (B − A).

Some Additional Terminology

1. ae empty set: ∅ = {};

2. Subset: A is a subset of B, A ⊂ B , if x ∈ A implies x ∈ B;

3. Disjoint: A and B are disjoint if A∩ B = ∅;

4. Power set associated with Ω: 2Ω = {A ∶ A ⊂ Ω}, which is the set of all subsets of Ω.

aeorem 1. (deMorgan Formulas)

1. (⋃n
k=1 Ak)

c
= ⋂n

k=1 Ac
k;

2. (⋂n
k=1 Ak)

c
= ⋃n

k=1 Ac
k
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Exercise 1. Prove the deMorgan Formulas.

ae deMorgan Formulas can be extended to inûnite unions and inûnite intersections.

1. (⋃∞k=1 Ak)
c
= ⋂∞k=1 Ac

k;

2. (⋂∞k=1 Ak)
c
= ⋃∞k=1 Ac

k

1.2 Monotone Sequences of Sets

Our ûrst discussion deals with sequences of sets and various types of limits of such sequences.
ae limits are also sets. We start with two simple deûnitions.

Deûnition 1 (Sequences of Sets). Suppose that (A1,A2,⋯) is a sequence of sets.

1. ae sequence is increasing if An ⊂ An+1 for every n ∈ N+.

2. ae sequence is decreasing if An+1 ⊂ An for every n ∈ N+.

If a sequence of sets is either increasing or decreasing,we can deûne the limit of the sequence
in a way that turns out to be quite natural.

Deûnition 2 (Limit of Sets). Suppose that (A1,A2,⋯) is a sequence of sets.

1. If the sequence is increasing, we deûne

lim
n→∞

An = ∪
∞
n=1An

2. If the sequence is decreasing, we deûne

lim
n→∞

An = ∩
∞
n=1An

1.3 ProbabilityModel

Deûnition 3 (Random Experiment). Random experiment is an action whose outcome is un-
certain in advance (ex ante) of its occurrence.

For instance, tossing a coin, or throwing a die.

Deûnition 4 (Sample Space/State Space). ae totality of all possible outcomes of a random
experiment is referred to as sample space (state space), which is denoted by Ω. ae distinct
individual elements of Ω are called sample points or elementary events (denoted by ω).
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1. Tossing a coin
Ω = {H, T}

2. arowing a die
Ω = {1, 2, 3, 4, 5, 6}

We now deûne a special set called σ-algebra.

Deûnition 5 (σ-algebra/σ-ûeld). A σ-algebraF is anon-empty collection of subsets ofΩ,which
satisûes

1. A ∈ F implies Ac ∈ F .

2. Ai ∈ F ∀i ≥ 1 implies ⋃∞i=1 Ai ∈ F .

In words, a σ-algebra F is simply a nonempty collection of subsets of Ω that is closed under
complement and taking countable unions.

aeorem 2. According to the deûnition of the σ-algebra, we have

1. Ω ∈ F .

2. ∅ ∈ F .

3. Ai ∈ F ∀i ≥ 1 implies ⋂∞i=1 Ai ∈ F .

Proof.

1. A ∈ F implies Ac ∈ F , hence, A∪ Ac = Ω ∈ F .

2. Since Ω ∈ F , ∅ = Ωc ∈ F .

3.

Ai ∈ F ⇒ Ac
i ∈ F ⇒

∞
⋃
i=1

Ac
i ∈ F ⇒ (

∞
⋃
i=1

Ac
i)

c

∈ F ⇒
∞
⋂
i=1

Ai ∈ F .

Example 1. Consider tossing a coin twice,

Ω = {HH,HT , TH, TT}

1. A = {Ω,∅,HH, (HT , TH, TT)} is a σ-algebra.

2. B = {Ω,∅, (HH, TT)} is not a σ-algebra.

5



Example 2. We can further provide some special σ-algebras.

1. ae Power set associated with Ω, 2Ω (i.e., the collection of all subsets of Ω) is a σ-algebra.

2. {∅,Ω} is a trivial σ-algebra consisting of only two types of events: “nothing happens” and
“something happens.”

We now need a mathematical model of a random experiment. Before introducing the prob-
ability model, I would recommend you to read pages 1–2 in Gut (2009), which provide a very
intuitive discussion to motivate the probabilitymodel.1

Deûnition 6 (ProbabilityModel). Random experiment (or random phenomenon) can be rep-
resented by a probability space (Ω,F , P), where

• Ω is the sample space (state space) including all possible outcomes of the experiment.

• F is the σ-algebra of subsets of Ω (event space).

• P(⋅) ∶ F ↦ [0, 1] is the probabilitymeasure assigned to any element of F , and satisûes the
following axioms:

1. 0 ≤ P(A), ∀A ∈ F .

2. P(Ω) = 1.

3. P (⋃∞j=1 A j) = ∑
∞
j=1 P(A j), A j ∈ F and A j’s are disjoint.

Axiom 3 is called countable additivity. A probability measure P(⋅) is also called a probability
function. It isworthnoting that the probabilitymodel only speciûeswhat qualiûcation a function
has to have in order to be entitled to be called a probability. It does not tell us what probability
really is. In general, for a countable sample space Ω, it will be possible to deûne more than one
probability function. For example, let Ω = {H, T}. Consider the function f ∶ 2Ω ↦ [0, 1], and
g ∶ 2Ω ↦ [0, 1] as in Table 1.1.

ae reasonwewould like to impose somemathematical structures on the set of all events (i.e.,
the σ-algebra) is to make sure that wemay construct new events from old ones without trouble
assigning probabilities. For instance, given that we know the probability of event A, itmay be of
interest to know the probability that event A does not happen, P(Ac). Moreover, suppose that
we know the probabilities of events A and B, we may also want to know the probability of the
event that either A or B happens, P(A∪ B).

ae σ-algebra is just a deûnition of which setsmay be considered as events. Elements not in
F simply have no deûned probability measure. Basically, σ-algebras are the "patch" that lets us

1Gut, Allan (2009). An Intermediate Course in Probability, Springer-Verlag.
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Table 1.1: Alternative Probability Function

A f (A) g(A)

∅ 0 0
{H} 1/2 1/3
{T} 1/2 2/3
{H, T} 1 1

avoid some pathological behaviors of mathematics, namely non-measurable sets. If we restrict
ourselves to countable sets, then we can take F = 2Ω the power set of Ω, and we won’t have any
of these problems because for countable Ω, 2Ω consists only ofmeasurable sets.

Note that under the context of a probabilitymodel,

1. Any subset A is called an event if and only if A ∈ F .

2. A σ-algebra on sample space Ω is also called an event space.

ae choice of σ-algebra depends on what we would like to model. Consider rolling a fair
die once, Ω = {1, 2, 3, 4, 5, 6}. If we want to model the beliefs of a person who will be told
a�er the experiment only whether or not 1 has come up, then a proper σ-algebra would be
{∅,Ω, {1}, {2, 3, 4, 5, 6}}. On the other hand, the power set associated with Ω is also a candi-
date but it is not a good choice. For instance, the event {1, 2} is not a conceivable event for the
individual knowing only whether or not 1 has come up.

Finally, it isworth noting thatwe do not extend Axiom 3 to uncountable additivity. Ifwe did,
then we would expect that

P([0, 1]) = ∑
x∈[0,1]

P({x})

which is clearly false since the le�-hand side equals 1 while the right-hand side equals 0. It is for
this reason that we restrict attention to countable operations.

1.3.1 Continuityaeorem

Generally speaking, a function is continuous if it preserves limits. aus, the following results are
the continuity theorems of probability. Part 1 is the continuity theorem for increasing events and
part 2 the continuity theorem for decreasing events.
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aeorem 3 (Continuityaeorem). Suppose that (A1,A2,⋯) is a sequence of events.

1. If the sequence is increasing then

lim
n→∞

P(An) = P( limn→∞
An) = P(∪∞n=1An)

2. If the sequence is decreasing then

lim
n→∞

P(An) = P( limn→∞
An) = P(∩∞n=1An)

Proof.

1. Let B1 = A1 and let Bi = Ai − Ai−1 = Ai ∩ Ac
i−1 for i = 2, 3, . . .. Note that the collection of

events {B1, B2, . . .} is pairwise disjoint and

∪∞i=1Ai = ∪
∞
i=1Bi

aen

P (∪∞i=1Ai) = P (∪∞i=1Bi) =
∞
∑
i=1

P(Bi) = lim
n→∞

n

∑
i=1

P(Bi)

But

P(B1) = P(A1)

and

P(Bi) = P(Ai) − P(Ai−1) for i = 2, 3, . . ..

aerefore,
n

∑
i=1

P(Bi) = P(An)

and hence we have

P (∪∞i=1Ai) = lim
n→∞

P(An)

2. Since the sequence {A1,A2, . . . , } is decreasing, the sequence of complements {Ac
1 ,Ac

2, . . .}
is increasing. Hence using the result in Part 1 with DeMorgan’s law, we have

P (∩∞i=1Ai) = 1 − P ((∩∞i=1Ai)
c) = 1 − P (∪∞i=1Ac

i)

= 1 − lim
n→∞

P(Ac
n) = lim

n→∞
[1 − P(Ac

n)] = lim
n→∞

P(An)
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1.4 Random Variables
Deûnition 7 (Random Variable). Random variable is simply a measurable function, X(ω) ∶
Ω ↦ R.

Given a probability space (Ω,F , P), a random variable X ismeasurable if for every x,

{ω ∶ X(ω) ≤ x} ∈ F ,

In plain English, “measurable” justmeans “nice.”
So a random variable X(⋅) is a function whose value is determined by the outcome of an

experiment. Note that X is a functionwhose domain is the sample spaceΩ, andwhose codomain
is the set of real numbers R.

For instance, given Ω = {H, T},

X(ω) = {
1 if ω = H,
0 if ω = T .

Deûnition 8 (Cumulative Distribution Function, CDF). A random variable is described by a
CDF

FX(x) = P(X ≤ x), x ∈ R.

We will from now on denote FX(x) as F(x) to prevent global warming. CDF has following
properties.

Proposition 1. (CDF) Let X be a random variable with CDF, F(x) = P(X ≤ x).

1. If X and Y have the same CDF, they are said to be identically distributed. We denote it as
X d
= Y . aat is, the following statements are equivalent:

(a) X d
= Y .

(b) FX(a) = FY(a) for every a.

2. F(−∞) = 0.

3. F(∞) = 1.

4. F(x) ≥ 0 ∀x ∈ R.

5. F(⋅) is non-decreasing (weakly increasing).

6. F(⋅) is right continuous
lim
h→0+

F(x + h) = F(x).

9



Proof.

1. Omit. Beyond the scope of this note.

2. Let x1 > x2 > ⋯ be a decreasing sequencewith xn → −∞ as n →∞. ae intervals (−∞, xn]
are decreasing in n and have intersection ∅. ae result now follows from aeorem 3 for
decreasing events.

3. Let x1 < x2 < ⋯ be an increasing sequence with xn →∞ as n →∞. ae intervals (−∞, xn]
are increasing in n andhaveunionR.ae resultnow follows fromaeorem 3 for increasing
events.

4. Trivial as F(x) = P(X ≤ x) ≥ 0.

5. F(⋅) is non-decreasing (weakly increasing). Clearly, for a ≤ b

F(b) = P(X ≤ b) = P(X ≤ a) + P(a < X ≤ b) = F(a) + P(a < X ≤ b)

Hence,
F(a) ≤ F(b).

6. Fix x ∈ R. Let x1 > x2 > ⋯ be a decreasing sequence with xn → x as n →∞. ae intervals
(−∞, xn] are decreasing in n and have intersection (−∞, x]. ae result now follows from
aeorem 3 for decreasing events.

1.4.1 Two Types of Random Variables

Recall the deûnition of random variables,

X(ω) ∶ Ω ↦ R

According to the range of a random variable X, we have diòerent types of random variables:
discrete and continuous. ae range of a discrete random variable is countable, while the range of
a continuous random variable is uncountable

If the domain Ω is countable, then the range of X, dented by X(Ω), is countable as well.
Hence, X is a discrete random variable. It isworth noting that the codomain of a random variable
is R, which is uncountable. On the other hand, if both the domain and range are uncountable,
X is called a continuous random variable. However, it is possible to deûne a discrete random

10



variable on a continuous (uncountable) sample space. For example, for a continuous sample
space, Ω = (0, 1), the random variable deûned by

X(ω) = {
1, if ω ∈ (0, 1/2]
0, if ω ∈ (1/2, 1)

is discrete.
Table 1.2 shows four combinations.

Table 1.2: Domain and Range of Random Variables

Domain of X Range of X Random Variable
Ω X(Ω) X(ω)

Countable Countable Discrete random variable on a discrete sample space
Countable Uncountable ais combination cannot happen
Uncountable Countable Discrete random variable on a continuous sample space
Uncountable Uncountable Continuous random variable on a continuous sample space

1.4.2 Discrete Random Variables

For discrete random variables, probability is assigned using the probabilitymass function.

Deûnition 9 (ProbabilityMass Function, pmf). Suppose that X is a discrete random variable,
taking values on some countable sample space B ⊆ R. aen the probabilitymass function f (x)
for X is given by f (x) ∶ R↦ [0, 1]

f (x) = {
P(X = x), x ∈ B
0, x ∈ R − B

so that

1. f (x) > 0, ∀x ∈ B.

2. ∑x∈B f (x) = 1.

3. Given that A ⊆ B, P(X ∈ A) = ∑x∈A f (x).

We would like to introduce the support of a random variable here.

11



Deûnition 10 (Support). ae support of a random variable X, denoted by supp(X), is the set of
points where its density is positive.

supp(X) = {x ∈ R ∶ f (x) > 0}.

Clearly, set B is the support of the discrete random variable X.

Example 3 (BernoulliDistribution). Random variable X ∼ Bernoulli(p) if the pmf is

f (x) = px(1 − p)1−x , supp(X) = {0, 1}

Example 4 (Binomial Distribution). ae Binomial arises when we repeat Bernoulli trials n
times. Let {Xi}

n
i=1 ∼

i .i .d . Bernoulli(p) and Y = ∑n
i=1 Xi , then

Y ∼ Binomial(n, p)

with pmf

f (y) = (
n
y
)py(1 − p)n−y , supp(Y) = {y∣y = 0, 1, 2, 3, . . . , n}

Example 5 (Geometric Distribution). Let X denote the number of trails until ûrst success. aen
X ∼ Geo(p) with pmf

f (x) = (1 − p)x p, supp(X) = {x∣x = 0, 1, 2, 3, . . .}

Example 6 (PoissonDistribution). X ∼ Poisson(λ) with pmf

f (x) =
e−λλx

x!
, supp(X) = {x∣x = 0, 1, 2, 3, . . .}

ae applications of the Poisson distribution includes

1. ae number of soldiers of the Prussian army killed accidentally by horse kick per year (von
Bortkewitsch, 1898, p. 25).2

2. ae number of bankruptcies that are ûled in amonth (Jaggia, Kelly, 2012 p. 158).3

3. ae number of arrivals at a car wash in one hour (Anderson et al., 2012, p. 236).4

2Bortkewitsch, L. (1898). Das Gesetz der Kleinen Zah len. Leipzig, Germay: Teubner.
3Jaggia, S., Kelly, A. (2012) Business Statistics - Communicating with Numbers. New York, NY: McGraw-Hill

Irvin.
4Anderson, D. R., Sweeney, D. J.,Williams, T.A., ( 2012), Essentials ofModern Business StatisticswithMicroso�

Excel. Mason, OH: South-Western, Cengage Learning.
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4. ae number of ûle server virus infection at a data center during a 24-hour period . ae
number of Airbus 330 aircra� engine shutdowns per 100,000 �ight hours. ae number of
asthma patient arrivals in a given hour at a walk-in clinic (Doane, Seward, 2010, p. 232).5

5. ae number of hungry persons entering McDonald’s restaurant. ae number of work-
related accidents over a given production time, ae number of birth, deaths, marriages,
divorces, suicides, and homicides over a given per iod of time (Weiers, 2008, p. 187).6

6. ae number of customerswho call to complain about a service problem permonth (Don-
nelly, Jr., 2012, p. 215).7

7. ae number of visitors to a Web site per minute (Sharpie, De Veaux, Velleman, 2010, p.
654).8

8. ae number of calls to consumer hot line in a 5-minute period (Pelosi, Sandifer, 2003, p.
D1).9

9. ae number of telephone calls per minute in a small business. ae number of arrivals
at a turnpike tollbooth par minute between 3 A.M. and 4 A.M. in January on the Kansas
Turnpike (Black, 2012, p. 161).10

1.4.3 Continuous Random Variables

If Ω is uncountable, and F(x) is continuous on R, the random variable is continuous. We use
probability density function to assign probability.

Deûnition 11 (ProbabilityDensity Function, pdf). A probability density function is any func-
tion, f ∶ R↦ R such that

1. f (x) > 0, ∀x ∈ supp(X).

2. ∫x∈supp(X) f (x)dx = 1.

If X is a continuous random variable, then

1. P(a ≤ X ≤ b) = ∫
b
a f (z)dz.

5Doane, D., Seward, L. (2010) Applied Statistics in Business and Economics, 3rd Edition,Mcgraw-Hill, 2010.
6Weiers, R. M. (2008) Introduction to Business Statistics. Mason, OH: South-Western, Cengage Learning.
7Donnelly, Jr., R. A. (2012) Business Statistics. Upper Saddle River, NJ: Pearson Education, Inc.
8Sharpie, N. R., De Veaux, R. D., Velleman, P. F. (2010) Business Statistics. Boston,MA: AddisonWesley.
9Pelosi,M. K., Sandifer, T.M. (2003) Elementary Statistics. New York, NY: JohnWiley and Sons, Inc.
10Black, K. (2012) Business Statistics For Contemporary Decision Making. New York, NY: JohnWiley and Sons,

Inc.
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2. F(x) = ∫
x
−∞ f (z)dz.

3. P(X = a) = 0.

4. ∫
b
a f (z)dz = P(a ≤ X < b) = P(a ≤ X ≤ b) = P(a < X < b) = P(a < X ≤ b).

Example 7 (UniformDistribution). X ∼ U[l , h], if the pdf is

f (x) =
1

h − l
, supp(X) = {x∣l ≤ x ≤ h}

Note that pdf is not unique! For instance, Figure 1.1 shows two possible pdfs of the U[0, 1]
random variable.

Figure 1.1: Two Possible pdfs of the U[0, 1] Random Variable

0

x

F(x) F(x)

x

0

1

1

1

1.5

1.25

1

aeorem 4. Let F(⋅) be any distribution function and deûne

F−1(t) = inf{x ∶ F(x) ≥ t}

to be its inverse function (quantile function) for 0 < t < 1.
If U ∼ U[0, 1], and X = F−1(U), then the distribution function of X is F(⋅).

Proof. Since F−1(t) ≤ x iò. t ≤ F(x),

P(X ≤ x) = P(F−1(U) ≤ x) = P(U ≤ F(x)) = F(x)
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A common application ofaeorem 4 is the simulation of random variables with a particular
distribution. Once we obtain a random variable U ∼ U[0, 1] via simulation, we can then obtain
a random variable X = F−1(U), which has distribution function F(⋅). For example, consider a
exp(β) random variable with distribution function

F(x) = 1 − e−
1
β x

Since F(x) is strictly increasing over the set where F(x) > 0, we can solve the inverse F1(t) via
the equation

1 − e−
1
β F
−1(t)
= t,

which gives us
F−1(t) = −β log(1 − t).

Hence, let u be one simulated realization drawn U[0, 1], then

x = F−1(u) = −β log(1 − u)

is a simulated realization drawn from exp(β).
However it is worth noting that F−1(U) is not necessarily easily computable.

Example 8 (NormalDistribution). A random variable X has the normal distribution with two
parameters µ and σ 2 if X has a continuous distribution with the following pdf:

f (x) =
1

σ
√
2π

e−
1
2 (

x−µ
σ )

2

, supp(X) = {x∣ −∞ < x <∞}

Let z =
√
2x, we thus have dz =

√
2dx, and

∫
∞

−∞

1
√
2π

e−
1
2 z

2dz = ∫
∞

−∞

1
√
2π

e−
1
2 2x

2√
2dx =

1
√
π ∫

∞

−∞
e−x2dx

=
1
√
π
√
π = 1, by the Gaussian Integral (seeaeorem 80)

i.e., the pdf of a N(0, 1) random variable is integrated to 1. Hence, let y = σz + µ, and thus
dy = σdz, then we have

∫
∞

−∞

1
√
2πσ

e−
1
2 (

y−µ
σ )

2

dy = ∫
∞

−∞

1
√
2πσ

e−
1
2 (
(σz+µ)−µ

σ )
2

σdz

= ∫
∞

−∞

1
√
2π

e−
1
2 z

2dz = 1

i.e., the pdf of a N(µ, σ 2) random variable is integrated to 1.
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Example 9 (Gamma Distribution). A continuous random variable X follows a gamma distri-
bution with parameters α > 0 and β > 0 if its probability density function is:

f (x) =
xα−1e−

1
β x

βαΓ(α)
, supp(X) = {x∣0 < x <∞},

where Γ(α) is the Gamma function (see Deûnition 69).

1. It is denoted by X ∼ Gamma(α, β).

2. Given α = 1, we obtain an Exponential distribution:

exp(β) d
= Gamma(1, β)

3. Given α = k
2 and β = 2, we obtain a χ2 distribution with degree of freedom k:

χ2(k) d
= Gamma(

k
2
, 2)

Example 10 (Student’s t Distribution). If a random variable X has the following pdf

Γ( k+12 )
Γ( k2 )

1
√
kπ
(1 +

x2

k
)
− k+1

2

with support supp(X) = {x∣ − ∞ < x < ∞} and a parameter k, then it is called a Student’s t
distribution, and denoted by

X ∼ t(k)

Example 11 (Log-NormalDistribution). A random variable X has a log-normal distribution if

logX ∼ N(µ, σ 2).

1.4.4 Mixed Distribution Random Variables

We now show you amixed distribution random variable for fun!

Exercise 2. Pick any p ∈ (0, 1). Let X be a random variable which has the following CDF:

F(x) = pI{x≥0} + (1 − p)Φ(x),

where

I{x≥0} = {
1 if x ≥ 0,
0 if otherwise.

an indicator function, and Φ(x) = P(N(0, 1) ≤ x) the CDF of the standard normal random
variable. As a practical exercise, see if you can show the follows.
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1. Check if F(x) is indeed a CDF.

2. Plot F(x).

3. Find out the pdf f (x).

1.5 Moments

1.5.1 Expectation

• X a discrete random variable:

E(X) = ∑
x i∈supp(X)

xi f (xi).

• X a continuous random variable:

E(X) = ∫
x∈supp(X)

x f (x)dx .

Given h(x) a function of random variable X,

E(h(X)) =
⎧⎪⎪
⎨
⎪⎪⎩

∑x i∈supp(X) h(xi) f (xi),
∫x∈supp(X) h(x) f (x)dx .

1.5.2 r-th Moment

E(Xr) =

⎧⎪⎪
⎨
⎪⎪⎩

∑x i∈supp(X) x
r
i f (xi),

∫x∈supp(X) xr f (x)dx .

is the r-th moment of X.

Var(X) = E[(X − E(X))2] =
⎧⎪⎪
⎨
⎪⎪⎩

∑x i∈supp(X)(xi − E(X))2 f (xi),
∫x∈supp(X)(x − E(X))2 f (x)dx .

is the variance of X.
Let X be a random variable, we distinguish 3 cases.

1. E(X) exists and is ûnite.

2. E(X) exists and is inûnite.

3. E(X) does not exist.
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Case 1 is a normal case, so we focus on examples of cases 2 and 3.

Example 12. (E(X) exists and is inûnite)

f (x) = {
1
x2 if x ≥ 1,
0 otherwise.

Note that

1. f (x) ≥ 0 and ∫
∞
1 x−2 = 1 is a pdf.

2. E(X) = ∫
∞
1 xx−2dx = ∫

∞
1 x−1dx = ln x]∞1 =∞− 0 =∞.

Example 13. (E(X) does not exist) A standard Cauchy random variable.

f (x) =
1
π

1
1 + x2

, x ∈ R.

aus,
E(X) =

1
π ∫

∞

−∞

x
1 + x2

=
1
2π

log(1 + x2)]∞x=−∞ =∞−∞.

1.6 Quantile
Deûnition 12 (p−thQuantile). Let X be a random variable with CDF, F(⋅). Pick any p ∈ (0, 1),
a p-th quantile of X is a number xp such that

P(X ≤ xp) ≥ p and P(X ≥ xp) ≥ 1 − p.

aat is,
p ≤ F(xp) ≤ p + P(X = xp).

Now suppose that X is a continuous variable, P(X = xp) = 0, so the p-th quantile of X is a
number xp such that

F(xp) = p.

If p = 0.25, xp is called quartile. If p = 0.5, xp is calledmedian.

Example 14. Let X ∼Bernoulli( 12). aen x0.5 = {x ∶ 0 ≤ x < 1}. ais provides an example that
quantile is not unique!

However, ifwe restrict restrict the quantiles to the range of X, then the quantile function can
be deûned as

xp = F−1(p) = {
0, p ≤ 0.5
1, 0.5 < p

18



1.7 SomeUseful Inequalities

aeorem 5. (Markov Inequality) Let ε > 0 and p > 0,

P(∣X∣ ≥ ε) ≤
E∣X∣p

εp
.

Proof.

E∣X∣p = ∫
supp(X)

∣x∣p f (x)dx

= ∫
∣x∣≥ε
∣x∣p f (x)dx + ∫

∣x∣<ε
∣x∣p f (x)dx

≥ ∫
∣x∣≥ε
∣x∣p f (x)dx

≥ ∫
∣x∣≥ε

εp f (x)dx

= εp ∫
∣x∣≥ε

f (x)dx

= εpP(∣X∣ ≥ ε).

aus,

P(∣X∣ ≥ ε) ≤
E∣X∣p

εp
.

Note that, let Y = X − E(X), ε = kσ and p = 2, we can obtain Chebyshev’s Inequality:

aeorem 6. (Chebyshev’s Inequality)

P(∣X − E(X)∣ ≥ kσ) ≤
1
k2
.

aeorem 7. (Jensen’s Inequality) Let ϕ(x) be a smooth convex function. aen

ϕ(E(X)) ≤ E(ϕ(X)).

Proof. Let µ = E(X). Since ϕ(x) is convex,

ϕ(X) ≥ ϕ(µ) + ϕ′(µ)(X − µ).

Take expectation in both side,

E(ϕ(X)) ≥ ϕ(µ) + 0 = ϕ(µ).

aat is,
E(ϕ(X)) ≥ ϕ(E(X)).
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Chapter 2

Multivariate Random Variables

In this chapter,we focusmostly on bivariate random variables. Let X and Y be jointly distributed
random variables. We will denote the pair of random variables as (X ,Y), and call this random
vector as a random variable.

2.1 Bivariate ProbabilityDistribution

Random experiment outcome is a pair of random variables (X ,Y). ae joint CDF is

F(x , y) = P(X ≤ x ,Y ≤ y).

If (X ,Y) is discrete, the distribution of (X ,Y) is given by the joint pmf

f (x , y) = P(X = x ,Y = y),

with properties that

1. f (x , y) > 0.

2. ∑i∑ j f (xi , yi) = 1.

If (X ,Y) is continuous, the joint CDF is given by

F(x , y) = P(X ≤ x ,Y ≤ y) = ∫
x

u=−∞
∫

y

v=−∞
f (u, v)dudv ,

and a joint pdf of (X ,Y) is given by

f (x , y) =
∂2F(x , y)
∂x∂y

.

with properties that
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1. f (x , y) ≥ 0.

2. ∫supp(X) ∫supp(Y) f (x , y)dxdy = 1.

3. P(X = x ,Y = y) = 0.

aemarginal pdf of X is given by

f (x) = ∫
y∈supp(Y)

f (x , y)dy.

aeorem 8 (Cauchy-Schwarz Inequality). For any random variables X and Y , we have

[E(XY)]2 ≤ E(X2)E(Y 2),

or
∣E(XY)∣ ≤

√
E(X2)E(Y 2).

Proof. Let c be a real number and deûne Z = cX + Y . aen

0 ≤ E(Z2) = c2E(X2) + 2cE(XY) + E(Y 2).

ae RHS can be seen as a quadratic function in the variable c. Since this quadratic expression
is apparently non-negative, and E(X2) > 0, it follows that the corresponding discriminant is
non-positive. aat is,

D = (2E(XY))2 − 4E(X2)E(Y 2) ≤ 0,

which is what we want to prove.

Clearly, according to Cauchy-Schwarz inequality, we can easily derive that the correlation
coeõcient is between ±1. Simply deûne two new random variables as X = U −EU , Y =W −EW .
aen by Cauchy-Schwarz inequality,

∣E(U − EU)(W − EW)∣ ≤
√
E(U − EU)2E(W − EW)2,

or

∣Cov(U ,W)∣ ≤
√
Var(U)Var(W).
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2.2 Conditioning

Deûnition 13 (ConditionalDistribution of Discrete RandomVariables). Let (X ,Y) be a dis-
crete random variable. If P(X = x) > 0, the conditional pmf of Y ∣X = x can be derived by

fY ∣X=x(y) = P(Y = y∣X = x),

=
P(Y = y, X = x)

P(X = x)
,

=
fXY(x , y)
fX(x)

.

Note that fY ∣X=x(y) is itself a true pmf. aat is, it satisûes the following properties:

1. fY ∣X=x(y) ≥ 0 ∀y.

2. ∑y fY ∣X=x(y) = 1.

3. P(Y ≤ y∣X = x) = ∑t≤y fY ∣X=x(t).

In analogy with the discrete case, we have the following deûnition for continuous random
variables.

Deûnition 14 (ConditionalDistribution of Continuous Random Variables). Let (X ,Y) be a
continuous random variable. ae conditional pdf of Y ∣X = x is deûned as

fY ∣X=x(y) =
f (x , y)
f (x)

1. aerefore, the conditional CDF is

FY ∣X=x(y) = ∫
y

−∞
fY ∣X=x(u)du

2. ae conditional probability can be calculated by

P(a < Y < b∣X = x) = ∫
b

a
fY ∣X=x(y)dy

Exercise 3. Figure out what the conditional pdf

gX∣X≥a(x)

would be, given a continuous random variable X with pdf f (x).
[Hint:]

gX∣X≥a(x) =
d
dx

P(X ≤ x∣X ≥ a).
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2.3 Expectation and Conditional Expectation

Deûnition 15 (Expectation). Suppose (X ,Y) is a random variable with joint pmf/pdf f (x , y),
then for the discrete case,

E(h(X ,Y)) = ∑
x∈supp(X)

∑
y∈supp(Y)

h(x , y) f (x , y),

and for the continuous case,

E(h(X ,Y)) = ∫
x∈supp(X)

∫
y∈supp(Y)

h(x , y) f (x , y)dxdy.

For instance, the covariance between X and Y is given that h(x , y) = (x − EX)(y − EY):

Cov(X ,Y) = E(X − EX)(Y − EY) = E(XY) − E(X)E(Y).

Proposition 2. ae following properties have been already introduced in the course for elemen-
tary statistics.

• Cov(aX + bY , Z) = aCov(X , Z) + bCov(Y , Z).

• Var(aX + bY) = a2Var(X) + b2Var(Y) + 2abCov(X ,Y).

Now we deûne the conditional expectation.

Deûnition 16 (Conditional Expectation). Suppose (X ,Y) is a random variable with joint
pmf/pdf f (x , y), then for the discrete case,

E(Y ∣X = x) = ∑
y∈supp(Y)

y fY ∣X=x(y),

and for the continuous case,

E(Y ∣X = x) = ∫
y∈supp(Y)

y fY ∣X=x(y)dy.

Moreover, by deûnition,

E(g(X ,Y)∣X = x) = ∫ g(x , y) fY ∣X=x(y)dy.

aeorem 9 (Important aeorems for Conditional Expectation ).

1. E(c∣X) = c.

2. E(Y + Z∣X) = E(Y ∣X) + E(Z∣X).

3. E(cY ∣X) = cE(Y ∣X).

4. E(g(X ,Y)∣X = x) = E(g(x ,Y)∣X = x).
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It is worth noting that expectation E(Y) is a constant. On the other hand, the conditional
expectation E(Y ∣X) is a function of random variable X, and thus it is a random variable. Since
E(Y ∣X) is a random variable,wewould be interested in its expected value,which is shown in the
following theorem.

aeorem 10 (Law of IteratedMathematical Expectation, LIME).

E(E(Y ∣X)) = E(Y).

Proof. Tobemoreprecise, the above expectations are basedondiòerentprobabilitydistributions:

EX(EY ∣X(Y ∣X)) = EY(Y).

For short, we denote fY ∣X=x(y) as f (y∣x).
aat is,

E[E(Y ∣X)] = ∫
x
h(x) f (x)dx = ∫

x
[∫

y
y f (y∣x)dy] f (x)dx

= ∫
x
∫

y
y
f (x , y)
f (x)

f (x)dydx = ∫
x
∫

y
y f (x , y)dydx

= ∫
y
y [∫

x
f (x , y)dx] dy = ∫

y
y f (y)dy = E(Y)

Again, in order to save the Earth, we will also use the following notation for LIME:

EE(Y ∣X) = E(Y).

aeorem 11 (Useful Rule).
E(g(X)Y ∣X) = g(X)E(Y ∣X).

Proof. For any x,

E(g(X)Y ∣X = x) = E(g(x)Y ∣X = x)

= g(x)E(Y ∣X = x).

ais holds for any realization x, thus

E(g(X)Y ∣X) = g(X)E(Y ∣X).

ais theorem is called “Useful Rule” by Gautam Tripathi.1

1Professor of Econometrics at the University of Luxembourg.
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aeorem12. IfG(X) is amonotonic (one-to-one increasing) transformation function of X, then

E(Y ∣X) = E(Y ∣G(X)).

Proof. By deûnition,

E(Y ∣G(X) = g) = ∫
y
y fY ∣G(X)=g(y)dy,

where

fY ∣G(X)=g =
fGY(g , y)
fG(g)

.

So we need to ûgure out the numerator and the denominator ûrst.

FGY(g , y) = P(G(X) ≤ g ,Y ≤ y),

= P(X ≤ G−1(g),Y ≤ y),

= FXY(G−1(g), y).

aerefore,

fGY(g , y) =
∂2

∂g∂y
FGY(g , y),

=
∂2

∂g∂y
FXY(G−1(g), y),

=
∂
∂y
{
∂
∂x

FXY(G−1(g), y)
dG−1(g)

dg
} ,

= [
∂
∂y

∂
∂x

FXY(x , y)]
dG−1(g)

dg
,

= fXY(x , y)
dG−1(g)

dg
.

Moreover, since

FG(g) = P(G(X) ≤ g) = P(X ≤ G−1(g)) = FX(G−1(g))

we have

fG(g) =
d
dg

FG(g) =
d
dx

FX(x)
dG−1(g)

dg
= fX(x)

dG−1(g)
dg

.

Hence,

fY ∣G(X)=g =
fGY(g , y)
fG(g)

=
fXY(x , y) dG

−1(g)
dg

fX(x) dG
−1(g)
dg

=
fXY(x , y)
fX(x)

= fY ∣X=x(y).
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aerefore,

E(Y ∣G(X) = g) = ∫
y
y fY ∣G(X)=g(y)dy,

= ∫
y
y fY ∣X=x(y)dy,

= E(Y ∣X = x).

aat is,

E(Y ∣G(X)) = E(Y ∣X).

For instance, E(Y ∣2X) = E(Y ∣X), or E(Y ∣eX) = E(Y ∣X). However, E(Y ∣X2) ≠ E(Y ∣X)
because X2 is not amonotonic function of X.

aeorem 13 (Small Conditioning SetWins Rule, SCSWR).

1. E(E[Y ∣X , Z]∣X) = E(Y ∣X).

2. E(E[Y ∣X]∣X , Z) = E(Y ∣X).

Proof. For the ûrst case, given any x,

E(Y ∣X = x , Z) = h(Z)

is a function of Z. aat is, given any z,

h(z) = E(Y ∣X = x , Z = z) = ∫
y
y f (y∣x , z)dy
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aerefore,

E[E(Y ∣X = x , Z)∣X = x) = E[h(Z)∣X = x] = ∫
z
h(z) f (z∣x)dz

= ∫
z
[∫

y
y f (y∣x , z)dy] f (z∣x)dz

= ∫
z
∫

y
y f (y∣x , z) f (z∣x)dydz

= ∫
z
∫

y
y
f (y, x , z)
f (x , z)

f (x , z)
f (x)

dydz

= ∫
y
∫
z
y
f (y, x , z)
f (x)

dzdy

= ∫
y
y

1
f (x) ∫z

f (y, x , z)dzdy

= ∫
y
y

1
f (x)

f (y, x)dy

= ∫
y
y f (y∣x)dy

= E(Y ∣X = x)

ae above result holds for all x, and hence

E(E[Y ∣X , Z]∣X) = E(Y ∣X)

For the second case, we can simply apply the useful rule.

E(E[Y ∣X = x]∣X = x , Z) = E(A(x)∣X = x , Z) = A(x) = E(Y ∣X = x).

ais holds for any x, so
E(E[Y ∣X]∣X , Z) = E(Y ∣X).

2.4 Conditional Variance
Deûnition 17 (Conditional Variance). Let (X ,Y) be a random variable. ae conditional vari-
ance of Y given X = x is

Var(Y ∣X = x) = E [(Y − E[Y ∣X])2∣X = x] .

Some simple algebras can give us the following theorem (try it!).

aeorem 14.
Var(Y ∣X = x) = E(Y 2∣X = x) − [E(Y ∣X = x)]2.
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Indeed, this is an analogy to the unconditional variance: Var(Y) = E(Y 2) − [E(Y)]2.

aeorem 15. Let (X ,Y) be a random variable, and let g(⋅) denote any function of X. aen

E([Y − g(X)]2) = E(Var[Y ∣X]) + E([E(Y ∣X) − g(X)]2).

Proof.

E([Y − g(X)]2) = E([Y − E(Y ∣X) + E(Y ∣X) − g(X)]2),

= E([Y − E(Y ∣X)]2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(i)

+E([E(Y ∣X) − g(X)]2)

+ 2E([Y − E(Y ∣X)][E(Y ∣X) − g(X)])
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(ii)

.

(i) = E([Y − E(Y ∣X)]2),

= EE([Y − E(Y ∣X)]2∣X), by LIME,

= E[Var(Y ∣X)], by deûnition.

(ii) = E
⎛
⎜
⎜
⎝

[Y − E(Y ∣X)] [E(Y ∣X) − g(X)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A(X)

⎞
⎟
⎟
⎠

,

= E(A(X)Y − A(X)E[Y ∣X]),

= E(A(X)Y) − E(A(X)E[Y ∣X]),

= E(E(A(X)Y ∣X)) − E(A(X)E[Y ∣X]), by LIME,

= E(A(X)E[Y ∣X]) − E(A(X)E[Y ∣X]), by useful rule,

= 0.

aerefore, we have shown that

E([Y − g(X)]2) = (i) + E([E(Y ∣X) − g(X)]2) + 2(ii),

= E(Var[Y ∣X]) + E([E(Y ∣X) − g(X)]2).

According toaeorem 15, we can obtain the following two lemmas.

Lemma 1. (Analysis of Variance) Suppose that g(X) = constant = E(Y), then

Var(Y) = E[Var(Y ∣X)] + Var[E(Y ∣X)].
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Proof.

E([Y − E(Y)]2) = E(Var[Y ∣X]) + E([E(Y ∣X) − E(Y)]2),

= E(Var[Y ∣X]) + E([E(Y ∣X) − E(E(Y ∣X))]2),

= E(Var[Y ∣X]) + Var(E[Y ∣X]).

aat is,

Var(Y) = E[Var(Y ∣X)] + Var[E(Y ∣X)].

Lemma 2. (BestMean Squared Error Predictor) Deûne the prediction error as

Y − g(X),

then
E(Y ∣X) = argmin

g
E([Y − g(X)]2).

aat is, E(Y ∣X) is the best predictor of Y via theminimummean square error (MSE) criterion.

Proof. Since E([Y − g(X)]2) = E(Var[Y ∣X]) + E([E(Y ∣X) − g(X)]2), and E(Var[Y ∣X]) > 0,
it is trivial that E(Y ∣X)minimizes theMSE, E([Y − g(X)]2).

2.5 Applications to the Regression Models

Given that the best (conditional) predictor ofY is E(Y ∣X),we can thus deûne the prediction error
as follows:

ε ≡ Y − E(Y ∣X).

Rearrange the equation, we have the canonical regression model:

Y = E(Y ∣X) + ε.

aerefore, ε is also called the regression error. ae regression error has following important prop-
erties.
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aeorem 16 (Important Properties of the Regression Error).

1. E(ε∣X) = 0.

2. E(ε) = 0.

3. Var(ε∣X) = Var(Y ∣X).

4. Cov(ε, h(X)) = 0.

5. Cov(ε, X) = 0.

6. Var(ε) = E(Var[Y ∣X]).

Proof.

1.

E(ε∣X) = E[Y − E(Y ∣X)∣X] = E(Y ∣X) − E[E(Y ∣X)∣X] = E(Y ∣X) − E(Y ∣X) = 0.

2. By LIME, E(ε) = E[E(ε∣X)] = E[0] = 0.

3.

Var(ε∣X) = E([ε − E(ε∣X)]2∣X) = E(ε2∣X), since E(ε∣X) = 0,

= E([Y − E(Y ∣X)]2∣X) = Var(Y ∣X), by deûnition.

4.

Cov(ε, h(X)) = E(εh(X)) − E(ε)E(h(X)) = E(εh(X)),

= E[E(εh(X)∣X)], by LIME,

= E[h(X)E(ε∣X)], by useful rule,

= E[0] = 0.

5. Simply let h(X) = X.

6. By Lemma 1,

Var(ε) = Var[E(ε∣X)] + E[Var(ε∣X)],

= Var[E(ε∣X)] + E[Var(Y ∣X)] = E[Var(Y ∣X)].
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From the course of elementary statistics, we have already learned that

a∗ + b∗X = argmin
a,b

E[(Y − a − bX)2],

where
b∗ =

Cov(Y , X)
Var(X)

, a∗ = E(Y) − b∗E(X).

aerefore,

• ae best predictor of Y is BP(Y ∣X) = E(Y ∣X).

• ae best linear predictor of Y is BLP(Y ∣X) = a∗ + b∗X.

aeorem 17. Suppose that E(Y ∣X) is a linear function of X, then

BLP(Y ∣X) = E(Y ∣X) = BP(Y ∣X).

Proof. In general, since E(Y ∣X) is the best predictor,

E([Y − E(Y ∣X)]2) ≤ E([Y − BLP(Y ∣X)]2).

But since E(Y ∣X) is a linear function of X, we have

E([Y − BLP(Y ∣X)]2) ≤ E([Y − E(Y ∣X)]2).

aerefore, we have
E([Y − E(Y ∣X)]2) = E([Y − BLP(Y ∣X)]2),

so
E(Y ∣X) = BLP(Y ∣X).

2.6 Independence

Deûnition 18 (Independence ofTwoEvents). Given a probability space (Ω,F , P), eventsA, B ∈
F are (stochastically or statistically) independent if

P(A⋂B) = P(A)P(B).

Deûnition 19 (Independence of a Finite Number of Events I). ae events A1,A2, . . . ,An are
independent if

P (⋂
i∈I

Ai) =∏
i∈I

P(Ai), for all I ⊂ {1, 2, . . . , n}.
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Note that we need to check∑n
k=2 (

n
k) = 2

n − n − 1 relationships for independence. Moreover, this
condition can be rephrased as follows.

Deûnition 20 (Independence of a Finite Number of Events II). ae events A1,A2, . . . ,An are
independent if

P (B1⋂B2⋂⋯⋂Bn) =
n

∏
i=1

P(Bi),

where Bi equals Ai or Ω.

We now deûne the independent two random variables.

Deûnition 21 (Independence of Two Random Variables). Two random variables (X ,Y) are
said to be independent if for all sets A, B ⊆ R, we have

P(X ∈ A,Y ∈ B) = P(X ∈ A)P(Y ∈ B),

and we denote it as X ⊥ Y .

We now extend the independence concept to the n-variate case.

Deûnition 22 (Independence of Random Variables). Random variables (X1, X2, . . ., Xn) are
said to be independent if for all sets A j ⊆ R, j = 1, 2, . . . , n, we have

P(X1 ∈ A1, X2 ∈ A2, . . . , Xn ∈ An) = P(X1 ∈ A1)P(X2 ∈ A2)⋯P(Xn ∈ An).

And this deûnition gives us the following theorem.

aeorem 18 (Factorization aeorem I). Let X = (X1 X2 ⋯ Xn)′. Random variables
(X1, X2, . . . , Xn) are independent if and only if

fX(x1, x2 . . . , xn) =
n

∏
i=1

fX i(xi), ∀xi ∈ R,

where fX and fX i are joint pdf(pmf) andmarginal pdf(pmf), respectively.

Proof.

1. ae “⇒” part.

P(X1 ∈ A1, X2 ∈ A2, . . . , Xn ∈ An)

= P(X1 ∈ A1)P(X2 ∈ A2)⋯P(Xn ∈ An),

= ∫
x1∈A1

fX1(x1)dx1∫
x2∈A2

fX2(x2)dx2⋯∫
xn∈An

fXn(xn)dxn ,

= ∫
x1∈A1
∫
x2∈A2

⋯∫
xn∈An

fX1(x1) fX2(x2)⋯ fXn(xn)dx1dx2⋯dxn .

aat is, fX1(x1) fX2(x2)⋯ fXn(xn) is indeed the jointpdfof (X1, X2, . . . , Xn), i.e., fX(x1, x2 . . . , xn).
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2. ae “⇐” part.

P(X1 ∈ A1, X2 ∈ A2, . . . , Xn ∈ An)

= ∫
x1∈A1
∫
x2∈A2

⋯∫
xn∈An

fX(x1, x2 . . . , xn)dx1dx2⋯dxn ,

= ∫
x1∈A1
∫
x2∈A2

⋯∫
xn∈An

fX1(x1) fX2(x2)⋯ fXn(xn)dx1dx2⋯dxn ,

= ∫
x1∈A1

fX1(x1)dx1∫
x2∈A2

fX2(x2)dx2⋯∫
xn∈An

fXn(xn)dxn ,

= P(X1 ∈ A1)P(X2 ∈ A2)⋯P(Xn ∈ An).

Clearly, since Deûnition 22 is deûned on all possible sets, we can deûne B j = (−∞, x j] such
that independence implies

P(X1 ∈ B1, X2 ∈ B2, . . . , Xn ∈ Bn) = P(X1 ∈ B1)P(X2 ∈ B2)⋯P(Xn ∈ Bn).

aat is, (X1, X2, . . . , Xn) are independent if

P({X1 ≤ x1}⋂{X2 ≤ x2}⋂⋯⋂{Xn ≤ xn}) = P({X1 ≤ x1})P({X2 ≤ x2})⋯P({Xn ≤ xn}).

aerefore, it follows that independence implies the following theorem.

aeorem 19 (Factorization aeorem II). Let X = (X1 X2 ⋯ Xn)′. Random variables
(X1, X2, . . . , Xn) are independent if and only if

FX(x1, x2 . . . , xn) =
n

∏
i=1

FX i(xi), ∀xi ∈ R,

where FX and FX i are joint CDF andmarginal CDF, respectively.

aeorem 20. If X ⊥ Y , then
g(X) ⊥ h(Y).

Proof. Pick any B1, B2 ⊆ R and deûne f −1(A) = {x ∈ R ∶ f (x) ∈ A},

P(g(X) ∈ B1, h(Y) ∈ B2) = P(X ∈ g−1(B1),Y ∈ h−1(B2)),

= P(X ∈ g−1(B1))P(Y ∈ h−1(B2)), by independence,

= P(g(X) ∈ B1)P(h(Y) ∈ B2).
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In this theorem, what is the requirement for functions g(⋅) and h(⋅)? At least, we would
require g(⋅) and h(⋅) to be continuous functions.

aeorem 21. If X ⊥ Y , then
fY ∣X(y) = fY(y).

We here introduce a weaker concept of independence: mean independence.

Deûnition 23 (Mean Independence). A random variable Y is said to be mean independent of
X if

E(Y ∣X) = constant = C .

In other words, the conditional expectation of Y given X is the same for all values of X. Note
that Y ismean independent of X, and by LIME

E(Y) = E[E(Y ∣X)] = E[C] = C .

aat is, if the conditional expectation of Y is the same for all values of X, then the unconditional
expectation of Y coincides with that common conditional expectation.

aeorem 22. Let Y be mean independent of X. Suppose h(X) is any function of X, then Y is
mean independent of h(X).

Proof.

LHS = E(Y ∣h(X)) = E(E(Y ∣h(X))∣h(X), X), by useful rule,

= E(E(Y ∣h(X), X)∣h(X)), by SCSWR.

However,

E(Y ∣h(X), X) = E(E[Y ∣h(X), X]∣X), by useful rule,

= E[Y ∣X], by SCSWR,

= C .

Hence,
LHS = E(Y ∣h(X)) = E(C∣h(X)) = C .

Some remarks are worth addressing.

1. Stochastic Independence⇒Mean Independence
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2. Mean Independence⇏ Stochastic Independence

3. X is stochastically independent of Y ⇒ Y is stochastically independent of X

4. X ismean independent of Y ⇏ Y ismean independent of X

aat is,mean independence is NOT symmetric.

Example 15 (aree-PointDistribution). Let X ∈ {0, 1} and Y ∈ {−1, 0, 1}. ae joint pmf is

f (x , y) = {
1
3 for(1,−1), (0, 0), (1, 1),
0 otherwise

It can be easily shown that E(Y ∣X) = 0 a constant, but E(X∣Y) is not a constant. aat is, X is
NOTmean independent of Y . Moreover, this example also shows that P(X = 0,Y = 0) ≠ P(X =
0)P(Y = 0). aat is,mean independence does NOT imply stochastic independence.

aeorem 23. Suppose Y ismean independent of X, then X and Y are uncorrelated.

Proof. Since Y ismean independent of X,

E(Y ∣X) = C ,

and
E(Y) = E(E(Y ∣X)) = E(C) = C .

Cov(X ,Y) = E(XY) − E(X)E(Y),

= E(E[XY ∣X]) − E(X)C ,

= E(XE[Y ∣X]) − E(X)C ,

= E(XC) − E(X)C ,

= E(X)C − E(X)C = 0.

Let us consider some applications ofmean independence. Deûne

ε = Y − BP(Y ∣X) = Y − E(Y ∣X),

then
E(ε∣X) = 0.

aat is, ε ismean independent of X. In contrast, deûne

υ = Y − BLP(Y ∣X) = Y − a∗ − b∗X ,
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where b∗ = Cov(X ,Y)
Var(X) , and a∗ = E(Y) − b∗E(X). aen

E(υ∣X) = E(Y ∣X) − a∗ − b∗X .

So υ is in general NOTmean independent of X. However, we can easily show that υ is uncorre-
lated with X: Cov(υ, X) = 0.
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Chapter 3

Transforms

3.1 Univariate Transformation

We have already learned how to do univariate transformation in the elementary statistics course.
Now we simply provide an example to refresh yourmemory.

Example 16. Let X d
= U[0, 1] and Y = X2. We would like to ûnd the pdf of Y .

First of all, we need to know the support of Y . Since X ∈ [0, 1], Y ∈ [0, 1] as well.
So pick any y ∈ [0, 1], FY(y) = P(Y ≤ y) = P(X2 ≤ y) = P(−√y ≤ X ≤ √y) = FX(

√y) −
FX(−

√y) = FX(
√y) − 0 = FX(

√y). Hence,

fY(y) =
dFY(y)
dy

=
dFX(

√y)
dx

dx
dy
= fX(

√
y)

´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
1

⋅
1
2
y−

1
2 =

1
2
y−

1
2 .

aat is,

fY(y) = {
1
2 y
− 1

2 if y ∈ [0, 1],
0 otherwise.

Clearly,

∫
1

0
fY(y)dy = 1.

(Check it!)

Onemore example is provided.

Example 17. Let X d
= U[0, 1] and Y = − logX. We would like to ûnd the pdf of Y .

Again, note that the support of Y is supp(Y) = {y ∶ 0 ≤ y <∞}.
Pick any y ∈ [0,∞), FY(y) = P(Y ≤ y) = P(− logX ≤ y) = P(logX ≥ −y) = P(elog X ≥

e−y) = P(X ≥ e−y) = 1 − P(X ≤ e−y) = 1 − e−y. Hence,

fY(y) =
dFY(y)
dy

= {
e−y if y ∈ [0,∞),
0 otherwise.
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Finally, we present the general result.

aeorem 24 (Univariate Transformationaeorem). Suppose X is a continuous random vari-
able, and Y = g(X), where g(⋅) is a diòerentiablemonotonic function, then the pdf of Y is

fY(y) = fX(g−1(y)) ∣
d
dy

g−1(y)∣ .

We omit the proof since it has already been shown in your elementary statistics course.

3.2 Multivariate Transformation

Now we turn to themultivariate case.
LetX be an n×1 random vectorwithpdf fX(x) and support SX ⊆ Rn. Moreover, let g(g1, g2, . . . , gn)

be one-to-one onto from SX to some set T ⊆ Rn. Now deûne

Y =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

g1(X)
g2(X)
⋮

gn(X)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

= g(X).

Finally, assume that g(⋅) and its inverse are both continuously diòerentiable.

aeorem 25 (Multivariate Transformationaeorem). ae pdf of Y is

fY(y) = {
fX(h1(y), h2(y), . . . , hn(y)) ⋅ ∣J∣, for y ∈ T ,

0 otherwise,

where h is the inverse of g, i.e., h(y) = g−1(y), and where

J = ∣
dX
dY
∣ =

RRRRRRRRRRRRRRRRRRRRRR

∂x1
∂y1

∂x1
∂y2 ⋯

∂x1
∂yn

∂x2
∂y1

∂x2
∂y2 ⋯

∂x2
∂yn

⋮ ⋮ ⋱ ⋮
∂xn
∂y1

∂xn
∂y2 ⋯

∂xn
∂yn

RRRRRRRRRRRRRRRRRRRRRR

is the Jacobian.

Proof. Pick any set B ⊆ Rn, and deûne

h(B) = g−1(B) = {x ∈ Rn ∶ g(x) ∈ B}.

aen
P(Y ∈ B) = P(g(X) ∈ B) = P(X ∈ h(B)) = ∫

h(B)
fX(x)dx.
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According to the formula for changing variables in multiple integrals, (for instance, see Pages
407–408 in Apostol (1969)).1 we have

P(Y ∈ B) = ∫
B
fX(h1(y), h2(y), . . . , hn(y)) ⋅ ∣J∣dy.

Let’s see some examples.

Example 18. Given {X ,Y} ∼i .i .d . N(0, 1), show that

X + Y d
= N(0, 2),

and
X − Y d

= N(0, 2).

Let U = X + Y and V = X − Y . Inversion yields

X =
U + V

2
, Y =

U − V
2

.

ae Jacobian is

J = ∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v
∣ = ∣

1
2

1
2

1
2 −

1
2
∣ = −

1
2

aerefore,

fUV(u, v) = fXY (
u + v
2

,
u − v
2
) ⋅

1
2
,

= fX (
u + v
2
) fY (

u − v
2
) ⋅

1
2
,

=
1
√
2π

e−
1
2 (

u+v
2 )

2

⋅
1
√
2π

e−
1
2 (

u−v
2 )

2

⋅
1
2
,

=
1

√
2π
√
2
e−

1
2 (

u
√

2 )
2

⋅
1

√
2π
√
2
e−

1
2 (

v
√

2 )
2

.

aemarginal pdf can be obtained as

fU(u) =
1

√
2π
√
2
e−

1
2 (

u
√

2 )
2

, u ∈ R,

and
fV(v) =

1
√
2π
√
2
e−

1
2 (

v
√

2 )
2

, v ∈ R.

1Apostol, TomM. (1969). Calculus, Vol. 2: Multi-Variable Calculus and Linear Algebra with Applications.
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Example 19 (Convolution Formula). Let X and Y be independent random variables with pdf
fX(x) and fY(y). Find the pdf of X + Y .

Clearly, we start with two variables but seek the distribution of just a new one. ae trick is to
set U = X + Y and to introduce an auxiliary variable V , which may be arbitrarily deûned. For
instance, set V = X. aen the Jacobian is

J = ∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v
∣ = ∣

0 1
1 −1

∣ = −1.

Hence,
fUV(u, v) = fXY(v , u − v) ⋅ 1 = fX(v) fY(u − v),

and
fU(u) = ∫

∞

−∞
fX(v) fY(u − v)dv , u ∈ R.

ais is called the convolution formula.

Example 20. {X1, X2} ∼i .i .d . U(0, 1). Find the pdf of X1 − X2.
Let Y1 = X1 − X2, and Y2 = X2. aat is, X1 = Y1 + Y2, and X2 = Y2. Clearly,

J = ∣
1 1
0 1

∣ = 1.

fX1X2(x1, x2) = I{0≤x1≤1}(x1) ⋅ I{0≤x2≤1}(x2),

where IA(x) is an indicator function. Hence,

fY1Y2(y1, y2) = I{0≤y1+y2≤1}(y1 + y2) ⋅ I{0≤y2≤1}(y2).

However, the support of Y1 is supp(Y1) = {y1 ∶ −1 ≤ y1 ≤ 1}, we have

fY1Y2(y1, y2) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 if −1 ≤ y1 ≤ 0, 0 ≤ y2 ≤ 1,
1 if 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1,
0 otherwise.

Hence,

fY1(y1) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∫
1
−y1 1dy2 if −1 ≤ y1 ≤ 0, 0 ≤ y2 ≤ 1,

∫
1−y1
0 1dy2 if 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1,

0 otherwise.

aat is,

fY1(y1) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 + y1 if −1 ≤ y1 ≤ 0, 0 ≤ y2 ≤ 1,
1 − y1 if 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1,
0 otherwise.

Clearly, y1 is a Triangular distribution random variable.
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3.3 Many to One

What if the transformation is not one-to-one? For instance, Y = X2. aen

FY(y) = P(Y ≤ y) = P(X2 ≤ y),

= P(−
√
y ≤ x ≤

√
y),

= FX(
√
y) − FX(−

√
y).

aerefore,

fY(y) =
dFY(y)
dy

= fX(
√
y)

1
2√y

+ fX(−
√
y)

1
2√y

, y ∈ R+.

Note that the function is 2 to 1 and that we obtain two terms. Now consider the general case. Let
X ∈ S is a random variable with pdf fX(x). Let Y = g(X), where g ∶ S ↦ T is NOT one-to-one.
But suppose S can be partitioned into m disjoint subsets S1, S2, . . . , Sm such that g ∶ Sk ↦ T is
one-to-one on each partition. aen

P(Y ∈ B) = P(g(X) ∈ B),

= P(X ∈ g−1(B)),

= ∫
g−1(B)

fX(x)dx,

= ∫
g−1(B)⋂ S

fX(x)dx,

= ∫
g−1(B)⋂(⋃m

i=1 S i)
fX(x)dx,

= ∫
⋃m

i=1[g−1(B)⋂ S i]
fX(x)dx,

=
m

∑
i=1
∫

g−1(B)⋂ S i
fX(x)dx

Hence, byaeorem 25, applied m times, yields

fY(y) = {
∑

m
k=1 fX(h1k(y), h2k(y), . . . , hnk(y)) ∣Jk∣ , y ∈ T ,

0 otherwise.

Where (h1k , h2k , . . . , hnk) is the inverse function corresponding to themapping from Sk to T and
Jk is the k-th Jacobian.

Here is an example.

Example 21. Let {X ,Y} ∼i .i .d . N(0, 1). Consider the polar coordinate transformation.

R =
√
X2 + Y 2,

and
Θ = tan−1 (

Y
X
) .
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Note that R ≥ 0, and tan θ = Y
X ∈ (−∞,∞). aat is, Θ ∈ (− π

2 ,
π
2 ). Clearly, (X ,Y) ↦ (R,Θ) is

not one-to-one transformation since (X ,Y) and (−X ,−Y) aremapping to the same point.
Now partition the support of (X ,Y) into S1, S2 and S3:

supp(X ,Y) = {(x , y) ∶ x > 0, y ∈ R}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

S1

⋃{(x , y) ∶ x < 0, y ∈ R}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

S2

⋃{(x , y) ∶ x = 0, y ∈ R}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

S3

1. On S1, x > 0, y ∈ R. aus x = r cos θ, y = r sin θ, where r > 0 and θ ∈ (− π
2 ,

π
2 ).

J1 = ∣
∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ
∣ = ∣

cos θ −r sin θ
sin θ r cos θ

∣ = r.

So on S1,

fR,Θ(r, θ) = fXY(r cos θ , r sin θ)r =
1
2π

re−
r2
2 , r > 0, θ ∈ (−

π
2
,
π
2
) .

2. On S2, x < 0, y ∈ R. aus x = −r cos θ, y = r sin θ.

J2 = ∣
∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ
∣ = ∣

− cos θ r sin θ
sin θ r cos θ

∣ = −r.

So on S2,

fRΘ(r, θ) = fXY(−r cos θ , r sin θ)r =
1
2π

re−
r2
2 , r > 0, θ ∈ (−

π
2
,
π
2
) .

3. On S3, fRΘ(r, θ) = 0.

aerefore,

fRΘ(r, θ) = [ fRΘ]S1 + [ fRΘ]S2 + [ fRΘ]S3 =
r
π
e−

r2
2 r > 0, θ ∈ (−

π
2
,
π
2
) .

3.4 Sums of Independent Random Variables

In previous sections,we have learned how to handle transformation in order to ûnd the distribu-
tion of new random variables. Nowwe are going to focus on sums of independent variables since
the average of a set of random variables is a very important object in probability and statistics.

Two types of transformation are introduced: themoment generating function, and the char-
acteristic function. Two common features of these transformations are that

1. Summation of independent random variables corresponds to multiplication of the trans-
formation.

2. ae transformation is 1 to 1.
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3.4.1 aeMomentGenerating Function

In this section, some important theorems are presented without proofs. Interested readersmay
refer to advanced texts such as Fraser (1976), Resnick (2001) or Roussas (2002).

Deûnition 24. Let X be a random variable. aemoment generating function (MGF) of X is

MX(t) = E(e tX),

provided there exists h > 0, such that the expectation exists and is ûnite for ∣t∣ < h.

We state the following important theorem without proof since proving this is far beyond the
scope of this lecture. Intuitively, the proof relies on the fact that themoment generating function
is a two-sided Laplace transformation of the pdf f (x), and there is a unique association between
a Laplace transformation and the function being transformed.

aeorem 26 (Uniqueness aeorem). Let X and Y be random variables. If there exists h > 0
such that

MX(t) = MY(t), for∣t∣ < h,

then
X d
= Y .

Moreover, we have the following two theorems without proofs since the proofs are simply
followed via deûnition and have already been shown in the elementary statistics course.

aeorem 27 (Multiplication aeorem). Let {Xi}
n
i=1 be independent random variables whose

MGF MX i(t) exist for ∣t∣ < h, for some h > 0, and let Y = ∑n
i=1 Xi , then

MY(t) =
n

∏
i=1

MX i(t), ∣t∣ < h.

aeorem 28. Let {Xi}
n
i=1 be independent random variables whoseMGFMX i(t) exist for ∣t∣ < h,

for some h > 0, and let Y = aX + b for constants a, b, then

MY(t) = ebtMX(at).

ae following theorem shows that the derivatives at 0 of the MGF produce the moments
(hence the name of the transformation).

aeorem 29. Let X be a random variable whoseMGF MX(t) exists for ∣t∣ < h, for some h > 0.
if all themoments exist, that is, E(Xr) <∞ for all r, then

E(Xr) = M(r)X (0), for r = 1, 2, . . . .
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Proof. We show the case of a continuous random variable while the discrete case can be applied
analogously. By deûnition,

MX(t) = ∫
supp(X)

e tx fX(x)dx .

It can be obtained by diòerentiating under the integral sign,

M(r)X (t) = ∫supp(X)
xre tx fX(x)dx .

aerefore,
M(r)X (t)∣t=0 = M

(r)
X (0) = ∫supp(X)

xr fX(x)dx = E(Xr).

Moreover, taking a Taylor expansion of the exponential function yields

e tX = e t⋅0 +
1
1!
t ⋅ e t⋅0X +

1
2!
t2 ⋅ e t⋅0X2 +⋯ = 1 +

∞
∑
n=1

tnXn

n!
.

aus we have
MX(t) = E(e tX) = 1 +

∞
∑
n=1

tnE(Xn)

n!
.

By taking termwise diòerentiation yields the result inaeorem 29.
Finally, we deûne theMGF for a random vector.

Deûnition 25. Let X be a random n-vector. ae (joint) moment generating function of X is

MX(t1, t2, . . . , tn) = E(e t1X1+t2X2+⋯+tnXn),

provided there exists h1, h2, . . . , hn > 0 such that the expectation exists for ∣tk ∣ < hk , k =
1, 2, . . . , n.

In vector notation,
MX(t) = E(et

′X),

provided there exists h > 0, such that the expectation exists for ∣t∣ < h (the inequalities being
interpreted componentwise).

aeorem 30. Let MX(t1, t2, . . . , tn) be the jointMGF of a random n-vector X = (X1 X2 ⋯ Xn).
aen (X1, X2, . . . , Xn) are independent if and only if

MX(t1, t2, . . . , tn) = MX1(t1)MX2(t2)⋯MXn(tn)

Proof. See Schinazi (2012), page 242.
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3.4.2 MomentGenerating Functions for ParticularDistributions

1. Bernoulli: X ∼ Bernoulli(p)
MX(t) = (1 − p) + pe t

2. Binomial: X ∼ Binomial(n, p)

MX(t) = [(1 − p) + pe t]
n

3. Geometric: X ∼ Geo(p)
MX(t) =

p
1 − (1 − p)e t

4. Poisson: X ∼ Poisson(λ)
MX(t) = exp [λ(e t − 1)]

5. Uniform: X ∼ U[l , h]

MX(t) =
eht − e l t

(h − l)t

6. Normal: X ∼ N(µ, σ 2)

MX(t) = exp [µt +
1
2
σ 2t2]

7. Gamma: X ∼ Gamma(α, β)

MX(t) = (
1

1 − βt
)

α

8. Exponential: X ∼ exp(β)

MX(t) = (
1

1 − βt
)

9. Chi-square: χ2(k)

MX(t) = (
1

1 − 2t
)

k
2

3.4.3 ae Characteristic Function

A problemwith themoment generating function is that it does not necessarily exist for all distri-
butions. For instance, the Cauchy and the log-normal distributions are two such examples. We
now introduce a new transformation that is technically complicate but exists for all distributions.

Deûnition 26 (ae Characteristic Function). Let X be a random variable. ae characteristic
function of X is

ϕX(t) = E(e itX) = E(cos tX + i sin tX).
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We present some important features of the characteristic function.

1. ϕX(t) always exists.

2. ϕX(0) = 1

aeorem 31 (Uniquenessaeorem). Let X and Y be random variables. If

ϕX(t) = ϕY(t),

then
X d
= Y .

Indeed, the above theorem follows from the Inversion Formula. See pages 141–145 inRoussas
(2002).

aeorem 32 (Multiplicationaeorem). Let {Xi}
n
i=1 be independent random variableswith char-

acteristics functions ϕX i(t), and let Y = ∑n
i=1 Xi , then

ϕY(t) =
n

∏
i=1

ϕX i(t).

aerefore, if, in addition, {Xi}
n
i=1 are i.i.d. random variables, then

ϕY(t) = [ϕX(t)]n .

aeorem 33. Let X be a random variable and a and b be real numbers. aen

ϕaX+b(t) = e ibtϕX(at).

We have shown a series expansion of the moment generating function in previous section.
Following is the counterpart for characteristic functions:

aeorem 34. Let X be a random variable. If E∣X∣n <∞, then

(a) ϕ(k)X (0) = ik ⋅ E(Xk), k = 1, 2, . . . , n.

(b) ϕX(t) = 1 +∑∞k=1 E(Xk) ⋅ (it)
k

k! .

Finally, we close this section by introducing the characteristic function for a random vector.

Deûnition 27. ae characteristic function of a random n-vector X is deûned as

ϕX(t) = E(e it
′X).
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Chapter 4

MultivariateNormalDistribution

4.1 Random Vector and Variance-CovarianceMatrix

Consider the random vector

X =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

X1

X2

⋮

Xn

⎞
⎟
⎟
⎟
⎟
⎟
⎠

with expectation

µ = E(X) =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

E(X1)

E(X2)

⋮

E(Xn)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

,

and variance-covariancematrix (we will call it variance for short):

Λ = Var(X) = E(X − µ)(X − µ)′,

=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

Var(X1) Cov(X1, X2) ⋯ Cov(X1, Xn)

Cov(X2, X1) Var(X2) ⋯ Cov(X2, Xn)

⋮ ⋯ ⋱ ⋮

Cov(Xn , X1) Cov(Xn , X2) ⋯ Var(Xn)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

Note that

1. Λ is symmetric.

2. Λ is positive-semideûnite. aat is, for all d ∈ Rn,

d′Λd = d′E(X − µ)(X − µ)′d = E([d′(X − µ)]2) ≥ 0.

49



aeorem 35. LetX be a random n-vectorwithmean µ and varianceΛ. Further, letB be anm×n
matrix, let b be a constant m-vector, and let Y = BX + b. aen

E(Y) = Bµ + b,

Var(Y) = BΛB′.

Proof. First we have
E(Y) = E(BX + b) = BE(X) + b = Bµ + b.

Second,

Var(Y) = Var(BX + b),

= E(BX + b − [Bµ + b])(BX + b − [Bµ + b])′,
= E(B(X − µ))(B(X − µ))′,
= BE(X − µ)(X − µ)′B′,
= BVar(X)B′,

= BΛB′.

4.2 MultivariateNormalDistribution

We will introduce three diòerent deûnitions of themultivariate normal distribution.

Deûnition 28 (Multivariate Normal Distribution I). A random n-vector X is said to be nor-
mal (multivariate normal) iò ∀a ∈ Rn, the random variable a′X is normal. We o�en write
X d
= N(µ,Λ).

ae deûnition states that a random vector is normal if and only if every linear combination of
its components is normal. Note that no assumption whatsoever is made about independence
between the components of X.

Here are some consequences of this deûnition.

1. Every component of X is Gaussian (but the reversed statement is not true).

2. ∑n
i=1 Xi is also Gaussian.

3. X1 + X3 + X27 + X670 + 2X401 is also Gaussian.

4. IfX consists of independentGaussian components, thenX is normal. However, just stack-
ing up normal random variables will NOT yield amultivariate normal random vector.
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Example 22. Suppose X d
= N(0, 1), and Z is independent of X such that P(Z = 1) = P(Z = −1) =

1
2 . Now let Y = ZX.

1. Find the distribution of Y .

2. Is (
X
Y
) amultivariate normal random vector?

First of all, let Φ(⋅) denotes the CDF of a N(0, 1) random variable,

FY(y) = P(Y ≤ y) = P(ZX ≤ y),

= P(ZX ≤ y, Z = 1) + P(ZX ≤ y, Z = −1),

= P(X ≤ y, Z = 1) + P(−X ≤ y, Z = −1),

= P(X ≤ y)P(Z = 1) + P(−X ≤ y)P(Z = −1), since X�Z ,

= ϕ(y) ⋅
1
2
+ ϕ(y) ⋅

1
2

by symmetric,

= Φ(y).

However,
P(X + Y = 0) = P(X + ZX = 0) = P(Z = −1) =

1
2
≠ 0.

aat is, X + Y is not normally distributed, otherwise we expect P(X + Y = 0) = 0. It is worth
noting that in this case that X and Y are NOT independent since

∣Y ∣ = ∣X∣.

So if you stack up “dependent” normal variables, youwill NOT get amultivariate normal random
vector.

aeorem 36. Let X be amultivariate normal n-vector. Suppose that

U1 =
n

∑
i=1

biXi ,

and
U2 =

n

∑
i=1

ciXi .

aen U1 and U2 have a bivariate normal distribution.

Proof. For any constants γ and β

γU1 + βU2 = γ∑
i
biXi + β∑

i
ciXi =∑

i
(γbi + βci)Xi =∑

i
aiXi

is normal by construction. Hence,U1 andU2 have amultivariate (bivariate) normal distribution.
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aeorem 37. Let X d
= N(µ,Λ). Further, let B be an m × n matrix, let b be a constant m-vector,

and let Y = BX + b. aen
Y d
= N(Bµ + b,BΛB′).

Proof. We have shown inaeorem 35 that the expectation and variance ofY areBµ+b andBΛB′,
respectively. So all we need to show is that Y is amultivariate normal random vector.

Pick any vector a

a′Y = a′BX + a′b,

= (B′a)′X + a′b,

= c′X
°

d=Normal

+a′b,

d
= Normal.

Example 23. Suppose

X = (
X1

X2
)

d
= N ([

1
2
] , [

1 −2
−2 7

]) .

Let Y1 = X1 + X2 and Y2 = 2X1 − 3X2, ûnd the joint distribution of (Y1,Y2)′.
Clearly,

Y = (
Y1

Y2
) = (

X1 + X2

2X1 − 3X2
) = (

1 1
2 −3

)(
X1

X2
) = BX.

Hence, we know that

Y d
= N(Bµ,BΛB′) = ([ 3

−4
] , [

4 −17
−17 91

]) .

Now we turn to deûne the normal distribution by the characteristic function.

Deûnition 29 (Multivariate Normal Distribution II). A random n-vector X is multivariate
normal if its characteristic function is

ϕX(t) = e it
′µ− 1

2 t
′Λt,

where µ = E(X), Λ = Var(X).

Hence, theMGF ofmultivariate normal random vector is

MX(t) = et
′µ− 1

2 t
′Λt.

Finally we provide the deûnition of themultivariate normal distribution via probability den-
sity function.
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Deûnition 30 (Multivariate Normal Distribution III). A random n-vector X with µ = E(X),
Λ = Var(X), such that Λ > 0, is N(µ,Λ) distributed if the density function is

fX(x) = (
1
√
2π
)

n 1
√
det(Λ)

e−
1
2 (x−µ)

′Λ−1(x−µ), x ∈ Rn .

Where det(Λ) is the determinant of Λ.

Note that under the assumption that det(Λ) > 0 (non-singular), Deûnitions I, II and III are
equivalent.

Deûnition 31 (SingularDistribution). A continuous random variable X forwhich pdf does not
exist, we call that X has a singular distribution.

Let’s see a bivariate case as an example.

Example 24 (Bivariate Normal Distribution). For i = 1, 2, let µi = E(Xi), σ 2
i = Var(Xi),

σ12 = Cov(X1, X2) and ρ = σ12
σ1σ2 . aus,

Λ = (
σ 2
1 σ12

σ12 σ 2
2
) ,

and

Λ−1 =
1

σ 2
1 σ 2

2 − σ 2
12
(

σ 2
2 −σ12
−σ12 σ 2

1
) =

1
1 − ρ2

⎛

⎝

1
σ 21

−
ρ

σ1σ2
−

ρ
σ1σ2

1
σ 22

⎞

⎠
.

aerefore,

fX1X2(x1, x2)

= (
1
2π
)

1
σ1σ2
√
1 − ρ2

exp{−
1

2(1 − ρ2)
[(

X1 − µ1
σ1
)
2

−
2ρ(x1 − µ1)(x2 − µ2)

σ1σ2
+ (

X2 − µ2
σ2
)
2

]} .

ae following theorem is a very important one for multivariate normal random vector. In
generalwe know that “independent” implies “uncorrelated”, but the reverse is not true. However,
if random variables aremultivariate normal, then “uncorrelated” implies “independent”!

aeorem 38. Let X be a normal random vector. ae components of X are independent if and
only if they are uncorrelated.

Proof. We show only the⇐ part since the converse always being true. Since X1, X2, . . . , Xn are
uncorrelated,

Λ =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

σ 2
1 0 ⋯ 0
0 σ 2

2 0 ⋮

0 0 ⋱ 0
0 ⋯ 0 σ 2

n

⎞
⎟
⎟
⎟
⎟
⎟
⎠

,
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hence,

Λ−1 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

σ−21 0 ⋯ 0
0 σ−22 0 ⋮

0 0 ⋱ 0
0 ⋯ 0 σ−2n

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

ae pdf is

fX(x) = (
1
√
2π
)

n 1
√
det(Λ)

exp{−
1
2
(x − µ)′Λ−1(x − µ)} ,

= (
1
√
2π
)

n 1
∏

n
i=1 σi

exp{−
1
2

n

∑
i=1
(
Xi − µi

σi
)
2

} ,

=
n

∏
i=1

1
√
2πσi

exp{−
1
2
(
Xi − µi

σi
)
2

} ,

=
n

∏
i=1

fX i(xi).

Let’s see an example.

Example 25. Let X1 and X2 be independent N(0, 1) random variables. Show that X1 + X2 and
X1 − X2 are independent.

First of all, since X1 and X2 are independent, then stacking X1 and X2 gives us multivariate
normal.

X = (
X1

X2
)

d
= N ([

0
0
] , [

1 0
0 1

]) .

Clearly,

Y = (
Y1

Y2
) = (

1 1
1 −1

)(
X1

X2
) = BX.

So
Y d
= N(Bµ,BΛB′),

or

Y d
= N ([

0
0
] , [

2 0
0 2

]) .

aat is, Y1 and Y2 are jointly normal and uncorrelated. aus they are independent.

aeorem 39. Let X d
= N(µ, σ 2I), where σ 2 > 0. Let C be an arbitrary orthogonal matrix, and set

Y = CX. aen
Y d
= N(Cµ, σ 2I).
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Proof.

Y d
= N(Cµ,C(σ 2I)C′) d

= N(Cµ, σ 2I).

Clearly, Y1,Y2, . . . ,Yn are independent since Y is multivariate normal and Y1,Y2, . . . ,Yn are
uncorrelated.

We now state a theorem from linear algebra.

aeorem 40 (Gram-Schmidt Process). Given variable X1, X2, . . . , Xn, and constant
a11, a12, . . . , a1n and

Y1 = a11X1 + a12X2 + . . . + a1nXn .

If∑n
j=1 a21 j = 1, then there exist ai j, i = 2, 3, . . . , n; j = 1, 2, . . . , n such that

Yi = ai1X1 + ai2X2 +⋯ + ainXn , i = 2, 3, . . . , n

and the transformation from X1, X2, . . . , Xn to Y1,Y2, . . . ,Yn (Y = AX) is an orthogonal transfor-
mation. aat is, A = [ai j] is an orthogonal matrix.

Note that amatrix A is said to be orthogonal if A−1 = A′. Furthermore, we know that

∑
i
Y 2
i = Y′Y = (AX)′(AX) = X′A′AX = X′X =∑

i
X2

i .

We now provide examples to show how usefulaeorems 39 and 40 are. ae following theo-
rems are presented in the elementary statistics without a solid proof.

aeorem 41. Given {Xi}
n
i=1 ∼

i .i .d . N(µ, σ 2), and

X̄n =
1
n∑i

Xi , S2n =
1

n − 1∑i
(Xi − X̄n)

2.

1.
(n − 1)S2n

σ 2
d
= χ2(n − 1)

2. ae samplemean X̄n and sample variance S2n are independent.

Proof. First of all, since {Xi}
n
i=1 ∼

i .i .d . N(µ, σ 2), we know that

X d
= N(µ, σ 2I).
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According to aeorem 40, there exists an orthogonal matrix C such that the ûrst row has all
elements equal to 1/

√
n. For instance,

C =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1√
n

1√
n

1√
n

1√
n ⋯

1√
n

1√
n

1√
2

−1√
2 0 0 ⋯ 0 0

1√
2⋅3

1√
2⋅3

−2√
2⋅3 0 ⋯ 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1√
(n−1)⋅n

1√
(n−1)⋅n ⋯ ⋯ ⋯ 1√

(n−1)⋅n
−(n−1)√
(n−1)⋅n

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

aen we set Y = CX. Byaeorem 39, we have

Y d
= N(Cµ, σ 2I).

aat is,Yhasmultivariatenormaldistributionwith a diagonal variance-covariancematrix. Hence,
Y1,Y2, . . . ,Yn are independent. By construction, we have

Y1 =
√
nX̄n , E(Y1) =

√
nµ. Var(Y1) = σ 2,

and for i = 2, 3, . . . , n,
E(Yi) = 0, Var(Yi) = σ 2.

Moreover,
n

∑
i=1
(Xi − X̄n)

2 =
n

∑
i=1

X2
i − nX̄2

n =
n

∑
i=1

Y 2
i − Y 2

1 = Y 2
2 + Y 2

3 +⋯ + Y 2
n =

n

∑
i=2

Y 2
i .

aerefore,

1. we can show that
(n − 1)S2n

σ 2 =
∑

n
i=1(Xi − X̄n)2

σ 2 =
∑

n
i=2 Y 2

i

σ 2 =
n

∑
i=2
(
Yi − 0
σ
)
2
d
= χ2(n − 1)

2. X̄n =
1√
nY1 and S2n = 1

n−1(Y 2
2 + Y 2

3 +⋯ + Y 2
n) are independent since Y1 and (Y2, . . . ,Yn) are

independent.

Finally, we present a theorem called the Daly’s aeorem, which is a generalization of above
example.

aeorem 42 (Daly’s aeorem). Given a random n-vector X. Let X d
= N (µ, σ 2I) and set X̄n =

1
n ∑

n
i=1 Xi . Suppose that g(X) = g(X1, X2, . . . , Xn) is translation invariant, that is, for all X ∈ Rn,

we have

g(X + a ⋅ 1) = g(X1 + a, X2 + a, . . . , Xn + a) = g(X1, X2, . . . , Xn) = g(X)

for all constant a. aen X̄n and g(X) are independent.
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Proof. Note that the variance-covariance matrix is σ 2I, which implies that X1, X2, . . . , Xn are
independent normal random variableswithmean µ1, µ2, . . . , µn and variance σ 2. Hence the joint
density is

fX(x1, x2, . . . , xn) =
1

(
√
2π)nσn

e−
1

2σ2 ∑i(x i−µ i)2

Hence, the jointMGF of the vector (
X̄

g(X)
) is

E (e t1 X̄+t2 g(X1 ,X2 ,...,Xn)) =
1

(
√
2π)nσn ∫ ⋯∫ e

t1
n ∑i x i+t2 g(x1 ,x2 ,...,xn)e−

1
2σ2 ∑i(x i−µ i)2dx1⋯dxn

ae exponent is

t1
n∑i

xi+t2g(x1, x2, . . . , xn)−
1

2σ 2∑
i
(xi−µi)

2 = [
σ 2t21
2n
+ t1 µ̄]−

1
2σ 2∑

i
(xi − µi −

σ 2t1
n
)
2

+t2g(x1, x2, . . . , xn)

where µ̄ = 1
n ∑i µi . Hence,

E (e t1 X̄+t2 g(X1 ,X2 ,...,Xn)) = e
σ2 t21
2n +t1 µ̄

1
(
√
2π)nσn ∫ ⋯∫ e−

1
2σ2 ∑i(x i−µ i− σ2 t1

n )
2
+t2 g(x1 ,x2 ,...,xn)dx1⋯dxn

It is worth noting that as X̄ ∼ N(µ̄, σ 2n ), e
σ2 t21
2n +t1 µ̄ is theMGF of X̄, i.e.,

MX̄(t1) = E(e t1X̄) = e µ̄t1+
1
2
σ2
n t21

Moreover, since g(X) is translation invariant

E (e t1 X̄+t2 g(X1 ,X2 ,...,Xn)) = MX̄(t1)
1

(
√
2π)nσn ∫ ⋯∫ e−

1
2σ2 ∑i(x i−µ i− σ2 t1

n )
2
+t2 g(x1− σ2 t1

n ,x2− σ2 t1
n ,...,xn− σ2 t1

n )dx1⋯dxn

Let
(y1, y2, . . . , yn) = (x1 −

σ 2t1
n

, x2 −
σ 2t1
n

, . . . , xn −
σ 2t1
n
)

we thus have

E (e t1 X̄+t2 g(X1 ,X2 ,...,Xn)) = MX̄(t1)
1

(
√
2π)nσ 2 ∫ ⋯∫ e−

1
2σ2 ∑i(y i−µ i)2+t2 g(y1 ,y2 ,...,yn)dy1⋯dyn

aat is,

E (e t1 X̄+t2 g(X1 ,X2 ,...,Xn)) = E(e t1X̄)∫ ⋯∫ e t2 g(y1 ,y2 ,...,yn)
1

(
√
2π)nσn

e−
1

2σ2 ∑i(y i−µ i)2dy1⋯dyn

= MX̄(t1)E(e t2 g(X)) = MX̄(t1)Mg(X)(t2)

Byaeorem 30, X̄n and g(X) are independent.

aat is, samplemean X̄n is independentwith any translation-invariant function ofX. Clearly,
S2n = 1

n−1 ∑i(Xi − X̄n)2 is a translation invariant function such that the theorem can be applied.

57



58



Chapter 5

Samplingaeory

Deûnition 32 (Random Sample). A random sample {Xi}
n
i=1 from a population is a collection of

i.i.d. random variables.

Deûnition 33 (Statistics). Any function of the random sample is called a statistic:

Tn = T(X1, X2, . . . , Xn).

Deûnition 34 (SamplingDistribution). If Tn = T(X1, X2, . . . , Xn) is a statistic, then the distri-
bution of Tn is called the sampling distribution.

For instance, if {Xi}
n
i=1 is a random sample from Bernoulli(p), then

Tn =
n

∑
i=1

Xi
d
= Binomial(n, p).

aat is,∑n
i=1 Xi is a statistic with Binomial(n,p) as its sampling distribution.

Most properties of sampling distributionswill be presentedwithout further derivations since
they have already been shown in the elementary statistics course.

5.1 SampleMean

Let {Xi}
n
i=1 ∼

i .i .d . (µ, σ 2) and X̄n =
1
n ∑

n
i=1 Xi .

1. E(X̄n) = µ.

2. Var(X̄n) =
σ 2
n .
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5.2 Sample Variance

Let {Xi}
n
i=1 ∼

i .i .d . (µ, σ 2) and S2n = 1
n ∑

n
i=1(Xi − X̄n)2.

1. S2n = 1
n ∑i X2

i − X̄2
n = [

1
n ∑i(Xi − µ)2] − (X̄n − µ)2.

2. E(S2n) = (1 − 1
n) σ 2.

3. Var(S2n) =
(n−1)2
n3 (µ4 − [

n−3
n−1 ] µ22), where µ4 = E(X − µ)4, µ2 = E(X − µ)2.

5.3 χ2 Distribution

aeorem 43. Given that Y ∼ χ2(n).

1. E(Y) = n.

2. Var(Y) = 2n.

3. MY(t) = (1 − 2t)−n/2.

Proof. Since χ2(n) d
= Gamma ( n2 , 2), then

E(Y) =
n
2
× 2 = n

Var(Y) =
n
2
× 22 = 2n

MY(t) = (
1

1 − 2t
)

n
2

aeorem 44. If Z ∼ N(0, 1), and
Y = Z2,

then Y d
= χ2(1).

Proof.

MZ2(t) = E(e tZ2
) = ∫

∞

−∞
e tz2

1
√
2π

e−
1
2 z

2dz = ∫
∞

−∞

1
√
2π

e−
1
2 (1−2t)z

2dz

=
1

√
1 − 2t ∫

∞

−∞

1
√
2π
√

1
(1−2t)

e
− 1

2

⎛
⎜
⎝

z
√

1
(1−2t)

⎞
⎟
⎠

2

dz = (
1

1 − 2t
)

1
2
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aeorem 45. If {Zi}
n
i=1 ∼

i .i .d . N(0, 1), and

Y =
n

∑
i=1

Z2
i ,

then Y d
= χ2(n).

Proof. Since Z2
i ∼ χ2(1),

MZ2
i
(t) = (

1
1 − 2t

)

1
2

MY(t) = M∑ Z2
i
(t) =

n

∏
i=1

MZ2
i
(t) = [(

1
1 − 2t

)

1
2
]

n

= (
1

1 − 2t
)

n
2

5.4 Student’s t Distribution

aeorem 46. Let Z d
= N(0, 1) andW d

= χ2k, then

U =
Z
√

W
k

d
= tk .

Proof. Let U = Z√
W
k

, and V =W . Hence, inversion yields

Z = U (
V
k
)

1
2

W = V

ae Jacobian is

J = ∣
∂Z
∂U

∂Z
∂V

∂W
∂U

∂W
∂V
∣ =

RRRRRRRRRRR

(Vk )
1
2 0

0 1

RRRRRRRRRRR

= (
V
k
)

1
2

Since Z andW are independent,

fZW(z,w) = fZ(z) fW(w).

61



aerefore,

fUV(u, v) = fZ (u (
v
k
)

1
2
) fW(v) (

v
k
)

1
2

=
1
√
π
e−

1
2(u(

v
k )

1
2 )

2 v
k
2 −1

2
k
2 Γ( k2 )

e−
1
2 v (

V
k
)

1
2

=
1

√
2π2

k
2 Γ( k2 )k

1
2

v
k+1
2 −1 exp [−

1
2
(1 +

u2

k
) v]

=
1

√
kπ2

k+1
2 Γ( k2 )

v
k+1
2 −1 exp [−

1
2
(1 +

u2

k
) v]

Let
c =

1
√
kπ2

k+1
2 Γ( k2 )

,

and
h(u) =

1
2
(1 +

u2

k
)

we can obtain
fUV(u, v) = cv

k+1
2 −1 exp [−h(u)v]

Hence,
fU(u) = c∫

∞

0
v

k+1
2 −1e−h(u)vdv

According to the property of Gamma function (seeaeorem 81),

fU(u) = c [
1

h(u)
] Γ (

k + 1
2
)

=
1

√
kπ2

k+1
2 Γ( k2 )

⎡
⎢
⎢
⎢
⎢
⎣

1
1
2 (1 +

u2
k )

⎤
⎥
⎥
⎥
⎥
⎦

k+1
2

Γ (
k + 1
2
)

=
1

√
kπ2

k+1
2 Γ( k2 )

2
k+1
2 (1 +

u2

k
)
− k+1

2
Γ (

k + 1
2
)

=
Γ( k+12 )
Γ( k2 )

1
√
kπ
(1 +

u2

k
)
− k+1

2

ais is exactly the pdf of the student’s t distribution.

5.5 Sampling from aNormalDistribution

Let {Xi}
n
i=1 ∼

i .i .d . N(µ, σ 2), X̄n =
1
n ∑

n
i=1 Xi , and S2n = 1

n−1 ∑
n
i=1(Xi − X̄n)2.
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1.
X̄n

d
= N (µ,

σ 2

n
) .

2. Byaeorem 44,

[

√
n(X̄n − µ)

σ
]

2
d
= χ2(1).

3. Byaeorem 41,
(n − 1)S2n

σ 2
d
= χ2n−1.

4. Byaeorem 41, X̄n and S2n are independent.

5. Byaeorem 45,
n

∑
i=1
(
Xi − µ
σ
)
2
d
= χ2(n).

6. Byaeorem 46, √
n(X̄n − µ)

Sn
d
= t(n − 1).
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Chapter 6

Asymptoticaeory

6.1 Convergence Concepts

Let {X1, X2, . . .} = {Xn}∞n=1 is a sequence of random variables, and let X be another random
variable.

Deûnition 35 (Convergence in QuadraticMean). Xn converges in quadraticmean to the ran-
dom variable X if

E∣Xn − X∣2 → 0 as n →∞.

We denote it as
Xn

L2
Ð→ X .

It is also called converges in squaremean (ormean-square convergence).

An alternative notation formean-square convergence is

Xn
m.s.
Ð→ X .

Deûnition 36 (Convergence inDistribution). Xn converges in distribution to the random vari-
able X if ∀x ∈ C(F),

Fn(x)→ F(x) as n →∞,

where C(F) = {x ∶ F(x) is continuous at x}. aat is, for every x which is a continuous point of
F. We denote it as

Xn
d
Ð→ X .

Convergence in distribution means that Xn is approximately distributed with distribution
function F(x) for large n. aat is, probabilities regarding Xn may be well approximated using
probabilities regarding X. ae approximation error decreases to zero as n increases to inûnity.
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However, the statement Xn
d
Ð→ X does not say how large nmust be in order for the approxima-

tion to be practically useful. To answer this question, we need a further result dealing explicitly
with the approximation error as a function of n.

We will kind of “abuse” the notations such as Xn
d
Ð→ N(0, 1) as n Ð→ ∞ instead of the

formallymore correct, but lengthier Xn
d
Ð→ X as n Ð→∞, where X d

= N(0, 1).
Note that the convergence speciûed by this deûnition is pointwise, and only has to occur at

points x where F is continuous. Note that the sequence {Fn(x)} is said to pointwise converge
to F(x) if and only if for every ε > 0, there is a natural number N(x) such that all n ≥ N(x),
∣Fn(x) − F(x)∣ < ε.1

Deûnition 37 (Convergence in Probability). Xn converges in probability to the random variable
X if one of the following equivalent conditions holds:

(a) ∀ ε > 0,
P(∣Xn − X∣ > ε)→ 0 as n →∞.

(b) ∀ ε > 0,
P(∣Xn − X∣ < ε)→ 1 as n →∞.

(c) Given ε > 0, δ > 0, ∃N(ε, δ) such that

P(∣Xn − X∣ > ε) < δ,∀ n > N .

(d) Given ε > 0, δ > 0, ∃N(ε, δ) such that

P(∣Xn − X∣ < ε) > 1 − δ,∀ n > N .

aat is, P(∣XN+1 − X∣ < ε) > 1 − δ, P(∣XN+2 − X∣ < ε) > 1 − δ, and so on.

We denote it as
Xn

p
Ð→ X .

Clearly, convergence in probabilitymeans that Xn is close to X with high probability.
We now consider a strongermode of convergence: almost sure convergence.

1On the other hand,ae sequence {Fn(x)} uniformly converges to F(x) if and only if for every ε > 0, there is
a natural number N such that for all x and all n ≥ N , ∣Fn(x) − F(x)∣ < ε.
Reference https://www.physicsforums.com/threads/convergence-of-random-variables.167343/
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Deûnition 38 (Almost Sure Convergence). Xn converges almost surely (a.s.) to the random
variable X if

P({ω ∶ Xn(ω)→ X(ω) as n →∞}) = 1.

More formally, given ε > 0, δ > 0, ∃N(ε, δ) such that

P(∣XN+1 − X∣ < ε, ∣XN+2 − X∣ < ε, . . .) > 1 − δ.

We denote it as
Xn

a.s.
Ð→ X .

It is also called that Xn almost everywhere or with probability 1 or strongly towards X.

It isworth noting that the diòerence between convergence in probability and convergence al-
most surely is that convergence in probability requires all of the individual probabilities P(∣XN+1−

X∣ < ε), P(∣XN+2 − X∣ < ε),... to be larger than 1 − δ, while convergence almost surely requires
that the joint probability P(∣XN+1 − X∣ < ε, ∣XN+2 − X∣ < ε, . . .) should be larger than 1 − δ.

6.2 Relations Between the Convergence Concepts

We ûrst outline the relations between the convergence concepts. Details will be provided in
numerous theorems.

1. Xn
L2
Ð→ X ⇒ Xn

p
Ð→ X.

2. Xn
a.s.
Ð→ X ⇒ Xn

p
Ð→ X.

3. Xn
p
Ð→ X ⇒ Xn

d
Ð→ X.

4. Xn
d
Ð→ X ⇏ Xn

p
Ð→ X.

5. For any constant c, Xn
d
Ð→ c ⇔ Xn

p
Ð→ c

aeorem 47. Convergence in quadraticmean implies convergence in probability, that is

Xn
L2
Ð→ X ⇒ Xn

p
Ð→ X

Proof. ByMarkov inequality with p = 2 (seeaeorem 5),

P(∣Xn − X∣ ≥ ε) ≤
E∣Xn − X∣2

ε2
Ð→ 0 as n Ð→∞.
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aeorem 48. Almost sure convergence implies convergence in probability, that is

Xn
a.s.
Ð→ X ⇒ Xn

p
Ð→ X

Proof. Let A = {∣XN+1 − X∣ < ε, ∣XN+2 − X∣ < ε, . . .}, and Bi = {∣XN+i − X∣ < ε}, for i = 1, 2, . . ..
Because A ⊂ Bi , P(Bi) > P(A), for i = 1, 2, . . .. If Xn converges almost surely to X then P(A) >
1−δ, and hence P(Bi) > 1−δ, for i = 1, 2, . . .,which thus implying that Xn converges in probability
to X

aeorem 49. Convergence in probability implies convergence in distribution, that is

Xn
p
Ð→ X ⇒ Xn

d
Ð→ X

Proof. For any ε > 0,

Fn(x) = P(Xn ≤ x),

= P(Xn ≤ x , X > x + ε) + P(Xn ≤ x , X ≤ x + ε),

≤ P(Xn ≤ x , X > x + ε) + P(X ≤ x + ε),

= P(Xn − X < −ε) + P(X ≤ x + ε),

≤ P(∣Xn − X∣ > ε) + P(X ≤ x + ε),

that is,
Fn(x) ≤ F(x + ε) + P(∣Xn − X∣ > ε). (6.1)

Also,

F(x − ε) = P({X ≤ x − ε} ∩ {Xn > x}) + P({X ≤ x − ε} ∩ {Xn ≤ x}),

≤ P({X ≤ x − ε} ∩ {Xn > x}) + P(Xn ≤ x),

= P(Xn − X > ε) + P(Xn ≤ x),

≤ P(∣Xn − X∣ > ε) + Fn(x),

that is,
F(x − ε) ≤ Fn(x) + P(∣Xn − X∣ > ε). (6.2)

Since Xn
p
Ð→ X, by letting n →∞ in equations (6.1) and (6.2), we have

F(x − ε) ≤ lim inf
n→∞

Fn(x) ≤ lim sup
n→∞

Fn(x) ≤ F(x + ε).

ais relation holds for all x and for all ε > 0. Finally, suppose that x ∈ C(F) and let ε → 0. It
follows that

F(x) ≤ lim inf
n→∞

Fn(x) ≤ lim sup
n→∞

Fn(x) ≤ F(x).
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that is,
lim inf
n→∞

Fn(x) = lim sup
n→∞

Fn(x) = lim
n→∞

Fn(x) = F(x).

aeorem 50. For any constant c, Xn
d
Ð→ c ⇔ Xn

p
Ð→ c, as n Ð→∞.

Proof. We only need to show “⇒.”
Given Xn

d
Ð→ c, we know that

Fn(x)Ð→ F(x) = 1{x≥c}.

aat is, if we treat the constant c as a random variable, then for δ > 0, F(c + δ) = P(c ≤ c + δ) = 1
and F(c − δ) = P(c ≤ c − δ) = 0. Figure 6.1 shows the distribution function of a constant c.

Let ε > 0. aen

P(∣Xn − c∣ > ε) = 1 − P(∣Xn − c∣ ≤ ε),

= 1 − P(c − ε ≤ Xn ≤ c + ε),

= 1 − [Fn(c + ε) − Fn(c − ε) + P(Xn = c − ε)],

≤ 1 − [Fn(c + ε) − Fn(c − ε)],

Ð→ 1 − [F(c + ε) − F(c − ε)],

= 1 − [1 − 0] = 0.

Let’s use an example to show how to applyaeorem 50.

Example 26. Given that Xn ∼ N (0, 1
n). aen show that

Xn
p
Ð→ 0.

Clearly,
√
nXn ∼ N (0, 1). For x < 0,

Fn(x) = P(Xn ≤ x),

= P(
√
nXn ≤

√
nx),

= P(N(0, 1) ≤
√
nx)→ 0 as n →∞.

Note that
√
nx → −∞ since x < 0.

For x > 0,
Fn(x) = P(N(0, 1) ≤

√
nx)→ 1 as n →∞.
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Figure 6.1: Distribution Function of A Constant

x

F(x)

c

1

aat is, for x ≠ 0 (note that the discontinuous point is x = 0),

lim
n→∞

Fn(x) = F(x) = 1{x≥0},

so Xn
d
Ð→ 0, which implies Xn

p
Ð→ 0 byaeorem 50.

According to this example, we can also realize themotivation for considering only points of
continuity of F(x). aat is, the concept of convergence of distribution can be applied in such a
case sincewe require F(x) to be a CDF (not any function), which is a right continuous function.

Of course, this result can be shown by using the Chebyshev’s Inequality.

aeorem 51 (ContinuousMappingaeorem I). Let {Xn} be a sequence of random variables,
and X be another random variable. Suppose g(⋅) ∶ R↦ R is a continuous function. aen

Xn
p
Ð→ X ⇒ g(Xn)

p
Ð→ g(X).

Proof. By the continuity of g(⋅) we have , for given ε, δ > 0,

∣Xn − X∣ < δ implies ∣g(Xn) − g(X)∣ < ε.

aat is, {∣Xn − X∣ < δ} ⊆ {∣g(Xn) − g(X)∣ < ε}, and

P(∣g(Xn) − g(X)∣ < ε) ≥ P(∣Xn − X∣ < δ)Ð→ 1, as n Ð→∞.

aus,
P(∣g(Xn) − g(X)∣ < ε)Ð→ 1 as n Ð→∞.
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For convergence in distribution, we have a similar result:

aeorem 52 (ContinuousMappingaeorem II). Let {Xn} be a sequence of random variables,
and X be another random variable. Suppose g(⋅) ∶ R↦ R is a continuous function. aen

Xn
d
Ð→ X ⇒ g(Xn)

d
Ð→ g(X).

Proof. See Corollary 11.2 (pages 330) in Severini (2005).

aeorem 53. Let Xn
p
Ð→ X, and Yn

p
Ð→ Y . aen

(a) Xn + Yn
p
Ð→ X + Y .

(b) XnYn
p
Ð→ XY .

(c) Xn
Yn

p
Ð→ X

Y , where Yn ≠ 0 and Y ≠ 0.

Proof. Note that by ∣(Xn + Yn) − (X + Y)∣ ≤ ∣Xn − X∣ + ∣Yn − Y ∣

(∣(Xn +Yn)−(X +Y)∣ ≥ ε) Ô⇒ (∣Xn −X∣+ ∣Yn −Y ∣ ≥ ε) Ô⇒ (∣Xn − X∣ ≥
ε
2
)∪(∣Yn − Y ∣ ≥

ε
2
)

For the second “Ô⇒”, recall that ∼ B⇒∼ A given A⇒ B. Hence,

(∣(Xn + Yn) − (X + Y)∣ ≥ ε) ⊆ (∣Xn − X∣ ≥
ε
2
) ∪ (∣Yn − Y ∣ ≥

ε
2
)

P(∣(Xn+Yn)−(X+Y)∣ ≥ ε) ≤ P (∣Xn − X∣ ≥
ε
2
∪ ∣Yn − Y ∣ ≥

ε
2
) ≤ P(∣Xn − X∣ ≥

ε
2
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ð→0

+P(∣Yn − Y ∣ ≥
ε
2
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ð→0

Ð→ 0

For aeorem 53 (b), byaeorem 53 (a) and ContinuousMappingaeorem,

XnYn =
1
2
X2

n +
1
2
Y 2
n −

1
2
(Xn − Yn)

2 p
Ð→

1
2
X2 +

1
2
Y 2 −

1
2
(X − Y)2 = XY

Finally,aeorem 53 (c) is simply the consequence ofaeorem 53 (b).

We can extendaeorem 51 to random vector.

aeorem 54. (Continuous Mapping aeorem for Random Vectors) Suppose h(⋅) is a vector-
valued continuous function. If

Zn
p
Ð→ Z,

then
h(Zn)

p
Ð→ h(Z).
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Hence,aeorem 53 can be easily proved by setting Zn = (Xn Yn)′.
ae next theorem about combinations of convergence in probability and in distribution will

be very useful to derive the asymptotic distribution of estimators.

aeorem 55 (Slutsky’s aeorem). Let Xn
d
Ð→ X, and Yn

p
Ð→ c. aen

(a) Xn + Yn
d
Ð→ X + c.

(b) XnYn
d
Ð→ Xc.

(c) Xn
Yn

d
Ð→ X

c , where Yn ≠ 0 and c ≠ 0.

Proof. We proveaeorem 55 (a), and leave (b) and (c) as exercises.

FXn+Yn(a) = P(Xn + Yn ≤ a),

= P ({Xn + Yn ≤ a}⋂{∣Yn − c∣ ≤ ε}) + P ({Xn + Yn ≤ a}⋂{∣Yn − c∣ > ε})

Let
S1 = {Xn + Yn ≤ a}⋂{∣Yn − c∣ ≤ ε},

S2 = {Xn + Yn ≤ a}⋂{Yn − c ≥ −ε},

S3 = {Xn ≤ a + ε − c}.

Note that S1 implies S2, and S2 implies S3, hence, S1 ⊂ S2 ⊂ S3,which suggests that P(S1) ≤ P(S2) ≤
P(S3). We thus have

FXn+Yn(a) = P(Xn + Yn ≤ a),

= P(S1) + P ({Xn + Yn ≤ a}⋂{∣Yn − c∣ > ε}) ,

≤ P(S3) + P ({Xn + Yn ≤ a}⋂{∣Yn − c∣ > ε}) ,

≤ P(S3) + P(∣Yn − c∣ > ε),

= P(Xn ≤ a + ε − c) + P(∣Yn − c∣ > ε),

= Fn(a + ε − c) + P(∣Yn − c∣ > ε).

Since Xn
d
Ð→ X, we have Fn(a + ε − c) Ð→ FX(a + ε − c). Moreover, since Yn

p
Ð→ c, we have

P(∣Yn − c∣ > ε)Ð→ 0. aat is,

lim sup
n→∞

FXn+Yn(a) ≤ FX(a + ε − c).

Using a similar argument, we have

FX(a − ε − c) ≤ lim inf
n→∞

FXn+Yn(a).
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aus, we have

FX(a − ε − c) ≤ lim inf
n→∞

FXn+Yn(a) ≤ lim sup
n→∞

FXn+Yn(a) ≤ FX(a + ε − c).

Let ε → 0,
FX(a − c) ≤ lim inf

n→∞
FXn+Yn(a) ≤ lim sup

n→∞
FXn+Yn(a) ≤ FX(a − c).

aat is,
lim
n→∞

FXn+Yn(a) = FX(a − c),

or
FYn+Xn(a)Ð→ FX(a − c) = FX+c(a),

since
P(X ≤ a − c) = P(X + c ≤ a).

6.3 Convergence via Transforms

aeorem 56 (Continuityaeorem forMomentGenerating Functions). Let X1, X2, . . . be ran-
dom variables such that MXn(t) exists for ∣t∣ < h, for some h > 0, and for all n. Suppose that X
is a random variable whosemoment generating function, MX(t) exists for ∣t∣ ≤ h1 < h for some
h1 > 0 and that

MXn(t)Ð→ MX(t), as n Ð→∞.

aen
Xn

d
Ð→ X .

aeorem 57 (Continuity aeorem for Characteristic Functions). Let X1, X2, . . . be random
variables, and suppose that

ϕXn(t)Ð→ ϕX(t), as n Ð→∞.

aen
Xn

d
Ð→ X .

ae above theorems for convergence via transforms are useful to prove the central limit the-
orem. Moreover, the converse ofaeorem 57 is also of interest. Namely, if X1, X2, . . . are random
variables such that

Xn
d
Ð→ X ,
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then
ϕXn(t)Ð→ ϕX(t), as n Ð→∞.

According toaeorem 57, we can derive the following theorem (try it!).

aeorem 58. Let X1, X2, . . . be random variables, and suppose that, for some real number c,

ϕXn(t)Ð→ e itc , as n Ð→∞.

aen
Xn

p
Ð→ c.

6.4 Landau Symbol (OrderNotation)

Deûnition 39 (Landau Symbols to Real Numbers). Let {an} and {bn} be sequences of real
numbers.

1. an = O(bn) if for some ûnite real number ∆ > 0, there exists a ûnite integer N such that
for all n ≥ N ,

∣
an
bn
∣ < ∆,

i.e., limn→∞ ∣
an
bn ∣ <∞.

2. an = o(bn) if for every real number δ > 0 there exists a ûnite integer N(δ) such that for all
n ≥ N(δ),

∣
an
bn
∣ < δ,

i.e., limn→∞
an
bn = 0.

When an and bn both tend to inûnity, an = o(bn) states that an tends to inûnitymore slowly
than bn;when both tend to0, it states that an tends to zero faster than bn. Obviously, if an = o(bn),
then an = O(bn).

Example 27. Let an = 1
n2 and bn = 1

n . Clearly, as n →∞

an
bn
=
1/n2

1/n
=
1
n
→ 0.

aat is,
1
n2 = o (

1
n
)

We will show an example of the use of the small o notation.
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Example 28. Consider the following sequence

an =
1
n
−

2
n2 +

4
n3 .

aen we have ûrst-order approximation as

an ≈
1
n
,

i.e.,
an =

1
n
+ o (

1
n
) .

Moreover, we have the second-order approximation as

an ≈
1
n
−

2
n2 .

aat is,
an =

1
n
−

2
n2 + o (

1
n2)

Note that we have the following simple properties of the small o relations.

Lemma 3. (Small o Relations)

1. an = o(1) iò. an Ð→ 0.

2. If an = o(bn), then an
bn = o(1). aus o(bn) = bno(1).

3. an = o(bn) implies can = o(bn). aus o(bn) = ko(bn), k = 1/c.

Most of the time, we are interested in the order relationship of power of n.

Deûnition 40. Let {an} be a sequence of real number.

1. ae sequence {an} is at most of order nk, denoted an = O(nk), if for some ûnite real
number ∆ > 0, there exists a ûnite integer N such that for all n > N ,

∣n−kan∣ < ∆.

2. ae sequence {an} is of order smaller than nk, denoted an = o(nk), if for every δ > 0 there
exists a ûnite integer N(δ) such that for all n ≥ N(δ),

∣n−kan∣ < δ,

i.e., n−kan → 0.

Now we turn our focus on the notion of orders ofmagnitude for convergence in probability.
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Deûnition 41 (Landau Symbols to Random Variables). Let {Xn} and {Yn} be sequences of
random variables.

1. Xn = Op(Yn) if ∀ε > 0, ∃ a positive real number Mε <∞, such that

P (∣Xn∣ ≤ Mε∣Yn∣) > 1 − ε.

aat is, {Xn} is bounded in probability.

2. Xn = op(Yn) if
Xn

Yn

p
Ð→ 0.

aat is, {Xn} is vanish in probability.

Note that

1. Xn = op(1) iò. Xn
p
Ð→ 0.

2. cnop(Yn) = op(cnYn) for constant cn, and Cnop(Yn) = op(CnYn) for random variable Cn.

3. If Xn
d
Ð→ X, then Xn = Op(1). aat is, if Xn converge in distribution, then it is bounded

in probability.

4. Op(na)op(nb) = op(na+b).

For more details about Landau Symbols, see chapter 2 in White (2001) or section 1.4/2.1 in
Lehmann (2001).

6.5 Weak Law of LargeNumber

aeorem59 (Weak Law of LargeNumbers (WLLN) I). Let {Xn} be a sequence of i.i.d. random
variables such that E(X1) = µ, and Var(X1) = σ 2 <∞. aen

X̄n =
1
n∑i

Xi
p
Ð→ µ.

Equivalently, we can also denoteWLLN as

X̄n − µ
p
Ð→ 0,

X̄n − µ = op(1),

X̄n = µ + op(1).

76



Proof. Pick any ε > 0, byMarkov Inequality,

P(∣X̄n − µ∣ > ε) ≤
E∣X̄n − µ∣2

ε2
,

=
E(X̄n − µ)2

ε2
,

=
Var(X̄n)

ε2
,

=
σ 2

nε2
Ð→ 0 as n Ð→∞.

ae above version of WLLN has been shown in the elementary statistics course. However,
the assumption of ûnite second moment can be relaxed. We thus have the following version of
WLLN assuming ûnite ûrstmoment only.

aeorem 60 (Weak Law of Large Numbers (WLLN) II). Let {Xi}
n
i=1 be a sequence of i.i.d.

random variables such that E(X1) = µ <∞, then

X̄n =
1
n∑i

Xi
p
Ð→ µ.

Proof. According toaeorem 58, it is suõcient to show that

ϕX̄n(t)Ð→ e itµ , as n Ð→∞.

Let Yn = ∑i Xi . Byaeorem 33, we have

ϕX̄n(t) = ϕYn (
t
n
) .

Moreover, byaeorem 32,

ϕX̄n(t) = ϕYn (
t
n
) = [ϕX1 (

t
n
)]

n
.

Moreover, a�er introducing the Landau Symbol, we can rewriteaeorem 34 as

ϕX(t) = 1 +
∞
∑
k=1

E(Xk) ⋅
(it)k

k!
,

= 1 +
n

∑
k=1

E(Xk) ⋅
(it)k

k!
+ o(∣t∣n), [seeaeorem 4.2 in Chapter 4 of Gut (2013)]

= 1 + E(X)
it
1!
+ o (t) . [n = 1]
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Hence,

ϕX1 (
t
n
) = 1 + E(X1)

i tn
1!
+ o (

t
n
) ,

and

ϕX̄n(t) = [ϕX1 (
t
n
)]

n
,

= [1 + E(X1)
i tn
1!
+ o (

t
n
)]

n

,

= [1 + i
t
n
µ + o (

t
n
)]

n
,

= [1 +
itµ[1 + o(1)]

n
]

n

Ð→ e itµ as n Ð→∞.

Note that in the above proof, we have applied the fact that given an Ð→ a,

(1 +
an
n
)
n
Ð→ ea as n Ð→∞.

6.6 Central Limit aeorem

aeorem 61 (ae Central Limit aeorem, CLT). Let {Xi}
n
i=1 be a sequence of i.i.d. random

variables with E(X1) = µ and Var(X1) = σ 2. aen

√
n (

X̄n − µ
σ
)

d
Ð→ N(0, 1).

Proof. Let Zi =
X i−µ
σ . Hence we have E(Z1) = 0, Var(Z1) = E(Z2

1 ) = 1 and

Z̄n =
X̄n − µ

σ
.

Let Yn = ∑i Zi and

Wn =
√
nZ̄n =

Yn
√
n
.
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Hence,

ϕWn(t) = ϕ Yn
√

n
(t) = ϕYn (

t
√
n
) = [ϕZ1 (

t
√
n
)]

n

,

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 + E(Z1)
i t√

n

1!
+ E(Z2

1 )
(i t√

n)
2

2!
+ o (

t2

n
)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

n

,

= [1 −
t2

2n
+ o (

t2

n
)]

n
,

= [1 −
t2
2 [1 − o(1)]

n
]

n

Ð→ e−t2/2 as n Ð→∞.

aat is,
√
nZ̄n

d
Ð→ N(0, 1),

and thus
√
n (

X̄n − µ
σ
)

d
Ð→ N(0, 1).

6.7 DeltaMethod and Cramer-Woldaeorem

We now introduce some theorems that is useful to derive asymptotic distributions.

aeorem 62 (Cramer-Wold Device). Let Xn ∈ Rk be a sequence of i.i.d. random k-vector, and
a ∈ Rk be a constant vector.

Xn
d
Ð→ X iò. a′Xn

d
Ð→ a′X

Proof. See pages 282–283 in Mittelhammer (1995).

According to the Cramer-Wold Device, we can easily obtain the following multivariate CLT.

aeorem 63 (Multivariate CLT). Let {Xn} be a sequence of i.i.d. random k-vector with mean
vector E(Xi) = θ and variance-covariance matrix Var(Xi) = Σ, for all i, and Σ is positively
deûnite. aen

√
n (n−1

n

∑
i=1

Xi − θ)
d
Ð→ N(0, Σ).

Proof. Let Zi = a′Xi. aus

E(Zi) = E(a′Xi) = a′E(Xi) = a′θ ,
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Var(Zi) = Var(a′Xi) = a′Var(Xi)a = a′Σa.

Note that √
n (n−1∑i Zi − E(Zi))
√
Var(Zi)

=

√
n(n−1a′(∑i(Xi − θ)))

√
a′Σa

.

By univariate CLT, we have
√
n (n−1∑i Zi − E(Zi))
√
Var(Zi)

d
Ð→ N(0, 1),

hence √
n(n−1a′(∑i(Xi − θ)))

√
a′Σa

d
Ð→ N(0, 1).

aat is,
√
n(n−1a′(∑

i
(Xi − θ)))

d
Ð→ N(0, a′Σa).

By Cramer-Wold Device,
√
n (n−1

n

∑
i=1

Xi − θ)
d
Ð→ N(0, Σ).

aeorem 64 (Univariate DeltaMethod). Given g(⋅) a continuous and diòerentiable function.
If

√
n(Xn − θ)

d
Ð→ N(0, σ 2),

then
√
n(g(Xn) − g(θ))

d
Ð→ g′(θ)N(0, σ 2).

Proof. By Taylor theorem, we expand g(Xn) around g(θ),

g(Xn) = g(θ) + (Xn − θ)g′(X∗n),

where X∗n = λXn + (1 − λ)θ, λ ∈ [0, 1].
Since

√
n(Xn − θ)

d
Ð→ N(0, σ 2) by construction, we have

√
n(Xn − θ) = Op(1).

aat implies
Xn − θ = op(1),

or
Xn

p
Ð→ θ .
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It follows that
X∗n = λXn + (1 − λ)θ

p
Ð→ θ ,

and by CMT, we have
g′(X∗n)

p
Ð→ g′(θ).

aat is,
g′(X∗n) = g′(θ) + op(1)

aerefore,
√
n(g(Xn) − g(θ)) =

√
n(Xn − θ)[g′(θ) + op(1)],

=
√
n(Xn − θ)g′(θ) +

√
n(Xn − θ)op(1),

d
Ð→ g′(θ)N(0, σ 2).

Well, do not forget that

g′(θ)N(0, σ 2)
d
= N (0, [g′(θ)]2σ 2) .

Let’s see an example.

Example 29. Suppose that {Xi}
n
i=1 ∼

i .i .d .Bernoulli(p), where p ≠ 1/2. Find the asymptotic distri-
bution of X̄(1 − X̄).

You should ûgure it out by yourself that the asymptotic distribution of X̄(1 − X̄) is

X̄(1 − X̄) ∼A N (p(1 − p),
p(1 − p)(1 − 2p)2

n
) .

aeorem 65 (Multivariate DeltaMethod). Suppose thatWn is a sequence of random k-vector
such that

√
n(Wn − θ)

d
Ð→ N(0, Σ),

where Σ is positively deûnite. Let g(⋅) ∶ Rk ↦ R be a function such that

∇g(y) =
dg(y)
dy

=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

∂g
∂y1
∂g
∂y2
⋮
∂g
∂yk

⎞
⎟
⎟
⎟
⎟
⎟
⎠

,

and ∇g(θ) is non-zero and continuous at θ. aen

√
n(g(Wn) − g(θ))

d
Ð→ N(0,∇g(θ)′Σ∇g(θ)).
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Here is an application of the DeltaMethod.

Example 30. Consider the following regression model

{yi , x1i , x2i}ni=1,

yi = β0 + β1x1i + β2x2i + ei = xi′β + ei ,

ei ∣xi ∼ (0, σ 2),

ae parameter of interest is

θ =
β1
β2
.

Find the asymptotic distribution of the analog estimator

θ̂ =
β̂1
β̂2
,

where

β̂ =
⎛
⎜
⎜
⎝

β̂0
β̂1
β̂2

⎞
⎟
⎟
⎠

= (∑
i
xixi′)

−1

(∑
i
xiyi) .

Since we know that

√
n
⎛
⎜
⎜
⎝

β̂0 − β0
β̂1 − β1
β̂2 − β2

⎞
⎟
⎟
⎠

d
Ð→ N (0,V) , V = σ 2[E(xixi′)]−1.

Hence, by DeltaMethod,
√
n(θ̂ − θ) d

Ð→ N(0,H′βVHβ)

where

Hβ =

⎛
⎜
⎜
⎝

0
1/β2
−β1/β22

⎞
⎟
⎟
⎠

.
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Chapter 7

Estimation

Given random sample {Xi}
n
i=1 ∼ F(x, θ). Suppose that we use a statistic T̂n(X1, X2, . . . , Xn) =

T̂n(X) to estimate population features denoted by q(θ), θ ∈ Θ, where Θ is called the parameter
space. We call T̂n an estimator of q(θ).

7.1 Small Sample Criteria for Estimators

Deûnition 42 (Unbiased Estimator). An estimator T̂n is said to be unbiased if

E(T̂n) = q(θ).

Hence, if T̂n is a biased estimator, then

B(θ) = E(T̂n) − q(θ)

is called bias.

Deûnition 43 (Mean Square Error). aemean square error is deûned by

MSE(q(θ), T̂n) = E(T̂n − q(θ))2.

Mean square error is amost popularmeasure of distance between T̂n and q(θ). It has been
shown in your elementary statistics that

MSE(q(θ), T̂n) = Var(T̂n) + [E(T̂n) − q(θ)]2 = Var(T̂n) + [B(θ)]2.

Deûnition 44 (Minimum Variance Unbiased Estimator, MVUE). T̂∗n is said to be an MVUE
if for all θ ∈ Θ

T̂∗n = argmin{T̂n ∶ T̂n is unbiased for q(θ)}E(T̂n − q(θ))2
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To compare two estimator, we have the following criterion.

Deûnition 45 (Relative Eõciency). Let T1 and T2 be estimators of q(θ). We say that T1 ismore
eõcient than T2 if

MSE(q(θ), T1) ≤ MSE(q(θ), T2).

7.2 Large Sample Properties of Estimators

Deûnition 46 (Consistency). θ̂n is consistent for θ if

θ̂n
p
Ð→ θ .

aat is, an θ̂ is a consistent estimator of θ if θ̂ converges to θ in probability.

Deûnition 47 (Best AsymptoticallyNormal (BAN) Estimator). θ̂n is a BAN estimator of θ if

1.
√
n(θ̂n − θ)

d
Ð→ N(0, σ 2).

2. σ 2 ≤ r2 for θ̃n such that
√
n(θ̃n − θ)

d
Ð→ N(0, r2).

Notice that some books would add one more condition for a BAN estimator: θ̂n
p
Ð→ θ.

However, it is clear that condition 1 (asymptotically normal) in the theorem has already implied
consistency (why?).

7.3 Interval Estimation

Deûnition 48 (Conûdence Interval). Let L(X),U(X) be two statistics such that L(X) ≤ U(X).
We say that the random interval

[L(X),U(X)]

is a (1 − α) ⋅ 100% conûdence interval for θ if

Pθ(L(X) ≤ θ ≤ U(X)) = 1 − α.

We have already learned how to construct conûdence intervals and approximate conûdence
intervals in elementary statistics. For instance, consider the following two cases:
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Case I {Xi}
n
i=1 ∼

i .i .d . N(µ, σ 2).
Let X̄n =

1
n ∑i Xi , S2n = 1

n ∑i(Xi − X̄n)2. In Case I, the statistic

φ =
√
n − 1(X̄n − µ)

Sn
=

√
n(X̄n−µ)

σ√
nS2n
σ 2 /(n − 1)

d
= t(n − 1).

aat is, the statistic φ has an exact t distribution, and is therefore exactly free of unknown pa-
rameters. Hence we say that φ is an exactly pivotal statistic. ae (1 − α) ⋅ 100% exact conûdence
interval for µ is

[X̄n − tα/2(n − 1)
Sn
√
n − 1

, X̄n + tα/2(n − 1)
Sn
√
n − 1
] .

Case II {Xi}
n
i=1 ∼

i .i .d . (µ, σ 2).
In Case II, without the assumption of normality, the same statistic

φ =
√
n(X̄n − µ)

Sn

does not have any known distribution. However, it can be shown that

φ =
√
n(X̄n − µ)

Sn
=

σ
Sn

√
n(X̄n − µ)

σ
d
Ð→ N(0, 1).

aus the asymptotic distribution of φ is the standard normal, which does not depend on the
parameters. We say that φ is asymptotically pivotal. aen the approximate conûdence interval is
given by

[X̄n − Zα/2
Sn
√
n
, X̄n + Zα/2

Sn
√
n
] ,

where

P (−Zα/2 ≤

√
n(X̄n − µ)

Sn
≤ Zα/2) = 1 − α + o(1).

We now illustrate how to construct a conûdence region for two estimators.

Example 31. Given {Xi} ∼i .i .d . N(µ, σ 2), where µ and σ 2 are both unknown. aen ûnd a (1 −
α) ⋅ 100% conûdence region for (µ, σ 2).

Let X̄n = n−1∑i Xi and S2n = n−1∑i(Xi − X̄n)2. Since we know that
√
n(X̄n − µ)

σ
∼ N(0, 1),

and
nS2n
σ 2 ∼ χ

2
n−1.
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Byaeorem 42, X̄n and S2n are independent.
Now choose c > 0 such that

P (−c ≤ N(0, 1) ≤ c) =
√
1 − α,

and choose a, b such that
P(a ≤ χ2n−1 ≤ b) =

√
1 − α.

aerefore,

P (−c ≤
√
n(X̄n − µ)

σ
≤ c, a ≤

nS2n
σ 2 ≤ b) = P (−c ≤

√
n(X̄n − µ)

σ
≤ c)P (a ≤

nS2n
σ 2 ≤ b) = 1 − α.

aat is,

P ((µ − X̄n)
2 ≤

c2σ 2

n
,
nS2n
b
≤ σ 2 ≤

nS2n
a
) = 1 − α.

7.4 Maximum Likelihood Estimation

Let X be a random variable with pdf f (x , θ), θ ∈ Θ ⊆ Rk. Suppose that {X1, X2, . . . , Xn} is a
random sample, then the joint density of the random sample is

f (x1, x2, . . . , xn; θ) =
n

∏
i=1

f (xi , θ).

ae likelihood of the sample is thus a function of θ:

L(θ; x1, x2, . . . , xn) = f (x1, x2, . . . , xn; θ).

aemaximum likelihood estimator (MLE) of θ is given by

θ̂ = argmax
θ∈Θ

L(θ; x1, x2, . . . , xn),

or equivalently
θ̂ = argmax

θ∈Θ
log L(θ; x1, x2, . . . , xn).

aeorem 66 (Invariance Property). If θ̂ is the MLE of θ, and let G(θ) be any function of θ,
then theMLE of G(θ) is G(θ̂).

Proof. Let G(θ) = g. Deûne an induced likelihood function L∗:

L∗(g , x) = max
{θ∶G(θ)=g}

L(θ , x).
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Let ĝ be theMLE of L∗,
ĝ = argmax

g
L∗(g , x).

Hence,

L∗(ĝ , x) =max
g

max
{θ∶G(θ)=g}

L(θ , x), (by deûnition)

=max
θ

L(θ , x), (by integratedmaximization)

= L(θ̂ , x). (since θ̂ is an MLE)

On the other hand,

L(θ̂ , x) = max
{θ∶G(θ)=G(θ̂)}

L(θ , x) (since θ̂ is an MLE)

= L∗(G(θ̂), x). (by deûnition of L∗)

aerefore, we have just shown that

L∗(ĝ , x) = L∗(G(θ̂), x).

Deûnition 49 (Score Function). ae function

Sθ =
∂ ln L
∂θ

is called the score for estimating θ.

aeorem 67. ae score function has zero expectation:

E(Sθ) = 0.

Proof. Note that since

∫ L(θ , x)dx = 1,

diòerentiating both sides partially with respect to θ gives us

0 = ∫
∂L
∂θ

dx = ∫
1

L(θ , x)
∂L
∂θ

L(θ , x)dx = ∫
∂ ln L
∂θ

Ldx = E (
∂ ln L
∂θ
) .

aat is,

E (Sθ) = E (
∂ ln L
∂θ
) = 0.
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Deûnition 50 (Fisher Information). ae function

I(θ) = E(S2θ) = Var(Sθ) = E [(
∂ ln L
∂θ
)
2

] .

is called the information for estimating θ.

aeorem 68 (Information Matrix Equality).

I(θ) = E [(
∂ ln L
∂θ
)
2

] = −E [
∂2 ln L
∂θ2

] ,

where −E [ ∂2 ln L∂θ2 ] is called the Hessian.

From previous proof, we know that

0 = ∫
∂ ln L
∂θ

Ldx.

Diòerentiating both sides partially with respect to θ gives us

0 = ∫
∂ ln L
∂θ

∂L
∂θ

dx + ∫
∂2 ln L
∂θ2

Ldx,

= ∫ [
∂ ln L
∂θ
]
2

L(θ , x)dx + ∫
∂2 ln L
∂θ2

Ldx.

aat is,

I(θ) = E [(
∂ ln L
∂θ
)
2

] = −E [
∂2 ln L
∂θ2

] .

aeorem 69 (Cramer-Rao Lower Bound, CRLB). Let θ̂ be an estimator of θ such that E(θ̂) =
u(θ). Under some regularity conditions (see page 179 in Ramanathan (1993)), we have the
Cramer-Rao inequality:

Var(θ̂) ≥
[u′(θ)]2

I(θ)
=
[1 + B′(θ)]2

I(θ)
,

where I(θ) is the Fisher information, and B(θ) = E(θ̂)− θ = u(θ)− θ is the bias. We then called

CR =
[1 + B′(θ)]2

I(θ)

the Cramer-Rao Lower Bound.

Proof. It is well-known that the correlation coeõcient of any two random variables Z,W is be-
tween −1 and 1. Hence, [Cov(Z ,W)]2 ≤ Var(Z)Var(W). Let

Z = θ̂ ,
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W = Sθ ,

we thus have E(Z) = u(θ), E(W) = E(Sθ) = 0, Var(W) = Var(Sθ) = I(θ).
Since

u(θ) = E(θ̂) = ∫ θ̂L(θ , x)dx,

we have

u′(θ) = ∫ θ̂
∂L
∂θ

dx = ∫ θ̂ (
1
L
∂L
∂θ
) Ldx = ∫ θ̂SθLdx = ∫ ZWLdx = E(ZW) = Cov(Z ,W).

aerefore,
[u′(θ)]2 = [Cov(Z ,W)]2 ≤ Var(Z)Var(W) = Var(θ̂)I(θ).

Clearly, if θ̃ is an unbiased estimator of θ, then the Cramer-Rao inequality becomes

Var(θ̃) ≥
1

I(θ)
.

aus, suppose that Var(θ̃) = 1
I(θ) = CR, then θ̃ is an MVUE (see Deûnition 44).

Finally,we present the following properties ofMLEwithout proof. Interesting readers should
refer to pages 192–198 in Ramanathan (1993).

aeorem 70 (Asymptotic Properties ofMLE). Given that θ̂ is an MLE of θ. aen

1. θ̂
p
Ð→ θ.

2.
√
n(θ̂ − θ) d

Ð→ N(0, [Σ(θ)]−1), where Σ(θ) = limn→∞
I(θ)
n .

3. [ I(θ̂)n ]
−1 p
Ð→ [Σ(θ)]−1. aat is, I(θ̂)

n is a consistent estimator of Σ(θ).

4. θ̂ is a BAN estimator of θ. (see Deûnition 47).

7.5 Asymptotic Variance and Limiting Variance

ae deûnition of the asymptotic variance of an estimator may vary from author to author or
situation to situation. Herewe follow Casella and Berger (2002). For an estimator, its asymptotic
variance is the variance of the corresponding limit distribution.

Deûnition 51 (Asymptotic Variance). For an estimator Tn, suppose that

kn(Tn − τ(θ))
d
Ð→ N(0, σ 2)

ae parameter σ 2 is called the asymptotic variance of Tn.
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For example, given {Xi}
n
i=1 ∼

i .i .d . (µ, σ 2) by CLT,

√
n(X̄ − µ) d

Ð→ N(0, σ 2)

then σ 2 is the asymptotic variance of X̄.
In calculating an asymptotic variance, we are tempted to proceed as follows:

1. Given an estimator Tn, we calculate the ûnite-sample variance Vae(Tn).

2. Calculate
lim
n→∞

knVar(Tn)

where kn is some normalizing constant,

ae second step motivates the following deûnition of limiting variance.

Deûnition 52 (Limiting Variance). For an estimator Tn, if

lim
n→∞

knVar(Tn) = τ2 <∞

where kn is a sequence of constants, then τ2 is called the limiting variance.

Note that in many cases, Var(Tn)→ 0 as n →∞, so we need a factor kn to force it to a limit.
According to Casella and Berger (2002),

“For calculations of the variances of samplemeans and other types of averages, the
limit variance and the asymptotic variance typically have the same value. But in
more complicated cases, the limiting variance will sometimes fail us.”

It has been shown in Section 6.1 of Lehmann and Casella (1998),1

σ 2 ≤ τ2

Example 32. Given {Xi}
n
i=1 ∼

i .i .d . N(θ , θ). Consider the following estimator of theta

θ̂(c) = cX̄ + (1 − c)σ̂ 2, X̄ =
1
n∑i

Xi , σ̂ 2 =
1
n∑i
(Xi − X̄n)

2, c ∈ [0, 1]

Clearly,
nσ̂ 2

θ
∼ χ2(n − 1)

Hence,

Var(σ̂ 2) =
θ2

n2 2(n − 1) =
2(n − 1)θ2

n2

1Lehmann and Casella (1998). aeory of Point Estimation, Springer-Verlag New York, 2nd edition.
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Var(θ̂) = c2Var(X̄) + (1 − c)2Var(σ̂ 2) + 2c(1 − c)Cov(X̄ , σ̂ 2) = c2
θ
n
+ (1 − c)2

2(n − 1)θ2

n2

Take kn = n, the limiting variance is

lim
n→∞

nVar(θ̂) = lim
n→∞

n [c2
θ
n
+ (1 − c)2

2(n − 1)θ2

n2 ]

= lim
n→∞
[c2θ + (1 − c)2

2(n − 1)θ2

n
]

= c2θ + 2(1 − c)2θ2

As for asymptotic variance, a bitmore derivation is needed. First note that
√
n[θ̂ − θ] =

√
n[c(X̄ − θ) + (1 − c)(σ̂ 2 − θ)]

=
√
n [c (∑i Xi

n
− θ) + (1 − c)(∑i(Xi − X̄)2

n
− θ)]

=
1
√
n
[c (∑

i
Xi − nθ) + (1 − c)(∑

i
(Xi − X̄)2 − nθ)]

Moreover, since

∑
i
(Xi − X̄)2 =∑

i
([Xi − θ] − [X̄ − θ])2 =∑

i
(Xi − θ)2 − n(X̄ − θ)2

Hence,

√
n[θ̂ − θ] =

1
√
n
[c (∑

i
Xi − nθ) + (1 − c)(∑

i
(Xi − θ)2 − nθ)] −

1
√
n
(1 − c)n(X̄ − θ)2

=
1
√
n
[c (∑

i
Xi − nθ) + (1 − c)(∑

i
(Xi − θ)2 − nθ)] + Rn

=
1
√
n
[∑

i
c(Xi − θ) +∑

i
(1 − c) [(Xi − θ)2 − θ]] + Rn

=
1
√
n
∑
i
(c(Xi − θ) + (1 − c) [(Xi − θ)2 − θ]) + Rn

where, by CLT and Slutsky’s theorem

Rn = −(1 − c)
√
n(X̄ − θ)2 = −(1 − c)

√
n(X̄ − θ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

dÐ→N(0,θ)

(X̄ − θ)
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

p
Ð→0

d
Ð→ 0

aus,
Rn

p
Ð→ 0

Let
Zi = c(Xi − θ) + (1 − c) [(Xi − θ)2 − θ]
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√
n[θ̂ − θ] =

1
√
n
∑
i
Zi + Rn

where
E(Zi) = c [E(Xi) − θ] + (1 − c) [E(Xi − θ)2 − θ] = 0

Var(Zi) = c2Var(Xi − θ) + (1 − c)2Var((Xi − θ)2) + 2c(1 − c)Cov (Xi − θ , (Xi − θ)2))

= c2Var(Xi − θ) + (1 − c)2Var((Xi − θ)2)

= c2θ + (1 − c)2(2θ2) = c2θ + 2(1 − c)2θ2

where we use the facts that
Xi − θ
√
θ
∼ χ2(1)

and Xi − θ ∼ N(0, θ) is a random variable with symmetric distribution around zero,

Cov (Xi − θ , (Xi − θ)2)) = E ((Xi − θ)3) − E(Xi − θ)E ((Xi − θ)2) = 0

By CLT,
1
n ∑i Zi − 0
√

Var(Z i)
n

d
Ð→ N(0, 1)

1
√
n
∑
i
Zi

d
Ð→ N(0,V)

where V = c2θ + 2(1 − c)2θ2. Hence, by Slutsky’s theorem,

√
n[θ̂ − θ] =

1
√
n
∑
i
Zi

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
dÐ→N(0,V)

+ Rn
¯
p
→0

d
Ð→ N(0,V)

aat is, the asymptotic variance of θ̂ is V = c2θ + 2(1 − c)2θ2.
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Chapter 8

Hypothesis Testing

In elementary statistics, we have learned how to conduct hypothesis tests using appropriate piv-
otal test statistics. However, no rationale was provided to suggest that they are best in any sense.
We now consider a method for deriving rejection region corresponding to tests that are most
powerful tests of a given size for testing simple hypothesis.

Let’s review some useful deûnitions and notations.

Hypothesis Suppose {Xi}
n
i=1 ∼

i .i .d . f (x , θ), where θ ∈ Θ. Any statement about θ is a hypothe-
sis. Suppose that

Θ0⋃Θ1 = Θ, Θ0⋂Θ1 = ∅,

then statement that H0 ∶ θ ∈ Θ0 is called a null hypothesis. Moreover, statement that H1 ∶ θ ∈ Θ1

is called an alternative hypothesis.

Test A statistical test represents a rule of action. Given some data, we use this rule to decide
whether we are able to reject or fail to reject the null hypothesis.

Simple and Composite Hypotheses If card(Θ0) = 1, it is called a simple hypothesis. On the
other hand, if card(Θ0) > 1, it is called a composite hypothesis. Note that card(A) denotes the
cardinality, which gives the number ofmembers of set A.

Critical Region It is also called a rejection region. It can be represented as

C(x) = {x′s for which we reject H0}

Type I and Type II Errors

1. Type I error: Rejecting H0 when it is true.

2. Type II error: Failing to reject H0 when it is false.
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Power of a Test
π(θ) = P(reject H0∣θ)

is called the power of the test. Hence,

P(Type I error) = P(reject H0∣θ ∈ Θ0),

P(Type II error) = P(fail to reject H0∣θ ∈ Θ1) = 1 − P(reject H0∣θ ∈ Θ1).

aat is,

1. If θ ∈ Θ0, π(θ) is the probability ofmaking a type I error.

2. If θ ∈ Θ1, π(θ) is the power.

Clearly, when θ ∈ Θ1, we deûne

β(θ) = P(Type II error) = 1 − π(θ).

Size of a Test
α =max

θ∈Θ0
P(Type I error) =max

θ∈Θ0
π(θ)

Hence, the size of a test is the largest probability ofmaking a type I error. α is also called the level
of signiûcance.

8.1 Most Powerful Tests
Deûnition 53 (MostPowerful (MP)Test). A test ofH0 ∶ θ = θ0 vs. H1 ∶ θ = θ1 based on a critical
region C is said to be amost powerful test of size α if

1. πC(θ0) = α

2. πC(θ1) ≥ πA(θ1) for any other critical region Awhere πA(θ0) = α.

ae following theorem shows how to derive amost powerful test.

aeorem 71 (Neyman-Pearson Lemma). Suppose that a random sample {Xi}
n
i=1 has joint pdf

f (x, θ), where θ ∈ Θ. If there exists a constant k ∈ (0,∞) such that

P (
f (x, θ1)
f (x, θ0)

≥ k ∣ θ = θ0) = α,

then themost powerful size-α test for H0 ∶ θ = θ0 vs. H1 ∶ θ = θ1 is given by

C(x) = {x ∶
f (x, θ1)
f (x, θ0)

≥ k} .
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Proof. Let A be another critical region of the same size α. aen

∫
C
f (θ0, x)dx = α = ∫

A
f (θ0, x)dx.

Now, let C̄ and Ā denote the complement of C and A, respectively,

∫
C
f (θ1, x)dx − ∫

A
f (θ1, x)dx,

= [∫
C⋂A

f (θ1, x)dx + ∫
C⋂ Ā

f (θ1, x)dx] − [∫
A⋂C

f (θ1, x)dx + ∫
A⋂ C̄

f (θ1, x)dx] ,

= ∫
C⋂ Ā

f (θ1, x)dx − ∫
A⋂ C̄

f (θ1, x)dx.

Note that in C, f (θ1, x) ≥ k f (θ0, x), and in C̄, f (θ1, x) < k f (θ0, x), which implies − f (θ1, x) >
−k f (θ0, x).

aerefore,

LHS = ∫
C⋂ Ā

f (θ1, x)dx − ∫
A⋂ C̄

f (θ1, x)dx,

> ∫
C⋂ Ā

k f (θ0, x)dx − ∫
A⋂ C̄

k f (θ0, x)dx,

= [∫
C⋂ Ā

k f (θ0, x)dx + ∫
A⋂C

f (θ0, x)dx] − [∫
A⋂ C̄

k f (θ0, x)dx + ∫
A⋂C

k f (θ0, x)dx] ,

= ∫
C
k f (θ0, x)dx − ∫

A
k f (θ0, x)dx,

= kα − kα = 0.

aat is,

∫
C
f (θ1, x)dx > ∫

A
f (θ1, x)dx.

8.2 UniformlyMost Powerful Tests

Deûnition 54 (Uniformly Most Powerful (UMP) Test). A test of H0 ∶ θ ∈ Θ0 vs. H1 ∶ θ ∈ Θ1

based on a critical region C is said to be a uniformlymost powerful test of size α if

max
θ∈Θ0

πC(θ) = α,

and for any other test based on critical region A that satisûesmaxθ∈Θ0 πA(θ) = α, we have

πC(θ) ≥ πA(θ)

for all θ ∈ Θ1.
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A UMP test o�en exists in the case of a one-sided composite alternative such as H1 ∶ θ > θ0
or H1 ∶ θ < θ0. A possible technique for determining a UMP test is ûrst to derive the Neyman-
Pearson test for a particular alternative value θ1, and then show that the test does not depend
on the speciûc alternative value. On the other hand, for the two-sided composite alternative
H1 ∶ θ ≠ θ0, it is not possible to ûnd a test that is UMP for every alternative value.

Example 33. Let {Xi} ∼i .i .d . N(θ , 1). We want to test H0 ∶ θ = θ0 vs. H1 ∶ θ = θ1, where θ0 < θ1.
Clearly, it can be shown that

f (θ1, x)
f (θ0, x)

= exp [
n

∑
i=1

(xi − θ0)2 − (xi − θ1)2

2
] .

By Neyman-Pearson Lemma, theMP test critical region for testing H0 ∶ θ = θ0 vs. H1 ∶ θ = θ1 is
given by

C(x) = {x ∶ exp [
n

∑
i=1

(xi − θ0)2 − (xi − θ1)2

2
] ≥ k} ,

= {x ∶
n

∑
i=1

(xi − θ0)2 − (xi − θ1)2

2
≥ log k} ,

= {x ∶
n

∑
i=1

xi ≥
log k
θ1 − θ0

+
n(θ1 + θ0)

2
} .

Now we need to ûnd out k. Given the size of the test is α, we have

α = P(x ∈ C ∣ θ = θ0) = P (X̄n ≥
log k

n(θ1 − θ0)
+
(θ1 + θ0)

2
∣ θ = θ0) ,

= P
⎛
⎜
⎝

X̄n − E(X̄n)
√
Var(X̄n)

≥
[

log k
n(θ1−θ0) +

(θ1+θ0)
2 ] − E(X̄n)

√
Var(X̄n)

∣ θ = θ0
⎞
⎟
⎠
,

= P
⎛
⎜
⎝

X̄n − θ
√ 1

n

≥
[

log k
n(θ1−θ0) +

(θ1+θ0)
2 ] − θ

√ 1
n

∣ θ = θ0
⎞
⎟
⎠
,

= P (
√
n(X̄n − θ0) ≥

log k
√
n(θ1 − θ0)

+

√
n(θ1 − θ0)

2
) ,

= P (N(0, 1) ≥
log k

√
n(θ1 − θ0)

+

√
n(θ1 − θ0)

2
) .

aus,

Zα =
log k

√
n(θ1 − θ0)

+

√
n(θ1 − θ0)

2
.
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So

C(x) = {x ∶
n

∑
i=1

xi ≥
log k
θ1 − θ0

+
n(θ1 + θ0)

2
} ,

= {x ∶
n

∑
i=1

xi ≥
√
nZα + nθ0} ,

= {x ∶ X̄n ≥ θ0 +
Zα
√
n
} .

Let’s see an example that UMP test exists for one-sided composite hypothesis.

Example 34. Let {Xi} ∼i .i .d . N(θ , 1). We want to test H0 ∶ θ = θ0 vs. H1 ∶ θ > θ0.
Now pick any θ1 > θ0. So following the previous example,Neyman-Pearson Lemma gives us

theMP test critical region for testing H0 ∶ θ = θ0 vs. H1 ∶ θ = θ1 as

C(x) = {x ∶ X̄n ≥ θ0 +
Zα
√
n
} .

Note that C(x) does not depend on θ1, so it is also an UMP test.

8.3 Likelihood Ratio Test

Deûnition 55. Suppose that a random sample {Xi}
n
i=1 has joint pdf f (x, θ), where θ ∈ Θ. Let

L(θ , x) = f (x, θ) denotes the likelihood function. A test statistic for testing H0 ∶ θ ∈ Θ0 vs.
H1 ∶ θ ∈ Θ1 is given by

λ(x) =
supθ∈Θ L(θ , x)
supθ∈Θ0

L(θ , x)
,

which is called a likelihood ratio test.

Clearly, the critical region is

C(x) = {x ∶ λ ≥ k} ,

such that

max
θ∈Θ0

P(λ ≥ k) = α.
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aeorem 72 (Asymptotic Distribution of LR test). Let random sample {Xi}
n
i=1 has joint pdf

f (x, θ), where θ ∈ Θ ⊆ Rk. Suppose that we would like to test the null hypothesis that

H0 ∶

⎛
⎜
⎜
⎜
⎜
⎜
⎝

θ1
θ2
⋮

θr

⎞
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

θ01
θ02
⋮

θ0r

⎞
⎟
⎟
⎟
⎟
⎟
⎠

with the alternative hypothesis H1 ∶ H0 is not true. Deûne

λ =
supθ∈Θ L(θ , x)
supθ∈Θ0

L(θ , x) =
L(θ̂)
L(θ̂0)

,

aen under H0,
2 log λ d

Ð→ χ2r .

Proof. Proof is based on the asymptotic properties of MLEs. See page 228–229 in Ramanathan
(1993).

8.4 Wald Test

Another popular test of θ = θ0 is theWald test. Given that anMLE estimator θ̂ is asymptotically
normally distributed (seeaeorem 70):

√
n(θ̂ − θ) d

Ð→ N(0, [Σ(θ)]−1),

where Σ(θ) = limn→∞
I(θ)
n .

aen under H0 ∶ θ = θ0,

W = (θ̂ − θ0)′I(θ̂)(θ̂ − θ0),

=
√
n(θ̂ − θ0)′
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
dÐ→N(0,Σ(θ0)]−1)

I(θ̂)
n
±
p
Ð→Σ(θ0)

√
n(θ̂ − θ0)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
dÐ→N(0,Σ(θ0)]−1)

,

d
Ð→ χ2r .

98



Chapter 9

ae Bootstrap

9.1 ae EmpiricalDistribution Function

Deûnition 56 (EmpiricalDistribution Function, EDF). Given a random sample {Xi}
n
i=1 ∼

i .i .d .

F(x). ae empirical distribution function F̂n is the CDF that putsmass 1
n at each data point Xi .

Formally,

F̂n(x) =
∑

n
i=1 1(Xi ≤ x)

n
,

where

1(Xi ≤ x) = {
1 if Xi ≤ x
0 if Xi > x

is an indicator function.

Clearly,
E(1(Xi ≤ x)) = 1 ⋅ F(x) + 0 ⋅ [1 − F(x)] = F(x),

E((1(Xi ≤ x))2) = 12 ⋅ F(x) + 02 ⋅ [1 − F(x)] = F(x),

and

Var(1(Xi ≤ x)) = E((1(Xi ≤ x))2) − [E(1(Xi ≤ x))]2 = F(x) − [F(x)]2 = F(x)[1 − F(x)].

Hence, we have

E[F̂n(x)] =
∑

n
i=1 E(1(Xi ≤ x))

n
=
nF(x)

n
= F(x),

and
Var[F̂n(x)] =

1
n2∑

i
Var(1(Xi ≤ x)) =

nF(x)[1 − F(x)]
n2 =

F(x)[1 − F(x)]
n

.

Furthermore, by WLLN,
F̂n(x)

p
Ð→ F(x).
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Finally, by CLT,

√
n(F̂n(x) − F(x))

d
Ð→ N(0, F(x)[1 − F(x)]).

9.2 Monte Carlo Simulations

Monte Carlo simulation is an important computer-aided tool in econometrics. ae word “simu-
lation” indicates that an artiûcial model of a real system is builded to study and understand the
system.ae name “Monte Carlo” is referred to the randomness inherent in the analysis.ae term
Monte Carlo Method was coined by S. Ulam and Nicholas Metropolis in reference to games of
chance, a popular attraction in Monte Carlo, Monaco. Many years ago, some gamblers studied
how they couldmaximize their chances ofwinning by using simulations to check the probability
of occurrence for each possible case. In summary,Monte Carlo simulation is amethod of anal-
ysis based on artiûcially recreating a chance process (usually with a computer), running itmany
times, and directly observing the results.

Let {xi}ni=1 be the data (observations) randomly drawn from a population distribution F. Let
Tn = Tn(x1, . . . , xn , θ) be a statistic of interest,where θ is a parameterwhich is in general assumed
to represent the distribution, F. aus, the exact distribution of Tn is

Gn(τ, F) = P(Tn ≤ τ∣F).

Since F (or θ) is unknown, Gn is in general unknown. Monte Carlo simulation uses numeri-
cal simulation to compute Gn(τ, F) for selected choices of F. ae Monte Carlo simulation is
conducted as follows.

1. ae researcher chooses θ and sample size n to construct a hypothetical data generating
process (DGP).

2. A random sample {x∗i }ni=1 is drawn from distribution F characterized by θ using the com-
puter’s random number generater. (To bemore precise, it should be called a “pseudo ran-
dom number generater” since the number generated is not truly random. However,mod-
ern pseudo random generators are accurate enough thatwe can ignore this fact.) ae gen-
erator generates sequences of values that appear to be drawn from a speciûed probability
distribution.

3. Calculate the statistic Tn = Tn(x∗1 , . . . , x∗n , θ) from the pseudo data.

4. Repeat steps 2 and 3 B times and store the results. Typically, B = 1000 or B = 5000.
aese results constitute a random sample of size B from the distribution of Tnb, where Tnb
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denotes the experiment result in the b-th draw. We then have an empirical distribution
function (EDF):

Ĝn(τ) =
1
B

B

∑
b=1

1(Tnb ≤ τ),

where 1(⋅) is the indicator function.

ae theoretical justiûcation for using simulation is the Fundamental aeorem of Statistics
(FTS). According to FTS, the EDF of a set of independent drawings of a random variable gener-
ated by some DGP converges to the true CDF of the random variable under that DGP. aat is,
since

Gn(τ) = P(Tn ≤ τ) = E(1(Tn ≤ τ)),

by WLLN, for any τ we have

Ĝn(τ) =
1
B

B

∑
b=1

1(Tnb ≤ τ)
p
Ð→ E(1(Tn ≤ τ)) = Gn(τ).

A Remark on Simulation For a random number generator, we use a number called seed to
determine the probability space. For example, in GAUSS, we use

RNDSEED 123587;

In RATS, we use

SEED 123587

In R, we use

set.seed(123587)

When programming your own simulation, it is important to set up a seed such that the sim-
ulation results can be replicated.

9.2.1 Applications ofMonte Carlo Simulations

ae typical purpose of aMonte Carlo is to investigate the performance of a statistical procedure
such as an estimator or a test. ae performance in general depends on sample size n and the
true data generating process F. For example, it is of interest to know the size and power of a par-
ticular test. Furthermore, wemay useMonte carlo simulation to approximate the small-sample
distribution of a particular estimate, and then compute its standard error or conûdence interval.
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9.2.2 Example: Empirical Power and Size of a t-test

Consider a simple regression model

yt = α + βxt + et .

When the sample is large, we know that the t-ratio is asymptotically N(0, 1) distributed,

t =
β̂

SE(β̂)
d
Ð→ N(0, 1).

under null hypothesis that H0 ∶ β = 0. In this example, we will investigate the empirical size and
empirical power of the t-statistic for the regression coeõcient.

ae DGP under H0 is as follows:
yt = 2.5 + et ,

where et is drawn from the t distributionwith 3 degrees of freedom. On the other hand, the DGP
under H1 is

yt = 2.5 + βxt + et ,

where xt ∼ N(0, 1). We consider β = 0.1, 0.5, 1.0 and −0.1, and then conduct the hypothesis test
of β = 0 under the 5% signiûcance level.

Recall that the size is deûned as

P(∣t∣ > 1.96 ∣ H0 is true),

while the power is deûned as
P(∣t∣ > 1.96 ∣ H1 is true).

We can also compute the size-adjusted power. Using the DGP under null,we can ûnd the critical
value (cv) t∗ so that

P(∣t∣ > t∗ ∣ H0) = 0.05.

aen the size-adjusted power is obtained by

P(∣t∣ > t∗ ∣ H1).

Table 9.1 reports the simulation results for diòerent values of β with sample size 25. Number
of replications is set to be 1000. ae empirical power is higher when the true parameter β is far
more from zero.

We can also investigate how sample size aòects the empirical size and power of a test. Table
9.2 reports the case that under alternative hypothesis, β = 0.1. Clearly, the power improveswhen
sample size gets larger.
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Table 9.1: Empirical Size and Power of the t-test

β Size True 5% cv (t∗) Power Size-adjusted Power

0.1 0.060 2.045 0.082 0.067
0.5 0.060 2.045 0.648 0.615
1.0 0.060 2.045 0.993 0.991
−0.5 0.060 2.045 0.632 0.595

Table 9.2: Eòects of Sample Size

Sample Size Size True 5% cv (t∗) Power Size-adjusted Power

25 0.060 2.045 0.082 0.067
50 0.052 1.966 0.099 0.099
100 0.059 2.060 0.156 0.132

1000 0.059 2.005 0.900 0.889

9.3 Bootstrap

ais technique was invented by Bradley Efron (1979, 1981, 1982) and further developed by Efron
and Tibshirani (1993). “Bootstrap”means that one available sample gives rise to many others by
resampling (a concept reminiscent of pulling yourself up by your own bootstrap). In general,
bootstrap is developed for inferential purposes (Efron, 1981, 1982).

Conûdence intervals, hypothesis testing, and standard errors are all based on the idea of
the sampling distribution (or asymptotic distribution) of a statistic. In many settings, we have
no model for the population to construct exact sampling distribution. Furthermore, we cannot
obtain enough sample to ensure the large sample theory works (the small sample problem). ae
bootstrapmayhelpus out of these troubles.ae idea of bootstrap is simple: use the one samplewe
have as though it were the population, taking many resamples from it to construct the bootstrap
distribution. aen in statistical inference, use the bootstrap distribution in place of the sampling
distribution.

Before discussing what bootstrap is, let’s look at an example showing the poor performance
of asymptotic approximation.

AnExample of thePoorPerformance of AsymptoticApproximation Consider the following
regression model

{yi , x1i , x2i}ni=1
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yi = β0 + x1iβ1 + x2iβ2 + ei ,

(
x1i
x2i
) ∼ N(0, I2),

ei ∼ N(0, 32),

and β0 = 0, β1 = 1, β2 = 0.5, n=300.
ae parameter of interest is

θ =
β1
β2
.

Hence, the true value of θ is θ0 = 2.
We can estimate θ by

θ̂ =
β̂1
β̂2
.

According to DeltaMethod,

t(θ̂) =
θ̂ − θ
Sn(θ̂)

d
Ð→ N(0, 1)

where
Sn(θ̂) =

√
n−1(Ĥ′βV̂ Ĥβ),

Ĥβ =

⎛
⎜
⎜
⎝

0
1/β̂2
−β̂1/β̂22

⎞
⎟
⎟
⎠

,

and V̂ is the estimated variance-covariancematrix.
ae exact distribution of t(θ̂) can be calculated by simulation with 10000 replications. We

plot the exact distribution of t(θ̂) accompany with the standard normal distribution in Figure
9.1. Clearly, there is a dramatic divergence between the exact and asymptotic distributions. ae
exact distribution is skewed and not symmetric. ae probability P(∣t∣ > 1.96) = 0.084 = 8.4%,
which suggests an empirical size larger than 5%. aat is, the asymptotic test over-reject in ûnite
sample. ais simple simulation result presents that even the sample size is large (n = 300),
asymptotic approximation is poor. ae bootstrap may rescue us.

9.4 Deûnition of the Bootstrap

Assume data {xi}ni=1 come from an unknown distribution function F. Let

Tn = Tn(x1, . . . , xn , F)
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Figure 9.1: Distributions of t(θ̂): Exact Distribution (solid line) and Asymptotic Distribution
(dashed line, N(0, 1))
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be a statistic of interest. Note that in most cases the statistic is written as Tn = Tn(x1, . . . , xn , θ),
where θ is an unknown parameter. For example,

Tn = θ̂ , (estimator)

Tn = θ̂ − θ , (bias)

Tn =
(θ̂ − θ)
S(θ̂)

, (t-statistic)

Since that the parameter θ itself is a function of F, i.e., θ = θ(F), it is clear that

Tn = Tn(x1, . . . , xn , θ) = Tn(x1, . . . , xn , θ(F)) = Tn(x1, . . . , xn , F).

Let
Gn(τ, F) = P(Tn ≤ τ∣F)

be the exact distribution function of Tn when the data are sampled from the distribution F.
Clearly, Tn depends on {xi}ni=1 and θ, so its distribution depends on F and θ. But θ = θ(F),
so G depends on F through two channels: {xi}ni=1 and θ. Since the distribution function of Tn

depends on F, so does each moment of Tn. For example, if Tn = X̄n, then VarF(X̄n) =
σ 2
n , where

σ 2 = ∫ (x − µ)2dF(x) and µ = ∫ xdF(x). aus, the variance of Tn is a function of F.

Remarks

• Ideally, inference would be based on exact sampling distribution, Gn(τ, F). ais is gener-
ally impossible since F is unknown.

• Asymptotic inference isbasedon approximatingGn(τ, F)withG∞(τ, F) = limn→∞Gn(τ, F).
When G∞(τ, F) = G∞(τ) does not depend on F, we say that Tn is asymptotically pivotal
and use the distribution function G∞(τ) for inferential purposes. For example, the limit
distribution ofmany econometric statistics are N(0, 1) or χ2,which is independent of F or
θ. In most applications, however, asymptotic pivotal statistics are not available. Moreover,
even if the asymptotic pivotal statistic is available, the asymptotic approximation may be
very poor as shown in the above example.

Efron (1979) proposed a diòerent approximation: the bootstrap. aemost attractive feature
of the bootstrap method is that it can be used even when Tn is complicated to compute and
diõcult to analyze. It is not necessary for Tn to have a known asymptotic distribution.

It is proposed that ûrst estimate F by a consistent estimate F̂n, and then plug Fn intoGn(τ, F)
to obtain

G∗n(τ) = Gn(τ, F̂n)
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as an estimate ofGn(τ, F). We callG∗n(τ) the bootstrap distribution, and the bootstrap inference
is based on G∗n(τ).

Recall that F(x) = P(Xi ≤ x) = E(1(Xi ≤ x)), where 1(⋅) is the indicator function. aere-
fore, according to analogy principle, a natural choice of Fn is the empirical distribution function
(EDF):

F̂n(x) =
1
n

n

∑
i=1

1(Xi ≤ x).

By theWLLN, for any x,
F̂n(x)

p
Ð→ F(x),

a consistent estimator.
Hence, under some conditions, we have

lim
n→∞

G∗n(τ) = Gn(τ, F)

and
lim
n→∞

G∗n(τ) = G∞(τ, F)

aat is, the bootstrap distribution function, G∗n(τ) is close to the ûnite sampling distribution of
Tn: Gn(τ, F)when n is large. Sincewe know that the asymptotic distribution of Tn isG∞(τ, F) =
limn→∞Gn(τ, F), the bootstrap distribution function, G∗n(τ) is also close to the asymptotic dis-
tribution of Tn: G∞(τ, F) when n is large.

Here, we have used a very sloppy notations and descriptions to give you some ideas about
the consistency of the bootstrap. For rigorous treatments, see Horowitz (2001). Although some
unusual conditionsmay cause inconsistency,Horowitz (2001) suggests that the bootstrap is con-
sistent in most applications in econometric practice.

Again, use Tn = X̄n as an example, and suppose that we are interested in VarF(Tn). ae
bootstrap idea has two steps:

Step 1: Estimate VarF(Tn) with VarF̂n(Tn).

Step 2: Approximate VarF̂n(Tn) using Monte Carlo simulation.

9.5 Nonparametric Bootstrap

Efron (1979) proposed aMonte Carlo simulation to approximateG∗n . ae procedure is as follows.

Step 1: Draw a bootstrap sample {x∗i }ni=1 from {xi}ni=1 with replacement. Note that the
bootstrap sample will necessarily have some ties andmissions.
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Step 2: ae bootstrap statistic T∗n = Tn(x∗1 , . . . , x∗n , Fn) is calculated for each bootstrap
sample. When the statistic Tn is a function of F, it is typically through dependence on a
parameter, θ. Hence, we have the bootstrap statistic T∗n = Tn(x∗1 , . . . , x∗n , θn). Typically,
θn = θ̂.

Step 3: Repeat Steps 1 and 2 B times and yield B values of T∗nb: {T∗n1, . . . , T
∗
nB}. aus, the

EDF of T∗nb is

Ĝ∗n(τ) =
1
B

B

∑
b=1

1(T∗nb ≤ τ).

As B →∞,
Ĝ∗n(τ)

p
Ð→ G∗n(τ).

It is desirable for B to be large, for instance, B = 1000 or B = 5000.

Tips forNonparametricBootstrap Here is apractical guide to conduct resampling from {x1, x2, . . . , xn}.

1. First, we draw n random numbers υ’s from the uniform distribution, U[0, 1].

2. For each υi , compute

κi = {
round(υi × n) if υi ≠ 0,
1 if υi = 0.

Where round is an operator to round to the next integer. Clearly, κi ∈ [1, n].

3. Pick up the bootstrap sample x∗i as the κi-th xi .

For example, suppose n = 10 and υi are

0.631, 0.277, 0.745, 0.202, 0.914, 0.136, 0.851, 0.878, 0.120, 0.00

aen κi will be
7, 3, 8, 3, 10, 2, 9, 9, 2, 1

aerefore, the bootstrap sample is

{x7, x3, x8, x3, x10, x2, x9, x9, x2, x1}

Clearly, as claimed above, the bootstrap samplewill necessarily have some ties (such as x2, x3 and
x9) andmissions (such as x4, x5 and x6).
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Bootstrapping inDiòerent Statistical So�wares InGAUSS, youneed towrite your own boot-
strapping program following the procedure mentioned above. For RATS, an instruction called
BOOT is available. STATA provides amore sophisticated command: bootstrap.

Example 35 (R Code forNon-Parametric Bootstrap).

set.seed(567812)
# I.I.D. standard normal random variables
X = rnorm(10,0,1)
X
# Bootstrap resampling
Xstar = sample(X,replace=T)
Xstar

9.6 Bootstrap Bias and Standard Error

9.6.1 Bootstrap Estimation of Bias

ae bias of θ̂ is
ωn = E(θ̂ − θ).

Let Tn(θ) = θ̂ − θ, then bias can be rewritten as

ωn = E[Tn(θ)] = ∫ τdGn(τ, F).

ae bootstrap counterpart are
θ̂∗ = θ̂(x∗1 , . . . , x∗n),

and
T∗n = θ̂∗ − θ̂ .

ae bootstrap bias is
ω∗n = ∫ τdG∗n(τ),

and the simulation estimate of ω∗n is

ω̂∗n =
1
B

B

∑
b=1

T∗nb

=
1
B

B

∑
b=1
(θ̂∗b − θ̂)

= (
1
B

B

∑
b=1

θ̂∗b) − θ̂

= θ̂∗ − θ̂ .
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Given θ̂ is biased, the unbiased estimator of θ would be

θ̃ = θ̂ − ωn ,

so that E(θ̃) = E(θ̂) − E(θ̂) + θ = θ. ae unbiased bootstrap estimator would be

θ̃∗ = θ̂ − ω̂∗n

= θ̂ − (θ̂∗ − θ̂)

= 2θ̂ − θ̂∗.

9.6.2 Bootstrap Estimation of Variance (Standard Error)

Let Tn = θ̂, then variance is

Vn = Var(θ̂)

= Var(Tn)

= E(Tn − E[Tn])
2.

Let T∗n = θ̂∗, then its variance is
V∗n = E(T∗n − E(T∗n ))2

ae simulation estimate of V∗n is

V̂∗n =
1
B

B

∑
b=1
(θ̂∗b − θ̂∗)

2.

A bootstrap standard error is
√
V̂∗n .

Early work on the application of bootstrap methodsmerely consisted of using the bootstrap
distribution to get standard errors. But as commented by BruceHansen:

While this standard errormay be calculated and reported, it is not clear if it is useful.
ae primary use of asymptotic standard errors is to construct asymptotic conûdence
intervals, which are based on the asymptotic normal approximation to the t-ratio.
However, the use of the bootstrap presumes that such asymptotic approximations
might be poor, in which case the normal approximation is suspected. It appears
superior to calculate bootstrap conûdence intervals.

Hence, it seemsmake little sense to purely replace the asymptotic standard errorswith bootstrap
standard errors. However, when constructing bootstrap p-values, we still need to compute the
bootstrap standard errors ûrst.
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9.7 Bootstrap Conûdence Interval

9.7.1 Percentile Intervals

Suppose that Gn(τ, F) is the distribution function of Tn. Let qn(α, F) be its quantile function
such that

α = Gn(qn(α, F), F).

Let
q∗n(α) = qn(α, Fn)

denote the quantile function of the bootstrap distribution. Given Tn = θ̂ be the estimate of a
parameter of interest. In 100 ⋅ (1 − α)% CI of sample, θ̂ is covered by the region

[qn (
α
2
) , qn (1 −

α
2
)] .

aismotivates a conûdence interval for θ proposed by Efron

CI∗ = [q∗n (
α
2
) , q∗n (1 −

α
2
)] .

ais is o�en called the percentile conûdence interval. ae simulation estimate of CI is

ĈI
∗
= [q̂∗n (

α
2
) , q̂∗n (1 −

α
2
)] ,

where q̂∗n(⋅) is the sample quantile of the bootstrap statistics {T∗n1, . . . , T∗nB}. aat is, we simu-
late {T∗n1, . . . , T∗nB}, then sort them in ascending order. Finally, ûnd the Bα-th T∗nb as the quantile
q∗n(α).ae interval ĈI is apopular bootstrap conûdence interval o�enused in empirical practice.

Remarks on Percentile Intervals

• For instance, with 1000 replications, a 95% interval is obtained by the 25th and 975th T∗nb.

• Advantages

1. Easy to compute.

2. Does not require S(θ̂)

• Disadvantages:

1. Itmay perform poorly when θ̂ does not have symmetric distribution.
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9.7.2 Percentile-t Equal-tailed Intervals

Let

Tn(θ) =
θ̂ − θ
S(θ̂)

.

Since

1 − α = P (qn (
α
2
) ≤ Tn(θ0) ≤ qn (1 −

α
2
))

= P (qn (
α
2
) ≤

θ̂ − θ0
S(θ̂)

≤ qn (1 −
α
2
))

= P (θ̂ − S(θ̂)qn (1 −
α
2
) ≤ θ0 ≤ θ̂ − S(θ̂)qn (

α
2
)) ,

an exact 100 ∗ (1 − α) conûdence interval for θ0 would be

[θ̂ − S(θ̂)qn (1 −
α
2
) , θ̂ − S(θ̂)qn (

α
2
))] .

aismotivates a bootstrap analog

ĈI
∗
t = [θ̂ − S(θ̂)q̂∗n (1 −

α
2
) , θ̂ − S(θ̂)q̂∗n (

α
2
))] ,

where q̂∗n(⋅) is the sample quantile of the bootstrap statistics {T∗n1, . . . , T∗nB}, where

T∗n =
θ̂∗ − θ̂
S(θ̂∗)

ais is o�en called a percentile-t conûdence interval. Note that unless the distribution of the T∗n
happens to be symmetric around the origin, this will not be a symmetric interval.

9.8 Bootstrap P-values (Hypothesis Testing)

9.8.1 One-sided Tests

Suppose we want to test H0 ∶ θ = θ0 against H1 ∶ θ < θ0 at signiûcance level α. Let

Tn =
θ̂ − θ
S(θ̂)

be the test statistic of interest. We ûrst simulate the bootstrap distribution of

T∗n =
θ̂∗ − θ̂
S(θ̂∗)

,
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where S(θ̂∗) is the bootstrap standard error. We then ûnd the bootstrap critical value q∗n(1 − α)
such that

P(T∗n > q∗n(1 − α)) = α,

and reject H0 if Tn(θ0) > q∗n(1 − α).
On the other hand, wemay compute the bootstrap p-value:

p∗ =
1
B

B

∑
b=1

1(T∗nb > Tn(θ0)).

9.8.2 Two-sided Tests

Suppose we want to test H0 ∶ θ = θ0 against H1 ∶ θ ≠ θ0 at signiûcance level α. Let

Tn =
θ̂ − θ
S(θ̂)

be the test statistic of interest. Again, simulate the bootstrap distribution of

T∗n =
θ̂∗ − θ̂
S(θ̂∗)

.

Sort ∣T∗nb∣ and ûnd 100 ⋅ (1 − α)% quantile, q∗n(1 − α). Reject H0 if

∣Tn(θ0)∣ > q∗n(1 − α).

ae bootstrap p-value is:

p∗ =
1
B

B

∑
b=1

1(∣T∗nb∣ > ∣Tn(θ0)∣).

Remarks

• Note that the bootstrap test statistic T∗n is centered at the estimate θ̂, and the standard
error, S(θ̂∗) is calculated on the bootstrap sample. aat is, T∗n = (θ̂∗ − θ̂)/S(θ̂∗) butNOT
(θ̂∗ − θ0)/S(θ̂∗) or (θ̂∗ − θ̂)/S(θ̂).

ae guideline is proposed by Hall and Wilson (1991) and is o�en referred to as the Hall
andWilson rule. As suggested by Hansen (2006), he states “[w]hen in doubt use θ̂”. He
also emphasizes that using θ0 rather than θ̂ is a “typical mistakemade by practitioners”.

However, as indicated in Maddala and Kim (1998), the guideline has been violated in
econometric practice (particularly in time-series econometrics) BUT with good reasons.
We will talk about this later.
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• ae bootstrap tests are invariant to strictlymonotonic transformation of the test statistic.
If Tn is a test statistic, and g(Tn) is a strictly monotonic function of it, then a bootstrap
based on g(Tn) will yield exactly the same inferences as a bootstrap test based on Tn. ae
reason for this is simple. ae position of Tn(θ0) in the sorted list of T∗nb is exactly the same
as the position of g(Tn(θ0)) in the sorted list of g(T∗nb).

9.9 Bootstrap Methods for Regression Models

Consider the following regression model:

yt = βxt + εt

εt ∼i .i .d . (0, σ 2).

Suppose that we are interested in testing H0 ∶ β = β0.
We can of course use nonparametric bootstrap to sample (y, x) pairs from data randomly

with replacement. It is fully nonparametric, and works in nearly any context without imposing
any condition. However, it may be ineõcient in contexts where more is known about F. For
instance, the regression model considered above.

aerefore, we turn to another bootstrap method, which is typically called residual bootstrap.
ae procedure is as follows.

• Step 1: Estimate the regressionmodel and obtain estimator, β̂ and σ̂ . aen get the residuals
ε̂ = {ε̂1, . . . , ε̂T}.

• Step 2: Get bootstrap residuals, ε∗ from {ε̂1, . . . , ε̂T} by EITHER

– nonparametricmethod: randomly sample from {ε̂1, . . . , ε̂T} with replacement,OR

– parametricmethod: Generate bootstrap residuals ε∗ from aparametric distribution,
such as ε∗t ∼ N(0, σ̂ 2).

• Step 3: ae bootstrap sample of regressor, x∗t can be generated by (1) nonparametric boot-
strap, (2) parametric bootstrap or simply (3) x∗t = xt .

• Step 4: Consider two sampling schemes for the generation of the bootstrap samples

S1 ∶ y∗t = β̂x∗t + ε∗t
S2 ∶ y∗t = β0x∗t + ε∗t

Both use ε∗ but they diòer the way y∗t is generated.
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• Step 5: Consider two t-statistics

T1 ∶ Tn =
β̂∗ − β̂
S(θ̂∗)

T2 ∶ Tn =
β̂∗ − β0
S(θ̂∗)

Four diòerent combinations [S1,S2] × [T1,T2] can be applied. Note that if the regressor in-
clude lagged dependent variables, for instance,

yt = βyt−1 + εt ,

the bootstrap DGP is implemented recursively, so that y∗t depends on its own lagged values.
Youmay use the unconditional mean, the pre-sample value or drawings from the unconditional
distribution of yt as the starting value. In practice, wemay generate T + R bootstrap sample and
then discard the ûrst R observation to avoid the eòects of initial values. Typically, R = 50.

Remarks

1. Clearly, S1 ×T1 is consistent with theHall andWilson rule.

2. VanGiersbergen andKiviet (1993) suggest, on the basis of aMonte Carlo study of anAR(1)
model, the use of S2 × T2 is better than the use of S1 × T1 in ûnite sample. However, the
limiting distributions of T1 under S1 and T2 under S2 are identical even with dynamic
models. Finally, they suggest that S1 ×T2 or S2 ×T1 should not be used. aat is the reason
in most applications of Time-series econometrics, we do not follow the Hall and Wilson
rule.

3. It is advisable to rescale the residuals so that they have correct variance:

ε̈t ≡ (
T

T − k
)
1/2

ε̂t .

aen the bootstrap ε∗ is resampled from ε̈.

4. It is clear that a residualbootstrapwithnonparametricmethod in Step 2 is a semi-parametric
bootstrap. However, in practice, if nonparametricmethod is used in Step 2, it is generally
called the nonparametric bootstrap. On the other hand, if parametric method is used in
Step 2, it is clearly a parametric bootstrap.

5. Finally, in Step 1,we obtain the unrestricted residuals ε̂ from unrestricted estimation. How-
ever,MacKinnon (2006) has shown that in AR(1) model with high persistency (AR coef-
ûcient is equal to 0.9), using restricted residuals ε̃ from restricted estimation that impose
the restrictions of the null hypothesis works extremely well in small sample. If sample size
is large, it seems to make little diòerence which residuals we use.
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9.10 Some Final Remarks on the Bootstrap

1. In section 9.9, we have shown how to use residual bootstrap to implement bootstrap for
dependent data (time-series data). aemajor other way of bootstrapping dependent pro-
cesses is to divide the data sequence into blocks, and resample the blocks rather than in-
dividual data values. ais approach is called block bootstrap.

2. In most cases, bootstrap tests work better than the asymptotic tests. However, here are
situations in which bootstrap tests perform badly.

(a) Underlying residuals are serially correlated.

(b) Underlying residuals are heteroskedastic.

(c) Simultaneous equation models.

3. For somemore surveys of the bootstrap method, seeMacKinnon (2002) andMacKinnon
(2006).
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Chapter 10

Stochastic Process

10.1 Stochastic Process
Deûnition 57. A stochastic process is a sequence of random variables

{X(t), t ∈ T},

where T is called the index set for the process.

In many applications involving stochastic process, the index t is thought of as time. If the
index for the random variables is interpreted as representing time, the stochastic process is called
a time series.

For a ûxed t, the random variable X(t) has its own distribution. ae outcome X(t) = x is
called the state of the stochastic process, and the state is an element of what is termed the state
space, S. ae state space could be either countable or uncountable.

If the distribution is unchanged over time, the time series is said to be stationary (a formal
deûnition will be given later).

If the set T is countable (t = 0,±1,±2,±3, . . .), X(t) is called a discrete time series. If the set
T is uncountable (−∞ < t <∞), it is called a continuous time series. Generally, we use Xt rather
than X(t) to denote a discrete time series so that the notation alone can o�en help describe a
key feature of the process.

Deûnition 58 (JointDistribution). Given a stochastic process {Xt}
n
t=1. ae joint density is

f (x1, x2, . . . , xn) = f (xn∣x1, x2 . . . , xn−1) f (xn−1∣x1, x2 . . . , xn−2)⋯ f (x3∣x1, x2) f (x2∣x1) f (x1),

=
n

∏
i=1

f (xi ∣pasti).

Deûnition 59 (Strictly Stationary Process). A stochastic process {Xt} is said to be strictly sta-
tionary if the joint distribution of (Xt , Xt−1, . . . , Xt−k) is independent of t for all k.
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For instance, the joint distribution of (X5, X2) is the same as that of (X11, X8). Moreover, if
{Xt} is strictly stationary, so is { f (Xt)}, where f (⋅) is continuous.

Deûnition 60 (Weakly Stationary Process). A stochastic process {Xt} is said to be weakly sta-
tionary (or covariance stationary) if

1. E(X2
t ) <∞.

2. E(Xt) = µ is independent of t.

3. Cov(Xt , Xt−k) = γ(k) is independent of t for all k.

Where γ(k) is called the autocovariance function.

Note that

1. γ(0) = Cov(Xt , Xt) = Var(Xt).

2. γ(k) = γ(−k) if {Xt} is weakly stationary.

We can present some examples of stochastic processes. A very important class of weakly
stationary process is a white noise process, a process with zero mean and no serial correlation.

Deûnition 61 (White Noise Process). A weakly stationary process {Xt} is called a white noise
process if

E(Xt) = 0,

Cov(Xt , Xt−k) = 0 for k ≠ 0.

Moreover, a special case of a white noise process is deûned below.

Deûnition 62 (IndependentWhiteNoise Process). If {Xt} is a i.i.d. random sequence with

E(Xt) = 0,

Var(Xt) <∞,

then it is called an independent white noise process.

Deûnition 63 (Random Walk). Let X1, X2, . . . , be i.i.d. random variables with E(Xi) = 0 and
E(X2

i ) < ∞. Deûne S0 = 0 and St = ∑t
i=1 Xi for t ≥ 1. ae the stochastic process {St} is called a

random walk.

Note that a random walk process can be represented as

St+1 = St + Xt+1.
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10.2 Martingales

Deûnition 64 (Martingales). A stochastic process {Xt} is called amartingale if

E(Xt+1∣Xt , Xt−1, . . . , X1) = Xt .

Here is a theorem that is helpful in time-series forecasting andmacroeconomic theory.

aeorem 73. If a stochastic process {Xt} is amartingale and let It = {Xt , Xt−1, . . . , X1}, then

E(Xt+k ∣It) = Xt .

Proof. Since {Xt} is amartingale,

E(Xt+k ∣It+k−1) = E(Xt+k ∣X1, X2, . . . , Xt , Xt+1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Z1

, Xt+2, . . . , Xt+k−1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Z2

) = Xt+k−1.

aat is
E(Xt+k ∣Z1,Z2) = Xt+k−1.

Take a condition expectation (conditional on Z1) on both sides,

E[E(Xt+k ∣Z1,Z2)∣Z1] = E[Xt+k−1∣Z1].

Since by SCSWR (seeaeorem 13), the le� hand side of the above equation is

E[E(Xt+k ∣Z1,Z2)∣Z1] = E(Xt+k ∣Z1),

we thus have
E(Xt+k ∣Z1) = E(Xt+k−1∣Z1).

Using the same argument, we can obtain

E(Xt+k−1∣Z1) = E(Xt+k−2∣Z1),

and so on and so forth. aerefore,

E(Xt+k ∣Z1) = E(Xt+1∣Z1),

or
E(Xt+k ∣X1, X2, . . . , Xt) = E(Xt+1∣X1, X2, . . . , Xt) = Xt .

Where the second equality comes from the fact that {Xt} is amartingale.
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Deûnition 65 (Martingale Diòerence Sequences,MDS). A sequence {Yt} is said to be amar-
tingale diòerence sequence if

E(Yt+1∣Y1,Y2, . . . ,Yt) = 0.

Clearly, if {Yt} is aMDS, then for all j ≥ 1,

E(Yt ∣Yt− j) = E[E(Yt ∣Yt−1,Yt−2, . . . ,Y1)∣Yt− j] = E[0∣Yt− j] = 0.

Hence,
E(Yt) = E[E(Yt ∣Yt− j)] = 0.

Moreover,

Cov(Yt ,Yt−k) = E(YtYt−k),

= E[E(YtYt−k ∣Yt−k)],

= E[Yt−kE(Yt ∣Yt−k)],

= E[Yt−k ⋅ 0] = 0.

You should try to show the following two properties:

1. If Yt is amartingale, then ∆Yt is aMDS.

2. If Xt is aMDS, then

Yt =
t

∑
i=1

Xi = X1 + X2 +⋯ + Xt

is amartingale.

10.3 Markov Process
Deûnition 66 (Markov Chain). Let Xt be a random variable that can assume only an integer
value with state space, S = {1, 2, . . . ,N}. A (time-homogeneous) Markov chain is a discrete time
and discrete state stochastic process {Xt , t = 0, 1, 2, . . .}which satisûes the condition of one-step
Markov dependence. Namely,

P(Xt = j∣Xt−1 = i , Xt−2 = k, . . . , X0 = m) = P(Xt = j∣Xt−1 = i),

for all t ≥ 1 and all { j, i , k, . . . ,m} ∈ S. Moreover, we require that

P(Xt = j∣Xt−1 = i) = P(X1 = j∣X0 = i)

for all t and all states i , j ∈ S.
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aat is, a Markov chain moves to a future state with probabilities depending only on the
current state. Information on states prior to the current state do not alter the probabilities. And
the condition that P(Xt = j∣Xt−1 = i) = P(X1 = j∣X0 = i) is called a time-homogeneous condition.
We will omit the term “time-homogeneous” without confusion that all of the Markov chains
considered in this lecture note are time-homogeneous.

Moreover, the conditional probability P(Xt = j∣Xt−1 = i) is called the transition probability.
and typically denoted as pi j. Note that

Pi1 + pi2 +⋯ + piN = 1.

ae transition probabilities pi j are o�en arranged in an (N × N) square matrix P known as the
transition matrix of theMarkov chain:

P =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p11 p12 ⋯ p1N
p21 p22 ⋯ p2N
⋮ ⋯ ⋯ ⋮

pN1 pN2 ⋯ pNN

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Note that in the transition matrix, the sum of each row must equal one and all entries are non-
negative. Moreover, a state j is absorbing if p j j = 1. Finally, for aMarkov chain, the joint pdf of
{X1, X2, . . . , Xn} can be simpliûed to

f (x1, x2, . . . , xn) = f (xn∣xn−1) f (xn−1∣xn−2)⋯ f (x3∣x2) f (x2∣x1) f (x1).

aeorem 74 (Chapman-Kolmogorov I). Let {Xt , t = 0, 1, 2, . . .} be a Markov chain with state
space S and deûne p(m.n)

i j = P(Xn = j∣Xm = i) for n > m and i , j ∈ S. aen

p(m,n)
i j =∑

k∈S
p(m,r)
ik p(r,n)k j ,

for m < r < n.

Proof. By law of total probability,

p(m,n)
i , j = P(Xn = j∣Xm = i),

=∑
k∈S

P(Xn = j, Xr = k∣Xm = i).
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But

∑
k∈S

P(Xn = j, Xr = k∣Xm = i)

=∑
k∈S

P(Xn = j, Xr = k, Xm = i)
P(Xm = i)

=∑
k∈S

P(Xn = j, Xr = k, Xm = i)
P(Xr = k, Xm = i)

P(Xr = k, Xm = i)
P(Xm = i)

=∑
k∈S

P(Xn = j∣Xr = k, Xm = i)P(Xr = k∣Xm = i)

=∑
k∈S

P(Xn = j∣Xr = k)P(Xr = k∣Xm = i)

=∑
k∈S

p(r,n)k j p(m,r)
ik

=∑
k∈S

p(m,r)
ik p(r,n)k j

We now deûne the n-step transition probability as

p(n)i j = p
(t,t+n)
i j = p(Xt+n = j∣Xt = i),

and thematrix with p(n)i j as P(n). aen the Chapman-Kolmogorovaeorem I can be restated as
the following theorem.

aeorem 75 (Chapman-Kolmogorov II). Let {Xt , t = 0, 1, 2, . . .} be aMarkov chain with state
space S and deûne p(n)i j = P(Xt+n = j∣Xt = i) for i , j ∈ S. aen

p(a+b)i j =∑
k∈S

p(a)ik p(b)k j .

Proof. Simply set m = 0, r = a, and n = a + b.

According toChapman-Kolmogorov II, it is nothingmore than the equation formatrixmul-
tiplication. aat is, Chapman-Kolmogorov II implies that

P(a+b) = P(a)P(b).

aeorem 76. Given the n-step transition matrix P(n), we have

P(n) = Pn .
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Proof. By deûnition, P(1) = P. Using Chapman-Kolmogorov II, we have

P(2) = P(1)P(1) = PP = P2,

and

P(3) = P(2)P(1) = P2P = P3.

Continuing this way, it can be shown that

P(n) = Pn .

Let µn = [µn(1), µn(2), . . . , µn(N)] be a row vector where

µn(i) ≡ P(Xn = i)

is themarginal probability that the chain is in state i at time n. aen

µn(i) = P(Xn = i),

=∑
i
P(Xn = i , X0 = i),

=∑
i
P(Xn = i∣X0 = i)P(X0 = i),

=∑
i
p(n)i j P(X0 = i),

=∑
i
µ0(i)p

(n)
i j .

aat is,

µn = µ0Pn .
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10.4 Continuous-Time Stochastic Process

Deûnition 67 (Winer Process). W(r) ∶ r ∈ [0, 1] ↦ R, a continuous-time stochastic process
is called aWiner process or standard Brownian Motion process if the process has the following
properties

1. W(0) = 0.

2. W(r) ∼ N(0, r).

3. For 0 < r1 < r2 < ⋯ < rk < 1,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

W(r1) −W(0)
W(r2) −W(r1)

⋮

W(rk) −W(rk−1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∼ N

⎛
⎜
⎜
⎜
⎜
⎜
⎝

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
⋮

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

r1 0 ⋯ 0
0 r2 − r1 ⋮

⋮ ⋱ 0
0 ⋯ 0 rk − rk−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎞
⎟
⎟
⎟
⎟
⎟
⎠

,

that is,W(r) has independent increments.

10.5 Asymptoticaeory for Stochastic Process

Deûnition 68 (Ergodicity). A stationary time series is ergodic if

γ(k)Ð→ 0 as k Ð→∞

aeorem 77 (Ergodicaeorem). If Xt is strictly stationary and ergodic, and E(Xt) < ∞, then
as T Ð→∞,

µ̂ =
1
T

T

∑
t=1

Xt
p
Ð→ E(Xt),

γ̂(k)
p
Ð→ γ(k)

aeorem 78 (MDS-CLT). If εt is a strictly stationary and ergodic MDS and E(εtε′t) = Ω < ∞,
then as T Ð→∞,

1
√
T

T

∑
t=1

εt
d
Ð→ N(0,Ω)
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aeorem 79 (Functional CLT). Deûne a partial sum process

ST(r) =
[Tr]
∑
t=1

ut ,

where ut ∼i .i .d . (0, σ 2), and [Tr] denotes the largest integer that is less than or equal to Tr, r ∈
[0, 1].

aen for any r,
1

σ
√
T
ST(r)

d
Ð→W(r).

Note that when r = 1, we have the conventional CLT

1
σ
√
T
ST(1) =

1
σ
√
T

T

∑
t=1

ut ,

=
∑t ut
T√
σ 2
T

d
Ð→W(1) = N(0, 1).
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Chapter 11

Mathematical Appendix

11.1 Gaussian Integral

aeorem 80 (Gaussian Integral). ae following integral

∫
∞

−∞
e−x2dx =

√
π,

is called the Gaussian integral.

Proof. Let
I = ∫

∞

−∞
e−x2dx

Hence,

I2 = (∫
∞

−∞
e−x2dx)

2

= (∫
∞

−∞
e−x2dx)(∫

∞

−∞
e−y2dy)

= ∫
∞

−∞
∫
∞

−∞
e−(x2+y2)dxdy

Let y = r cos θ and x = r sin θ, then since x2 + y2 = r2, and

J = ∣
∂y
∂r

∂y
∂θ

∂x
∂r

∂x
∂θ
∣ = ∣

cos θ −r sin θ
sin θ r cos θ

∣ = r,

we have

I2 = ∫
2π

0
∫
∞

0
e−r2rdrdθ = 2π∫

∞

0
e−r2rdr

= 2π∫
∞

0

1
2
esds (let s = r2)

= π∫
∞

0
e−sds

= −π [e−s]∞0 = π
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aat is,

I = ∫
∞

−∞
e−x2dx =

√
π

11.2 Gamma Function

Deûnition 69 (Gamma Function). For every α > 0, the Gamma function Γ(α) is deûned by

Γ(α) = ∫
∞

0
xα−1e−xdx

ae Gamma function has the following properties.

aeorem 81.

1. Γ(1) = 1

2. Γ ( 12) =
√
π

3. Γ(α + 1) = αΓ(α) for α > 1

4. Γ(n) = (n − 1)! for every positive integer n

5. ∫
∞
0 xα−1e−ξxdx = ( 1ξ)

α
Γ(α) for α > 0 and ξ > 0

Proof.

1. By deûnition,

Γ(1) = ∫
∞

0
e−xdx = −e−x]∞0 = 1

2. By Gaussian Integral inaeorem 80.

3.

Γ(α + 1) = ∫
∞

0
xαe−xdx

128



Let u = xα, v = −e−x , then dv = e−xdx. By integral by parts,

Γ(α + 1) = ∫
∞

0
udv

= uv]∞0 − ∫
∞

0
vdu

= xα(−e−x)]∞0 − ∫
∞

0
−e−xαxα−1dx

= −xαe−x]∞0 + α∫
∞

0
xα−1e−xdx

= 0 + αΓ(α)

= αΓ(α).

Where −xαe−x]∞0 = 0 comes from:

lim
x→∞
[
xα

ex
] = lim

x→∞
[
eα log x

ex
]

= lim
x→∞
[eα log x−x]

= lim
x→∞
[ex[α

log x
x −1]]

According to L’Hôpital’s Rule,

lim
x→∞

log x
x
= lim

x→∞

1
x

1
= 0

aerefore,

lim
x→∞
[α

log x
x
− 1] = −1

and
lim
x→∞
[ex[α

log x
x −1]] = 0

4. Accordingly,

Γ(n) = (n − 1)Γ(n − 1) = (n − 1)(n − 2)Γ(n − 2)

= (n − 1)(n − 2)⋯1Γ(1)

= (n − 1)!

5. For ξ > 0, let y = ξx, then dy = ξdx, and

∫
∞

0
xα−1e−ξxdx = ∫

∞

0
(
y
ξ
)
α−1

e−y (
1
ξ
) dy

= ξ−α ∫
∞

0
yα−1e−ydy

= (
1
ξ
)
α
Γ(α)
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Chapter 12

SomeMiscellaneous Topics

12.1 Q& A from Cross Validated

12.1.1 What does it mean for a moment generating function to exist in a
neighborhood of 0?

ae idea is that theMGF is a Laplace transform, and in this case it requires that your (continuous)
probability density f (x) decreases at least exponentially fast for large x, i.e., e tx f (x) → 0 for
x →∞. ais can be somewhat weakened but themain idea survives.

Anyways, it’s usually the case that if t is too large, this becomes false. So for example if f (x) =
2e2x , then theMGF exists (i.e., is ûnite), for t ∈ [0, 2). As long as f (t) is a density, everything is
ûne for t < 0 but it turns out t > 0 contains a wealth more of information. In general, saying that
the MGF exists in a neighborhood of 0 means that there is some h > 0 such that your MGF is
ûnite for all t ∈ [0, h). Once your MGF exists, by abstract nonsense it corresponds to a unique
distribution (your f (x)) and you can exploit all of it’s nice properties, for example use it to bound
probabilities. In similar vein to characteristic functions (i.e., fourier transforms), the regularity
of your MGF near t = 0 is intimately connected to the rate of decay of your density f (x) as
x →∞, an example of which you can see in the last link.

Perhaps more familiar to you, derivatives of the MGF, evaluated at t = 0 give you back the
moments of your distribution, so perhaps you can believewhy you really only need to knowwhat
yourMGF looks likes near t = 0 to extract almost everything about your random variable.

12.1.2 Compute the expected value using theMGF for uniform distribution.

aeMGF of a U(l , h) random variable is

MX(t) =
eht − e l t

t(h − l)
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Hence,

MX(t) =
1

h − l

⎛
⎜
⎝

(1 + ht + (ht)
2

2! +⋯) − (1 + l t +
(l t)2
2! +⋯)

t

⎞
⎟
⎠

=
1

h − l
((h − l) +

h2 − l 2

2!
t +

h3 − l 3

3!
t2 +⋯)

Diòerentiate the series term by term, then set t = 0,

M′(0) =
1

h − l
h2 − l 2

2!
=
h + l
2

M′′(0) = 2
h3 − l 3

3!
=
h3 − l 3

3
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Chapter 13

Answers to Exercises

1 1. (⋂n
k=1 Ak)

c
= ⋃n

k=1 Ac
k.

(a) First we would like to prove that

(
n
⋂
k=1

Ak)

c

⊆ (
n
⋃
k=1

Ac
k) .

Suppose not,

∃x ∈ (
n
⋂
k=1

Ak)

c

but x ∉ (
n
⋃
k=1

Ac
k)

Since x ∉ (
n
⋃
k=1

Ac
k)

⇒ x ∉ Ac
1 and x ∉ Ac

2 and ⋯ and x ∉ Ac
n

⇒ x ∈ A1 and x ∈ A2 and ⋯ and x ∈ An

⇒ x ∈
n
⋂
k=1

Ak

⇒ x ∉ (
n
⋂
k=1

Ak)

c

contradiction

(b)We then prove that

(
n
⋂
k=1

Ak)

c

⊇ (
n
⋃
k=1

Ac
k) .

Suppose not,

∃x ∈ (
n
⋃
k=1

Ac
k) but x ∉ (

n
⋂
k=1

Ac
k)
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Since x ∉ (
n
⋂
k=1

Ac
k)

⇒ x ∉ Ac
1 or x ∉ Ac

2 or ⋯ or x ∉ Ac
n

⇒ x ∈ A1 or x ∈ A2 or ⋯ or x ∈ An

⇒ x ∈
n
⋃
k=1

Ak

⇒ x ∉ (
n
⋃
k=1

Ak)

c

contradiction

From (a) and (b), we have (⋂n
k=1 Ak)

c
= ⋃n

k=1 Ac
k.

2. (⋃n
k=1 Ak)

c
= ⋂n

k=1 Ac
k.

(a) First we prove that

(
n
⋃
k=1

Ak)

c

⊆
n
⋂
k=1

Ac
k .

Suppose not,

∃x ∈ (
n
⋃
k=1

Ak)

c

but x ∉
n
⋂
k=1

Ac
k

Since x ∉
n
⋂
k=1

Ac
k

⇒ x ∉ Ac
1 or x ∉ Ac

2 or ⋯ or x ∉ Ac
n

⇒ x ∈ A1 or x ∈ A2 or ⋯ or x ∈ An

⇒ x ∈
n
⋃
k=1

Ak

⇒ x ∉ (
n
⋃
k=1

Ak)

c

contradiction

(b)We then prove that

(
n
⋃
k=1

Ak)

c

⊇
n
⋂
k=1

Ac
k .

Suppose not,

∃x ∈
n
⋂
k=1

Ac
k but x ∉ (

n
⋃
k=1

Ak)

c
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Since x ∉ (
n
⋃
k=1

Ak)

c

⇒ x ∈
n
⋃
k=1

Ak

⇒ x ∈ A1 or x ∈ A2 or ⋯ or x ∈ An

⇒ x ∉ Ac
1 or x ∉ Ac

2 or ⋯ or x ∉ Ac
n

⇒ x ∉
n
⋂
k=1

Ac
k contradiction

From (a) and (b), we have (⋃n
k=1 Ak)

c
= ⋂n

k=1 Ac
k.

See Pages 4–5 in Roussas (2002) for an alternative proof.

2 1. Check if F(x) is indeed a CDF.

(a) F(x) ≥ 0, ∀x ∈ R.
(b) F(∞) = pI{∞≥0} + (1 − p)Φ(∞) = p + (1 − p) = 1, and F(−∞) = 0.

(c) F(x) is increasing.

(d) F(x) is right continuous.

2. Plot F(x). See Figure 13.1.

3. Find out the pdf f (x).

f (x) =
d
dx

F(x),

= p
d
dx

I{x≥0} + (1 − p)
d
dx

Φ(x),

= pδ(x) + (1 − p)ϕ(x),

where δ(x) = 0 if x ≠ 0; δ(x) =∞ if x = 0.

3

P(X ≤ x∣X ≥ a) =
P(X ≤ x , X ≥ a)

P(X ≥ a)
,

=
P(a ≤ X ≤ x)
P(X ≥ a)

,

=

⎧⎪⎪
⎨
⎪⎪⎩

0 if x < a,
F(x)−F(a)
1−F(a) if x ≥ a.

aerefore,

gX∣X≥a(x) =
d
dx

P(X ≤ x∣X ≥ a) =
⎧⎪⎪
⎨
⎪⎪⎩

0 if x < a,
f (x)

1−F(a) if x ≥ a.
.
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Figure 13.1: Mixed Distribution
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