Scientific Collaboratories: Challenges & Solutions

Diane H. Sonnenwald

Swedish School of Library & Information Science Göteborg University & University College of Borås

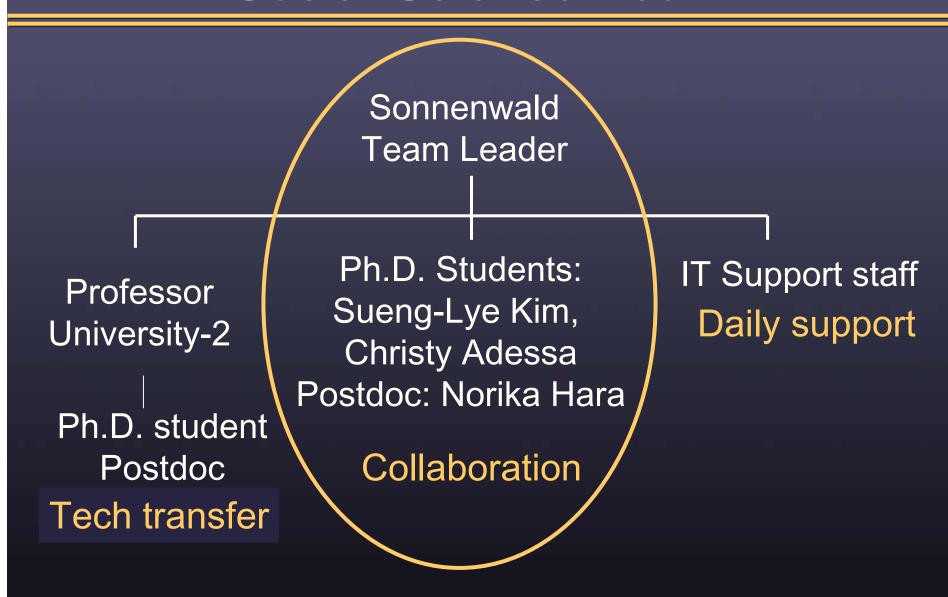
Recent & Ongoing Projects

- Understanding collaboration in command & control
- Designing & evaluating the nanoManipulator
 Collaboratory System
 - Facilitating collaboration in a distributed science center
 - Exploring the potential of 3D telepresence technology for collaboration in emergency medical care
 - Investigating new forms of collaboration in library and information science
 - Among practitioners
 - Among practitioners & researchers

Facilitating Collaboration

In a Distributed Science Center

- Background of center
- Research conducted
 - Collaboration in the large
 - Center re-organization
 - Collaboration in the small
 - Collaboration among different types of universities
 - Theory development
- Personal reflections


'Green Chemistry' Center

- Created late 1999
 - 5 year initial commitment + additional 5 years
 - \$15 million from national scientific funding agency
 - Financial commitments from universities, foundations,
 & corporations
- Membership
 - Yr 1: 30 scientists, 82 students, 3 full-time staff
 - 77% had *never* interacted previously
 - Yr 2: 45 scientists, 70 students, 3 full-time staff
- Location
 - 4 universities in the US; later 5
 - 3 within same state

Foundation for Our Participation

- Previous study on collaboration
- National report: Centers' barriers to development
 - "Inadequate communication between industry, government & academia"
 - "Collaboration problems between the disparate cultures of scientists & engineers"
 - "Need greater engineering creativity"
 - "Lack of new chemistries"

Social Science Team

Collaboration Research Focus

Research Area D

11 researchers,6 locations

Research Area C

16 researchers,4 locations

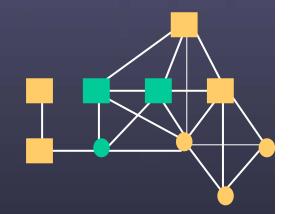
Collaboration

Research Area B

9 researchers,4 locations

11 researchers,6 locations

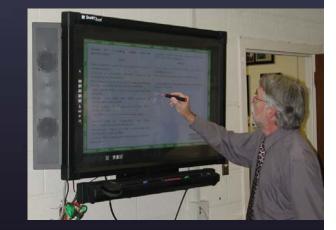
Research Area A


To identify organizational, social & technical factors & processes which facilitate and/or impede collaboration across disciplinary, organizational & geographic boundaries

Collaboration in the Large

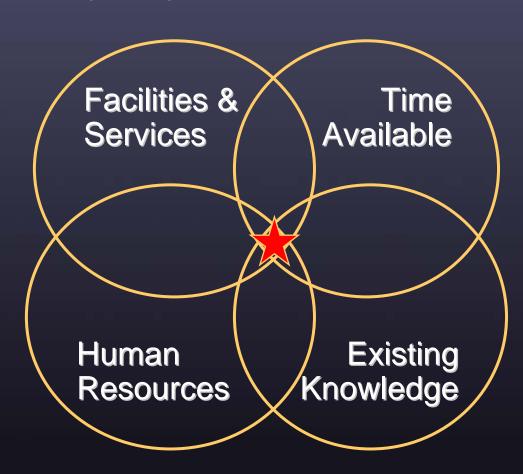
- Need for center-wide meetings across universities
- Created the social and technical video-conferencing infrastructure
- Installed new video-conferencing technology
- Established new operational procedures with technical staff at all universities
 - Operations paradigm shift
- Developed new meeting practices
 - Explicitly re-introduced informality
 - Technical problem-solving protocol
- Reconciled meetings with university structures

Center Reorganization


- Year 1: Research groups not working well, but why?
- Social network analysis
 - Mapped center interaction patterns
 - 75% of all current interaction occurring outside formal groups

- Re-thinking of scientific vision, goals & group structure
 - 75% interaction within formal group structure
- Monitored the evolution of the center's social network
- Discovered & documented factors that lead to emergence of collaboration

Collaboration in the Small


- Supporting collaboration between small, remote groups
 - Large plasma screens with Smartboard overlay
 - Speakerphone & video over the Internet
 - Turn-key setup
- Relative advantages
 - New possibility of capturing outcomes of meetings
 - Savings on travel & parking time
- Patterns of use
 - Watching basketball games....
 - Students helped others
 - Creative uses emerged over time

- Technology enhanced existing collaborations
 - Did not cause collaborations to start

HBU-Research University Collaboration

 Investigated challenges in historic black university (HBU) & Research-intensive university collaboration

- An appropriate, not necessarily equal, allocation of multiple types of resources is needed
- Planning for alignment is linked to success

Theory Development

A New Understanding of Distributed Research Centers

The Conceptual Organization

Four Primary Components

- Conceptual infrastructure
 - Vision, mission, goals
 - Mechanisms to achieve vision
- Physical infrastructure
 - Shared physical facilities
 - I&CT
- Management leadership & membership
 - Paradigm creators & pioneers
 - Participation from disciplines & locations
- Activities to achieve vision
 - R&D
 - Education

Woven across other existing organizations & activities

Conceptual Structure

Vision, Mission & Goals

- Addresses long-term, complex problem of national & global importance
- Developed through leadership & consensus
- Aligned with stakeholders' interests
- Motivation for scientists to participate
- Strategic coordination mechanisms
 - Pre-proposal review
 - Proposal review

Organizational Power

Boulding, 1989

Destructive Power

Economic Power

Integrative Power

Business Organizations

Volunteer ___
Organizations

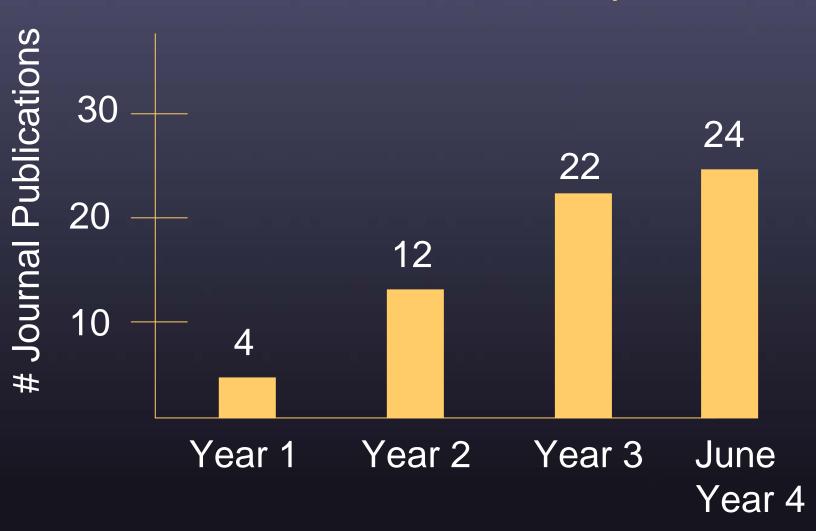
Conceptual Organizations

Benefits of a Conceptual Organization

- Ability to dynamically respond to needs for new knowledge
 - "Easy" incorporation of experts in emerging relevant areas
 - Info sharing and knowledge building among members through socio-technical mechanisms
- Relatively low capitalization/start-up cost
 - Additional use and re-use of existing physical spaces
 - Limited term & partial commitment to members
 - Inclusion of students & postdocs
- Ability to meet diverse stakeholders' & members' needs
 - Activities driven by non-profit & for-profit concepts
 - Use of integrative power

Challenges for a Conceptual Organization

- Reconciliation with existing academic cultures
 - Criteria for promotion & tenure (individual vs. group effort)
 - Support for local university vs. conceptual org
 - Publication forums for inter-disciplinary research
- Managing competition
 - Sharing information earlier
 - Perceived infringements on research areas
 - New requirements for trust management


Growth in Collaboration

Reported Collaborations

	After 1 year Per		After 2 years Per		
	Total	scientist	Total	scientist	% change
Among all scientists	71	2.37	148	3.36	+41.7
At the same university	37	1.23	69	1.57	+27.6
At different universities	34	1.13	80	1.82	+61.1

Growth in Collaboration

Personal Reflections

- Outstanding learning opportunity...for everyone
- Importance of funding agency support
 - Requirement to increase my budget
 - Justification for center award (vs. 'a tax')
 - Personal motivation
 - Ongoing support
- Identification & attempted alignment of department differences
 - Research support services
 - Department & teaching responsibilities
 - Tenure requirements

Personal Reflections

- Disciplinary differences
 - What is research? theory?
 - Scholarly communication practices
 - Postdoc traditions
 - Working understanding
- 'Always on' phenomena
 - 3 center-wide external reviews per year
 - Expectations of new results
 - Social science always highlighted
 - Chemistry: 35 professors; social science: 2

Acknowledgements

Thanks to:

Ph.D. students: Seung-Lye Kim, Christy Adessa

Postdoc: Norika Hara

Technical staff: Reto Bollinger, Marcus Donie, Tom Cox

Center members

Material is based upon work supported by the STC Program of the National Science Foundation under Agreement No. CHE-9876674

For More Information

- Sonnenwald, D.H. (2007). Scientific collaboration. In B. Cronin (Ed), *Annual Review of Information Science & Technology*, *Vol. 41* (pp.643-681).Medford, NJ: Information Today.
- Sonnenwald, D.H. (2003). The conceptual organization: An emergent collaborative R&D organizational form. *Science Public Policy*. *30*(4), 261-272.
- Adessa, C., & Sonnenwald, D.H. (2003). Exploring collaboration among historically black universities and doctoral/research universities in the USA. UNESCO Conference on Teaching and Learning for Intercultural Understanding. Human Rights and a Culture of Peace. Jyväskylä, Finland.
- Sonnenwald, D.H. (2003). Managing cognitive and affective trust in the conceptual R&D organization. In M. livonen and M. Huotari (Eds.), *Trust in Knowledge Management and Systems in Organizations* (pp. 82-106). Hershey, PA: Idea Publishing.
- Kim, S., & Sonnenwald, D.H. (2002). Investigating the relationship between learning style preferences and teaching collaboration skills and technology: An exploratory study. E. Toms (Ed). *Proceedings of the American Society of Information Science & Technology Annual Meeting* (pp. 64-73). Medford, NJ: Information Today.
- Sonnenwald, D.H., Solomon, P., Hara, N., Bolliger, R., & Cox, T. (2002). Collaboration in the large: Using video conferencing to facilitate large group interaction. A. Gunasekaran and O. Khalil (Eds.) *Knowledge and Information Technology in 21st Century Organizations: Human and Social Perspectives (pp. 115-136)*.