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INTRODUCTION

Copolymers consisting of flexible and rigid blocks
are a sufficiently common object for microphase�sep�
aration studies. They cover the whole range of effects
observable during phase separation. The presence of
both flexible and rigid blocks in these copolymers
complicates the phase behavior of systems consisting
of them. On the one hand, regions occupied by flexible
and rigid blocks may differ considerably in the charac�
teristic linear scale. On the other hand, the cross cou�
pling of incompatibility of monomers of different
chemical natures and orientational interactions of
rigid blocks causes the specific character of the formed
nanostructures. Therefore, the ordering of these
copolymers is accompanied by a wide variety of arising
nanostructures and a rich phase behavior.

Recent experimental investigations [1–4] of these
types of objects made it possible to obtain interesting
morphologies in bulk and thin films. These investiga�
tions have motivated computer experiments in order
to establish regularities of the formation of nanostruc�
tures for the considered class of polymers.

Theoretical investigations of these copolymers with
sufficiently exact models are necessary to predict
properties of the related materials. During the past
decade, the numerical simulation of the phase behav�

ior of copolymer melts and solutions via the self�con�
sistent mean�field (SCF) method has gained wide�
spread acceptance [5, 6]. This method was used in [7–
19] for linear diblock and multiblock copolymers,
branched copolymers, polyelectrolytes, etc. The SCF
method may be applied for a wide range of interac�
tions, including weak, medium, and strong aggrega�
tion regimes, where other analytical methods prove to
be invalid. Chronologically, the numerical SCF meth�
ods for flexible�chain copolymers have been devel�
oped within the framework of two approaches: the
spectral method and the real�space method. They dif�
fer in the procedure of solving the modified diffusion
equation, which describes the spatial walks of a flexible
polymer chain in the presence of an external field. It
turned out that the most efficient method for solving
mean�field equations in bulk and in thin films is the
pseudospectral method suggested in [20, 21] for poly�
mer�physics problems. The description of rigid blocks
of copolymers within the mean�field theory differs
from that of flexible blocks owing to the presence of
orientational degrees of freedom [6, 11, 12]. Numeri�
cal solutions of the corresponding equations for rigid�
chain copolymers are computationally time�consum�
ing. It is not surprising that studies that have been pub�
lished in this field are few and deal with one� and two�

Spontaneous Origination of Chirality in Melts of Diblock 
Copolymers with Rigid and Flexible Blocks

Yu. A. Kriksina,*, S.�H. Tungb, P. G. Khalaturc,e, and A. R. Khokhlovd,e

a Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Miusskaya pl. 4, Moscow, 125047 Russia
b Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan

c Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow, 119991 Russia
d Faculty of Physics, Moscow State University, Moscow, 119991 Russia

e Institute of Advanced Energy�Related Nanomaterials, University of Ulm, D�89081 Ulm, Germany
*e�mail: kriksin@nm.ru

Abstract—A self�consistent mean�field computer simulation of ordering in melts of diblock copolymers con�
sisting of flexible and rigid rodlike blocks is performed. A three�dimensional model is considered, and a cor�
responding algorithm for solving mean�field equations in sequential and parallelized versions is developed.
The coexistence of microphase separation and orientational ordering gives rise to the appearance of new types
of spatial arrangements. In particular, phases with the cubic symmetry and the morphology of hexagonally
arranged chiral cylinders are found. The transition of achiral cylinders to chiral cylinders in the melt of achiral
diblock copolymers consisting of rigid and flexible blocks is revealed for the first time. The origination of
chirality is due to the presence of rigid blocks in the system and orientational interactions between them. With
a decrease in temperature, microphase separation caused by incompatibility of chemically different blocks
initially occurs in these systems. As a result, the hexagonally ordered structure in which rigid blocks are con�
centrated in cylindrical microdomains arises. A further decrease in temperature results in the involution of
cylindrical microdomains and the formation of a helical structure. To quantify the degree of chirality, a new
pseudoscalar index, depending on the linear�scale parameter for which the chirality is studied, is suggested.

DOI: 10.1134/S1811238213070047



POLYMER SCIENCE Series C  Vol. 55  No. 1  2013

SPONTANEOUS ORIGINATION OF CHIRALITY IN MELTS 75

dimensional models [11, 12, 22–26]. Note that the
mean�field description is significantly simplified for
rigid rodlike blocks. In the present paper, a numerical
method based on the field expansion over a trigono�
metric basis and the use of the fast Fourier transform
[27] is suggested for calculation of the contribution of
rigid rods to the free energy, thereby making the com�
putational costs comparable with those required for
calculation of the contribution of the flexible blocks.

Most studies on the computer SCF simulation of
copolymers apply conventional single�processor algo�
rithms. When computational costs become substan�
tial, as, for example, for calculations of copolymers
with rigid and flexible blocks, it is necessary to use par�
allelized algorithms. The parallelized version of the
algorithm for solving mean�field equations for flexi�
ble�chain copolymers was suggested for the first time
in [28]. In our previous paper [27], the sequential and
parallelized algorithms for solving mean�field equa�
tions for diblock copolymers involving flexible and
rigid rodlike blocks were developed. As a result, a
three�dimensional model of these diblock copolymers
was calculated and new three�dimensional nanostruc�
tures were obtained. Note that calculations of three�
dimensional, rather than one� and two�dimensional,
structures make it possible to arrive at a final conclu�
sion about their stability or metastability. Indeed, var�
ious solutions of the mean�field equations may coexist
at the same model parameters [11–19]. Solutions cor�
responding to thermodynamically stable states are
revealed among them through free�energy minimiza�
tion over a set of all solutions in three dimensions. This
is why it is so important to find all possible solutions of
the mean�field equations at given parameters. In prac�
tice, this task proves to be unfeasible owing to excessive
computational costs. In this case, consideration is
necessarily limited to a set of the most probable candi�
dates, for example, on the basis of the weak�segrega�
tion theory [18].

One of the novel results presented here is the exist�
ence of a three�dimensional locally chiral hexagonal
phase that is formed with a decrease in temperature as
a result of the chiral�symmetry�breaking phase transi�
tion from a conventional (achiral) hexagonal phase. It
should be remembered that an object is considered to
be chiral if it cannot be matched to its mirror image via
any rotations or translations. Cylindrical micelles in
the chiral hexagonal phase are formed by rodlike
blocks that twist around the cylinder axis and form a
helical motif in it. The helix handedness (right or left)
is selected randomly. Note that a chiral nanostructure
is formed in a system consisting of achiral molecules.
The spontaneous deterioration of chirality in systems
of achiral molecules was reported in a number of
papers [29–33].

To quantitatively estimate the degree of chirality of
a structure, a pseudoscalar chirality index that
depends on the characteristic linear scale for which
chirality is evaluated was suggested. Note that there is

no most chiral object in the universal sense. The
degree of chirality substantially depends on what
method is selected to measure it. It was shown in [34]
that the chirality criterion may be selected for any
irregular tetrahedron in such a way that this particular
tetrahedron will be the most chiral tetrahedron with
respect to this criterion. Thus, the degree of chirality
depends on the applied criterion. It should be stressed
that, to be precise, a pseudoscalar cannot be used as
the chirality criterion, because it vanishes at a certain
nonempty quantity of chiral objects [35]. Neverthe�
less, the pseudoscalar chirality index is useful for the
discovery of certain types of chirality, such as helical
structures [36]. In particular, our index is sensitive also
to the helical motif that is formed within the hexagonal
phase.

MODEL OF MELTS OF DIBLOCK 
COPOLYMERS WITH RIGID

AND FLEXIBLE BLOCKS

Let us consider a melt of n diblock copolymers with
degree of polymerization N that consists of flexible
and rigid rodlike blocks with mean volume fractions of
f and (1 – f), respectively. The statistical�segment
lengths for the rods and flexible blocks are denoted a
and b, respectively. For simplicity, it is taken that
monomers of both types have the same volumes. The
model is described in detail in [11]. Therefore, we
restrict ourselves to presentation of the free energy and
SCF equations to be solved numerically.

Let us introduce orientational tensor matrix field
 that is a conjugate to orientational tensor order

parameter  and write the free energy for the melt of
diblock copolymers with flexible and rigid rodlike
blocks as

(1)

where V is the system volume, χ is the Flory–Huggins
parameter, and μ is the Maier–Saupe orientational�
interaction parameter. Local volume fractions 
and  and their conjugate fields  and 
refer to flexible and rigid blocks, respectively. They
describe the spatial distribution and interaction of cor�
responding monomers. Lagrange factor  (the pres�
sure field) provides the condition of melt incompress�
ibility. Energy is measured in kT units, where k is the
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Boltzmann constant and T is the absolute tempera�
ture.

Expression  under the natural�loga�
rithm sign is the single�chain configuration integral
determined from the equality

(2)

Here, u is the unit vector characterizing the current
direction of the rodlike block,
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of rigid block segments and the orientational�order
parameters are defined by the equalities

(16)
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The model of the melt of diblock copolymers with
flexible and rigid blocks is fully described by relation�
ships (1)–(17) underlying the numerical algorithm for
solving mean�field equations [27]. Variables with the
dimension of length are presented below in units of the

gyration radius  for a flexible chain of
length N.

CHIRALITY INDEX AND ITS CALCULATION

Despite the known disadvantages of pseudoscalars
used for quantitative estimations of chirality, the idea
of their application for particular objects is attractive.
Indeed, if a pseudoscalar is nonzero for a certain
object, it takes the opposite value for the mirror object.
Therefore, it vanishes for any achiral object. Unfortu�
nately, any pseudoscalar likewise vanishes for a certain
class of chiral objects, a circumstance that restricts its
application as a universal chirality criterion.

The simplest chiral object in the three�dimensional
space is an irregular tetrahedron. In the paper by
M.A. Osipov, B.T. Pickup, and D.A. Dunmur [37], a
pseudoscalar chirality index (the OPD index) was sug�
gested to describe the degree of molecular chirality on
the basis of the weight�average estimation of chirality
for all tetrahedrons built of various quadruples of
atoms. In addition to the common disadvantages typ�
ical of all pseudoscalars, a number of other disadvan�
tages characterize the OPD index, thereby signifi�
cantly complicating its practical application. Let us
enumerate the main disadvantages of the OPD index.

(i) Calculation of this index for an arbitrary object
is extremely cumbersome and is practical only for dis�
crete objects with small numbers of points. Indeed,
such computations for the assembly of n points require
a complete search for all tetrahedrons, and their num�
ber is n(n – 1)(n – 2)(n – 3)/24. Thus, computational

costs grow as  with an increase in n.
(ii) According to its construction, the OPD index is

the weight�average sum of indices for all possible tet�
rahedrons arranged within the volume being esti�
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mated. However, it ignores the fact that chirality can
manifest itself in a different manner on different linear
scales. The OPD index gives a certain averaged chiral�
ity value for all tetrahedrons of the object if no infor�
mation on the linear scale at which chirality is exhib�
ited most noticeably.

(iii) The OPD index is proportional to the fourth
power of the local density of the object, although it is
intuitively clear that objects with proportional densi�
ties should have the same chirality indices.

(iv) The OPD index is not invariant with respect to
geometrically similar objects.

A new version of the pseudoscalar chirality index
free of the aforementioned disadvantages is presented
below. The new chirality index may be calculated for
any object defined by a local density and is a function
of the linear scale of chirality evaluation.

Let  be the number�average density of any
component (or its volume fraction) and  be the
spherically symmetric probability distribution density
( ), satisfying the condition

(18a)

(18b)

Let us define the chirality index of the linear scale,
λ, through the function

, (19)
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Chirality index (19) is characterized as the chirality
“charge” (e.g., “left” if it is negative or “right” in the
opposite case), corresponding to linear scale λ. Inte�
gral (20) plays the role of a normalizing factor. With
consideration for (22), we have
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In each of them, kernels  may be analytically cal�
culated or numerically tabulated for given density dis�
tributions . Integral (24) is twelvefold, and its
direct computation with the use of cubature formulas
has extremely high computational costs. However, in
the case of periodic structures or in the approximation
of periodic boundary conditions, the task of computa�
tion of integral (24) may be solved via the fast Fourier
transform, as suggested below.
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The procedure of calculating convolution (25) via
the fast Fourier transform is based on the use of the
convolution theorem, according to which the convo�
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kernel and density. The Fourier transforms of the finite
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by probability density  and the seventh�degree
monomial terms that enter polynomial

.
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function of a standard one�dimensional normal distri�
bution:

. (32)

Let us emphasize some important properties of
introduced chirality index (19) following from its def�
inition. The index vanishes identically on one� and
two�dimensional objects and on three�dimensional
achiral objects. If the index of an object is nonzero, it
changes sign in its mirror image but preserves its abso�
lute value. The index takes the same value for objects
with densities  and , respectively, if  =

. For geometrically similar objects
( ), their chirality indices as functions of
linear scale λ are related to each other via the similar�
ity transform  = .

RESULTS AND DISCUSSION

Experimental investigations of copolymer systems
with rigid and flexible blocks revealed many interest�
ing morphologies, such as hexagonal stripes, hexago�
nally arranged cylinders, zigzaglike and wavelike
structures, and various lamellar phases [1–4]. Some of
these structures were obtained via computer simula�
tions on the basis of one� and two�dimensional self�
consistent mean�field models [22–26], but this
approach of course does not guarantee that the found
structures are thermodynamically stable. An advan�
tage of our iterative algorithms for solving mean�field
equations for copolymers with rigid and flexible blocks
(including the parallelized version) is the high compu�

2
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tational efficiency, which makes calculations of three�
dimensional structures feasible [27].

The parallelized version of the algorithm makes it
possible to reach the convergence of iterations for sev�
eral minutes. This circumstance makes it possible to
check hundreds of structures with the use of both ran�
dom and specially constructed initial iterations as
starting conditions [27]. Thus, all potentially possible
structures may be divided into two classes. The first
class comprises all those structures that were obtained
as a result of algorithm iterative convergence, while all
the remaining structures, which are considered abso�
lutely unstable within this approach, constitute the
second class. As a result, the first class is represented
by stable and metastable states. Among the morpholo�
gies found through the computer simulation are over�
wound cylinders (more precisely, columns) on a hex�
agonal lattice, the zigzaglike phase, truncated polyhe�
drons in a body�centered lattice, cylinders with almost
rectangular cross sections on the square lattice, and
mixed and bicontinuous phases.

The most interesting of the aforementioned struc�
tures is the twisted column morphology on the hexag�
onal lattice, which will be referred to as HEX*. This
new morphology is stable at a volume fraction of flex�
ible blocks of  and Flory–Huggins
parameters in the range . In this
case, the ratio of Flory–Huggins and orientational�
interaction parameters remains constant: .
As in [11], the dimensionless length of the rodlike
block is selected to be β = 16.33. The HEX* morphol�
ogy arises as a result of the phase transition from the
usual hexagonal phase (HEX), which is stable in the
range  (Fig. 1). A specific feature of
this phase transition is that it breaks the chirality of
columnlike domains. Usual hexagonal phase HEX
appears as a result of the order–disorder phase transi�
tion at , which is close to that predicted in
[38] for the discrete model of diblock copolymers with
flexible and rigid blocks in the weak�segregation
approximation. Note that  is considerably
lower than  obtained for diblock copoly�
mers with flexible blocks [39], because copolymers
with both flexible and rigid blocks are stronger segre�
gated than flexible�chain copolymers under otherwise
equal conditions. As seen from Fig. 1, the hexagonal
phase has lower free�energy values than those of the
lamellar morphology at a volume fraction of flexible
blocks of , despite the fact that the volume
fractions of flexible and rigid blocks are equal. This
circumstance may be caused by changes in interfaces
on the phase diagram that are due to a strongly pro�
nounced conformational asymmetry, as shown in [19]
for the melt of amphiphilic diblock copolymers. The
mechanism controlling the appearance of curvature in
the considered case of equal volume fractions is based
on geometrical packing effects related to different vol�
umes occupied by monomers of flexible and rigid
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Fig. 1. Free�energy values of (1) lamellar and (2) hexago�
nal phases as functions of Flory–Huggins parameter χN
at  and . At , conventional
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with twisted columnlike microdomains due to the phase
transition.
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blocks, respectively. Meanwhile, the incompressibility
condition requires equal densities on both sides of the
boundary between regions enriched with one of the
components, a circumstance that leads to preference
of the hexagonal phase over the lamellar phase. The
calculation results suggest that nonlamellar phases
(hexagonal, spherical, etc.) occupy a considerably
larger region on the phase diagrams of copolymers
with flexible and rigid blocks than that in the conven�
tional case of flexible�chain copolymers. This conclu�
sion agrees with the results of [40]. In addition, it may
be expected that nonlamellar morphologies will be
gradually replaced with smectic phases of the lamellar
type with an increase in ratio μ/χ.

The vertical line  (Fig. 1) demarcates
regions with the conventional hexagonal morphology,
HEX ( ), and the morphology of twisted
helical columns, HEX* ( ), where the HEX*
morphology has lower free�energy values than those
for the usual HEX morphology.

The density�distribution analysis for flexible and
rigid blocks shows that nematically ordered column�
like domains become more and more twisted around
the cylinder axis with a decrease in temperature
(increases in χN and μN). Moreover, flexible blocks
are expelled from the columnlike domains to their
boundaries.

Let us consider the orientational ordering of rod�
like blocks inside columnlike domains. For its analy�
sis, tensor order parameter  is used. The latter is
the second�rank symmetric tensor in the three�
dimensional space. As a result of its diagonalization,
the triads of its eigenvalues (λ1(r), λ2(r), and λ3(r)) and
eigenvectors determining the main directions of the
orientational ordering may be found. According to
[11], scalar orientational�order parameter ,
where  is the highest of the three eigenvalues, is
a measure of the local orientational ordering, which
takes values in the interval [0, 1]. Its highest value cor�
responds to complete ordering, and its lowest value
corresponds to a random orientation. At , the
maximum value of the scalar orientational�order
parameter in the system is ≈0.68. Figure 2a shows the
distribution of the local volume fraction of rigid blocks
over the cross�section of the calculated cell, which has

a rectangular form with aspect ratio  and is
perpendicular to the cylindrical domain axis. Darker
regions correspond to the maximum local volume
fraction of rigid blocks, and lighter regions correspond
to the minimum local volume fraction of rigid blocks.
The values of  are shown similarly in Fig. 2b.
The perpendicular cross�section of columnlike
domains has a hexagonal shape. The centers of hexa�
gons form the hexagonal lattice. During a shift of the
cross�sectional plane along the domain axes (Fig. 2c),
planar regions with the maximum scalar order param�
eter (hexagons) are synchronously rotated around

13.1Nχ =

13.1Nχ <

13.1Nχ >

( )S r

/max3 ( ) 2λ r

max( )λ r

14Nχ =

/ 3Y X =

max( )λ r

these axes. This fact indicates the torsion of the direc�
tions along which rodlike blocks are oriented and the
formation of helical structures.

This structural motif is clearly seen in Fig. 3a,
where the primary eigenvectors of the orientational
tensor order parameter are presented. The emergence
of the helical motif is related to increases in the degree
of segregation and the orientational ordering with a
decrease in temperature. The boundaries between dif�
ferent diblock components become sharper. If the
monomers of flexible blocks are considered to be
spherical, then, at equal densities of spheres and rods
in their dense packing, the rods occupy a smaller vol�
ume. If a rod were arranged perpendicularly to the
interface, a cavity would exist between neighboring
rods. This circumstance is in conflict the condition of
system incompressibility. Therefore, rods are forced to
tilt toward one side in order to avoid overlapping with
each other. As a result, columnlike domains with a
pronounced helical structure are formed.

A visual description of chiral structures in melts of
diblock copolymers with flexible and rigid blocks
should be augmented with quantitative estimations of
their degrees of chirality. As was noted above, there is
no universal chirality measure. In the general case,
chiral objects cannot be linearly ordered; in particular,
no definite sign (plus or minus) can be assigned to the
degree of chirality [35]. In spite of the fact that the idea
of the pseudoscalar chirality index is intrinsically self�
contradictory and cannot be efficiently applied to all
chiral objects, it proves to be useful in a number of par�
ticular cases. For example, above�suggested pseudos�
calar chirality index (19), like the OPD index [36, 37],
is sensitive to the helical motif and may serve as a
degree of torsion for a limited class of objects, such as
helically twisted cylindrical domains. Linear�scale
parameter λ entering index expression (19) makes it
possible to reveal the characteristic length at which the
chirality is the most noticeable.

In the above numerical experiments with random
starting fields, when HEX* hexagonal morphologies
arose after the iterative convergence, approximately
half of all cylinders are twisted clockwise; the other
half are twisted counterclockwise. Note that the effect
of the same twisting direction for all domains may be
due to a relatively low size of the calculation cell
(a number of lattice sites of on the order of 323) [27],
as is depictured schematically in Fig. 4a. (The rectan�
gular frame shows the cross section of the calculation
cell.) The assumption of macroscopic homochirality
of a structure requires verification. To this end, addi�
tional calculations of the free energy were performed
for the hexagonal morphology with an alternating
twisting of microdomains (Fig. 4b). This mesophase
will be denoted HEX**. Via numerical solution of the
mean�field equations, the values of free energy for the
homochiral morphology, HEX*, and the morphology
with an alternating twisting of microdomains, HEX**,
were obtained. They were found to be coincident
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within the limits of computational accuracy at the
same model parameters; that is, they lie on the bold
line in Fig. 1. This fact is evidence that columnlike
microdomains negligibly weakly interact with each
other and can, in principle, have an arbitrary twisting
direction. Hence, the hypothesis of a high degree of
degeneracy of the ground state represented by the
HEX* morphology is plausible. In this case, the mac�
roscopic chirality of an object is not possible in prac�
tice, owing to fluctuations.

Let us consider homochiral phase HEX* at various
values of parameter χN (  and ). The0.5Cf = / 1.3μ χ =

corresponding curves describing the dependence of
index (19) on linear�scale parameter λ are presented
in Fig. 5. As is seen from the plots, absolute values of
the index grow with an increase in χN. However, the
values themselves are conditional because they are
normalized weighted sums of chirality indices for an
infinite number of tetrahedrons entering the object.
They characterize the preponderance of tetrahedrons
with one orientational type over those with other
types. Therefore, not the values of the index them�
selves but rather their differences from zero for various
values of linear�scale parameter λ are important. The
nonzero values of the index provide evidence for the

x

y

(a) x

y

(b)

1.0

0.8

0.6

0.4

0.2

0.3

0.5

0.6

0.4

0.1

0.2

(c)

z = 4z = 0 z = 8 z = 12

z = 28z = 24z = 20z = 16

Fig. 2. Distributions of (a) the local volume fraction of rodlike blocks, , and (b) the local orientational�order parameter,

, for phase HEX* in the cross section in the XY plane perpendicular to the axes of columnlike microdomains (Z). (c) The
orientational�order�parameter distribution in transverse cross sections of various layers Z. The layer number ( ) corresponds
to the numbering of sites  of a uniform grid in a calculation cell consisting of 323 sites along direction Z. Regions predomi�
nantly occupied by rigid blocks are darker, while those filled with flexible blocks are lighter.
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chirality of the research object on the studied linear
scale. The sensitivity of chirality index (19) to the heli�
cal type of twisting follows from the helix geometry.
Any quadruple of points on the helix on which sequen�
tial points are arranged at fixed distances from each
other specifies the vertices of congruent tetrahedrons.
Therefore, the presence of the helical motif on a suffi�
ciently uniform background leads to the numerical
preponderance of tetrahedrons of a certain type, as
indicated by nonzero values of the index.

It may be concluded from the curves presented in
Fig. 6 that the contrast of the helical motif of col�
umnlike microdomains increases with a decrease in
temperature (i.e., with increases in χN and μN). This
effect is the most vivid in Fig. 6a, where the depen�
dence of the global�extremum position on χN is pre�
sented. An increase in the value of χN from 13.1 to
13.8 is accompanied by an insignificant increase in
linear�scale parameter λ. A further increase in χN
exerts almost no effect on the global�extremum posi�
tion, a result that is evidence for the saturation and

fixation of the characteristic dimensions of the struc�
ture. At the same time, the absolute global�extremum
value increases almost linearly with an increase in χN
(Fig. 6b). This phenomenon is related to the
strengthening of segregation between flexible and
rigid blocks, which is accompanied by an increase in
the sharpness of boundaries between regions occu�
pied by flexible and rigid blocks. In particular, the
helical motif becomes more contrasted.

Let us analyze the chirality of the morphology with
the alternating twisting of microdomains, HEX**
(Fig. 4b). For this purpose, let us consider the elemen�
tary cell with the shape of a rectangular parallelepiped

with dimensions X, Y, and Z ( ) containing
two columnlike microdomains with opposite twisting
directions. In contrast to homochiral morphology
HEX*, chirality index (19) vanishes on it for all χN
values in the interval [13.1, 14.5]. The zero value of the
chirality index is provided by the mutual cancellation
of contributions from the oppositely twisted micro�

3Y X=

(a)

(b)

Fig. 3. (a) Orientational ordering in columnlike microdomains of the HEX* phase. The vector orientation field is given by the

primary direction of orientational�order tensor , the corresponding vector has a length equal to maximum eigenvalue ,
and 8000 vectors are used for the visualization. (b) The schematic illustration of twisting rigid rods in columnlike microdomains.

( )S r max( )λ r
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domains. In spite of this circumstance, the HEX**
morphology remains locally chiral in the sense that the
twisting of each microdomain may be revealed via cal�
culations of chirality index (19) in a truncated cell
containing it. (The truncated�cell region is denoted in
Fig. 4 by a square in the center of the calculation cell.)
The truncated�cell dimensions were chosen as

 and  in order to include the
whole microdomain into it, on the one hand, and to
isolate this microdomain from the neighboring oppo�
sitely twisted microdomain, on the other hand. The
chirality index in the truncated cell was calculated for
both oppositely twisted microdomains of the HEX**
morphology.

/2c cX Y X= = cZ Z=

In Fig. 7, the corresponding curves of chirality
index (19) are shown for the values of ,

, and . The elementary�cell dimen�
sions were X = 12.20, Y = 21.12, and Z = 14.56. The
curves depicted in Fig. 7 by dashed and dash–dotted
lines correspond to the oppositely charged micro�
domains and are mirror images of each other with
respect to the horizontal axis. On the other hand, the
calculation of the chirality index in similar truncated
cells for homochiral morphology HEX* shows that the
corresponding curves of the index (the solid line) coin�

0.5Cf =

14Nχ = / 1.3μ χ =

(a) (b)

Fig. 4. Schematic representation of the twisting direction of rigid rods in the (a) HEX* and (b) HEX** phases. Dark micro�
domains are twisted clockwise, light microdomains are twisted counterclockwise, the rectangular region denotes the calculation
cell, and the square indicates the truncated cell used for estimation of the corresponding microdomain twisting.
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cide for different microdomains. A certain mismatch
in the shapes of the solid and dashed curves in Fig. 7 is
explained by the fact that the HEX* and HEX** mor�
phologies have some fine differences in the transition
region between different microdomains.

The difference between the chirality�index curves
for truncated cells in Fig. 7 and those calculated on the
elementary cell (Fig. 6) is due to the application of
periodic boundary conditions to the truncated cell.
These conditions distort the density field of the origi�

nal solution beyond the limits of the truncated cell.
However, it is necessary to apply them in order to pro�
vide the chirality�index calculation (19) for a reason�
able time.

Let us consider other three�dimensional solutions
of mean�field equations for diblock copolymers with
rigid and flexible blocks, while putting aside the ques�
tion on the stabilities of the corresponding morpholo�
gies, and calculate chirality indices (19) for them. At
model�parameter values of , , and

, a body�centered cubic (bcc) morphology
for which the elementary cell is a cube with the side
X = Y = Z = 8.42 was found. Rigid blocks are packed
into micelles, but, in contrast to the surfaces of flexi�
ble�chain copolymers, the surfaces of the same vol�
ume fraction of rigid blocks (Fig. 8a) considerably
deviate from the spherical shape and resemble a regu�
lar octahedron with smoothed vertexes and sides.
Rigid blocks are predominantly directed from the cen�
ter of a micelle toward its boundary (Fig. 8b). Chirality
index (19) vanishes for the bcc morphology, an out�
come that is expectable because this morphology is
achiral owing to the symmetry of its microdomains.

Another example of the three�dimensional mor�
phology is a binary gyroid. The morphology of the
binary gyroid (Fig. 9a) may be found at low values of
the dimensionless length of the rodlike block. (In cal�
culations, β = 1.) The maximum values of the scalar
orientational�order parameter (Fig. 9b) are localized
in micellelike regions, where the primary directions of
the orientational tensor order parameter are shown by
lines. The remaining parameters are as follows:

, , and . Despite the fact
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Fig. 7. Local chirality index  of a columnlike micro�
domain as a function of spatial�scale parameter λ for (1)
HEX* and (2, 3) HEX** morphologies calculated in the
corresponding truncated cells (compare Fig. 4).
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Fig. 8. Constant�level surfaces for (a) the local fraction of rodlike blocks (  = 0.5) and (b) the local orientational�order

parameter ( ) for the bcc phase in the cubic calculation cell: , ,  = 2.2, and β = 16.33. The
primary directions of orientation of rigid blocks are shown by lines.
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that the binary�gyroid morphology is necessarily
chiral [41], the values of index (19) turn out to be zero.
The latter example shows that the use of the same
pseudoscalar for quantitative description of various
types of chirality may be inefficient. For every type of
chirality, quantitative criteria corresponding to its spe�
cific features should be employed.

CONCLUSIONS

In order to correctly describe the morphologies
formed by copolymers with flexible and rigid blocks
owing to microphase separation and orientational
ordering, self�consistent mean�field computer simu�
lations should be performed in three dimensions on
spatial lattices with a large number of sites. Indeed, if
the model were two�dimensional, the cylinder�twist�
ing effect would not be found. In addition, an insuffi�
ciently fine grid could lead to a loss of accuracy and to
marked distortion of the obtained morphologies. With
increases in the dimensions of the simulated system
and enhancement of the spatial resolution, the com�
putations become extremely cumbersome and require
large computer RAM capacities. Therefore, there is a
need to perform parallelized computations with the
use of the corresponding algorithms. In the present
paper, in the system of copolymers with flexible and
rigid blocks, structure formation has been studied on
the basis of this approach.

As a result of the self�organization of these copoly�
mers, spontaneous symmetry�breaking occurs: Cylin�
drical microdomains consisting of rigid blocks are
twisted around the cylinder axis and form the helical
motif. The direction of microdomain twisting is cho�

sen randomly by the system. Although chirality may
not manifest itself at the macroscopic level, the fact
that locally chiral structures arise from achiral mole�
cules on the microscopic scale is extremely nontrivial.

Chiral structures should be evaluated not only visu�
ally but also quantitatively. In spite of the fact that the
degree of chirality for an arbitrary object cannot be
described by the universal criterion, it is necessary to
develop particular criteria designed for the registration
of certain types of chirality, such as the helical motif.
In the present paper, a pseudoscalar functional that
may be efficiently computed for a periodic object
specified by the local density as a function of continu�
ous coordinates has been suggested. This functional
depends on the parameter of the linear scale on which
the chirality is evaluated. It has been used to reveal
chiral structures with the helical motif in the object.
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