Introduction to Computer Science

Polly Huang

NTU EE
http://homepage.ntu.edu.tw/~pollyhuang
pollyhuang@ntu.edu.tw

Polly Huang, NTU EE Programming Language

Chapter 6

Programming Languages

Polly Huang, NTU EE Programming Language




Chapter 6: Programming
Languages

#* 6.1 Historical Perspective

#* 6.2 Traditional Programming Concepts
#* 6.3 Procedural Units

#* 6.4 Language Implementation

# 6.5 Object Oriented Programming

# 6.6 Programming Concurrent Activities
#* 6.7 Declarative Programming

Polly Huang, NTU EE Programming Language

Generations of
Programming Languages

‘JProblems solved in an environment Problems solved in an environment
“¥in which the human must conform in which the machine conforms
,#to the machine’s characteristics to the human’s characteristics

| I I I | I I I | I | I | | I I I | |
1st 2nd 3rd 4th
Generations

Polly Huang, NTU EE Programming Language



15t Generation:
Machine Language

#* Machine language
Operations in op-codes
Operands

Numerical values
Registernumber
Memory location address

Polly Huang, NTU EE Programming Language

2"d Generation:
Assembly Language

# A mnemonic system for representing
programs
Mnemonic: easy to remember
# More descriptive

Enabling programming withouttables such as the
onein AppendixC

#* Things are mnemonic
Op-codesin mnemonic names
Registersin mnemonic names

Memory locationsin mnemonic names of the
programmer’s choice (Identifiers/variables)

Polly Huang, NTU EE Programming Language




be? Assembly Language Example

bt 5§
Ly Machine language Assembly language

156C LD R5, Price

166D LD R6, ShippingCharge
5056 ADDI RO, R5 R6

30CE ST RO, TotalCost

C000 HLT

Polly Huang, NTU EE Programming Language

Just a Little Step Further

# One-to-one correspondence between
machine instructions and assembly
instructions

#* Inherently machine-dependent

# Converted to machine language by a
program called an assembler

#* Thing are easier to remember, yes.

# But programmer still needs to think like the
machine!

Polly Huang, NTU EE Programming Language



Third Generation Language

#* Uses high-level primitives
Similarto our pseudocode in Chapter5

#* Machine independent (mostly)

#* Each primitive corresponds to a short
sequence of machine language instructions

# Converted to machine language by a
program called compiler

# Examples: FORTRAN, COBOL, BASIC

Polly Huang, NTU EE Programming Language

Compilers vs. Interpreters

# Compilers

Compile several machine instructions into
short sequences to simulate the activity
requested by a single high-level primitive
Produce a machine-language copy of a
program that would be executed later

#* Interpreters

Execute the instructions as they were
translated

Polly Huang, NTU EE Programming Language




ML  Scheme

: . : Functional
I

1
I I
I I I
C C# . .
! ! L aidl L Object-oriented
! | Smalltalk I Visual Basic | Java |
I I I I I
Machine FORTRAN | BAsiIC c! |Ada | ! .
T T T ™ Imperative
Languages COBOL ALdIOL APL , Pascal | | .
I Gpss ! Prolog ! ! !
L o S == Declarative

I | I |
1 1 1
1980 1990

1
2000

Polly Huang, NTU EE Programming Language

Imperative Paradigm

#* Procedural paradigm

#* Develops a sequence of commands that
when followed, manipulate data to
produce the desired result

#* Approaches a problem by trying to find
an algorithm for solving it

Polly Huang, NTU EE Programming Language




Object-Oriented Paradigm

# Grouping/classifying entities in the program
Entities are the objects
Groups are the classes
Objects of a class share certain properties
Properties are the variables or methods

#* Encapsulation of data and procedures
e.g., Lists come with sorting functions

#* Natural modular structure and program reuse
Inheriting from mother class definitions

# Many large-scale software systems are

developed in the object oriented fashion

Polly Huang, NTU EE Programming Language

Declarative Paradigm

# Emphasizes
“What is the problem?”
Ratherthan “What algorithmisrequired to solve
the problem?”
#* Implemented a general problem-solving
algorithm in the language
#» Develops a statement of the problem
compatible with the algorithm and then
applies the algorithm to solve it

Polly Huang, NTU EE Programming Language




Functional Paradigm

#* Views the process of program
development as connecting predefined
“black boxes,” each of which accepts
Inputs and produces outputs

# Mathematicians refer to such “boxes”
as functions

# Constructs functions as nested
complexes of simpler functions

Polly Huang, NTU EE Programming Language

Functional Paradigm Example

Inputs: Old_balance Credits Debits

L

Find‘sum Find sum

1

Find_diff

l

Output: New_balance

Polly Huang, NTU EE Programming Language



. -7"' %

LISP Expressions

(Divide (Sum Numbers)
(Count Numbers))

(First (Sort List))

Polly Huang, NTU EE Programming Language

Advantages of FP

# Constructing complex software from
predefined primitive functions leads to
well-organized systems

#* Provides an environment in which
hierarchies of abstraction are easily
implemented, enabling new software to
be constructed from large predefined
components rather than from scratch

Polly Huang, NTU EE Programming Language




Chapter 6: Programming
Languages

#* 6.1 Historical Perspective

#* 6.2 Traditional Programming Concepts
#* 6.3 Procedural Units

#* 6.4 Language Implementation

# 6.5 Object Oriented Programming

# 6.6 Programming Concurrent Activities
#* 6.7 Declarative Programming

Polly Huang, NTU EE Programming Language

Types of Statements

# Declarative statements

Define customized terminology that is used
later in the program

#* Imperative statements
Describe steps in the underlying algorithms

# Comments
Enhance the readability of a program

Polly Huang, NTU EE Programming Language




Program

The first part consists of
declaration statements
describing the data that is
manipulated by the program.

The second part consists
of imperative statements
describing the action to
be performed.

Polly Huang, NTU EE Programming Language

Declaration Statements

#* Data terms
Variables
Literals
Constants

#* Data types
#* Declaring data terms with proper types
#* Data structure

Polly Huang, NTU EE Programming Language

11



Variables, Literals

EffectiveAlt € Altimeter + 645

#* Variables
EffectiveAlt, Altimeter

#* Literals
645

Polly Huang, NTU EE Programming Language

Constants
const int AirportAlt = 645;

# Constants

Polly Huang, NTU EE Programming Language

12



Data Type

#» Common types
Integer, real, character, Boolean

#* Decides
Interpretation of data

Operations that can be performed on the
data

Polly Huang, NTU EE Programming Language

Variable Declarations

#» Pascal

Length, width: real;

Price, Tax, Total: integer;
#* C, C++, Java

float Length, width;

int Price, Tax, Total;

* FORTRAN

REAL Length, Width
INTEGER Price, Tax, Total

Polly Huang, NTU EE Programming Language

13



Data Structure

# Conceptual shape of data

# Common data structure
Homogeneous array
Heterogeneous array

Polly Huang, NTU EE Programming Language

Declaration of a 2D Array

»C
#* Java

int Scores[][]=new int [2][9];
#* Pascal

Scores: array[3..4, 12..20] of
integer;

Polly Huang, NTU EE Programming Language

14



* 2D Array

&

Scores (2,4) in Scores [1][3]1inC
FORTRAN where and its derivatives

indices start at one. where indices start
at zero.

Polly Huang, NTU EE Programming Language

1% Declaration of
* Heterogeneous Array

a. The array declaration

struct
{ char Name [8];

int Age;

float SkillRating;
} Employee;

b. The conceptual organization of the arra

Employee

Age  Skill
Rating

Polly Huang, NTU EE Programming Language

15



Assignment Statements

# C C++, Java
Total = Price + Tax;

# Ada, Pascal
Total := Price + Tax;

# APL
Total <- Price + Tax;

Polly Huang, NTU EE Programming Language

Operators

# Operator precedence
Operator priority
Plus and minus
Multiply and divide
Add and subtract

# Operator overloading

Exact function depends on the operand data types
12 +43
‘abc’ + ’def

Polly Huang, NTU EE Programming Language




Control Statements

#* Alter the execution sequence of the program
* goto is the simplest control statement

* Example

goto 40 if ( Price < 50 ) then

20 Total = price + 10 Total = Pricaittls
goto 70

40 if Price < 50 goto 60°lSe
goto 20 Total = Price + 10

60 Total = Price + 5 endif
70 stop stop

Polly Huang, NTU EE Programming Language

Control structure C, C++, C#, and Java

4 Types of
Controls T T E

Assign Count the value 1

l

False

B? while (B)
S1;
iTrue
sl
is the value switch (N)

of N? { case C1: S1; break;

N N - c2 N <3 case C2: S2; break;
case C3: S3; break;|

Ss1 s2 s3

False
Count < 4?
lTrue l
What
Assign Count the
Body — value Count + 1

for

(int Count = 1; Count<4; Count++)
body ;

;

Polly Huang, NTU EE Programming Language

17



Comments

#* Forinserting explanatory statements
(internal documentation)
# C++ and Java
/* This is
a comment
*/
// This is a comment
#* Explain the program, not to repeat it
Examp|eZTotal = Price + Tax;

Polly Huang, NTU EE Programming Language

Procedures

# A procedure
A set of instructions for performing a task
Used as an abstract tool by other program units

# Control

Transferred to the procedure atthe time its
services are required

Returned to the original program unit(calling unit)
after the procedure is finished
# The process of transferring control to a
procedure is often referred to as calling or
invoking the procedure

Polly Huang, NTU EE Programming Language

18



The 5th Type of Control

Calling
program unit

unit continues.

Polly Huang, NTU EE

Procedure

Procedure is
/ executed.

Control is
transferred
to procedure.

Control is returned to
calling environment when
procedure is completed.

Programming Language

Procedure Example

“void” is the way thata C
programmer specifies that the
program unit is a procedure
rather than a function. We will
learn about functions shortly.

Starting the head with the term

The formal parameter list. Note
that C, as with many programming
languages, requires that the data
type of each parameter be specified.

| void ProjectPopulation (float GrowthRate) |—’Header Body

named Year.

Population[0] = 100.0;

int Year; — This declares :1 local variable|

for (Year = 0; Year =< 10; Year++)
Population([Year+1l] = Population[Year] + (Population[Year] * GrowthRate) ;

Polly Huang, NTU EE

These statements describe how the

populations are to be computed and
stored in thelglobal arrayjnamed

Population.

Programming Language

19



Polly Huang, NTU EE

Pass by
Reference

Polly Huang, NTU EE

a. When the procedure is called, a copy of the data is given to
the procedure

Calling environment Procedure’s environment

= EEEE S

Actual Parameter Formal Parameter

b. and the procedure manipulates its copy.

Calling environment Procedure’s environment]

. Thus, when the procedure has terminated, the calling
environment has not been changed.

Calling environment

Programming Language

a. When the procedure is called, the formal parameter becomes
a reference to the actual parameter.

Calling environment Procedure’s environment

Actual Formal

5 ~ D

b. Thus, changes directed by the procedure are made to the
actual parameter

Calling environment Procedure’s environment
9

Actual Formal

P ~

c. and are, therefore, preserved after the procedure has
terminated.

Calling environment

Actual
6

Programming Language

20



Quiz Time!

Polly Huang, NTU EE Programming Language

Functions

# The 6! type of control

#* A program unit similar to procedure unit
except that a value is transferred back
to the calling unit

* Example

Cost = 2 * TotalCost( Price, TaxRate );

Polly Huang, NTU EE Programming Language

21



Function Example

The function header begins with
the type of the data that will
be returned.

CylinderVolume (float Radius, float Height)

Declare a
{ float volume; \Iocalvariable
named Volume.

Volume = 3.14 * Radius * Radius * Height;

\ Compute the volume of

return Volume; the cylinder.

Terminate the function and
return the value of the
variable Volume.

Polly Huang, NTU EE Programming Language

Input/Output Statements

#* |/O statements are often not primitives of
programming languages
#* Not really a control

# Most programming languages implement [/O
operations as procedures or functions

# Examples
printf( “%d %d\n”, valuel, value2 );

cout << wvalue << endl;

Polly Huang, NTU EE Programming Language

22



Chapter 6: Programming
Languages

#* 6.1 Historical Perspective

#* 6.2 Traditional Programming Concepts
#* 6.3 Procedural Units

#* 6.4 Language Implementation

# 6.5 Object Oriented Programming

# 6.6 Programming Concurrent Activities
#* 6.7 Declarative Programming

Polly Huang, NTU EE Programming Language

The Translation Process

Lexical »  Parser R Code N Object

analyzer generator progra

Machine
code

# Think of it being an automated English-
\ Chinese translator

Polly Huang, NTU EE Programming Language




Lexical Analyzer

# Reads the source program symbol by symbol,
identifying which groups of symbols represent
single units, and classifying those units

# As each unitis classified, the lexical analyzer
generates a bit pattern known as a token to
represent the unit and hands the token to the

parser X + Y* Z ‘X’, ‘Y’, ‘Z’, 6+7’ (%3]
#* Like mapping words according to a dictionary,

except the dictionary here is much smaller.
and non-ambiguous

Polly Huang, NTU EE Programming Language

Parsing

# Group lexical units (tokens) into
statements

#* |[dentify the grammatical structure of the
program

# Recognize the role of each component

Polly Huang, NTU EE Programming Language

24



Syntax Diagram

#* Pictorial representations of a program’s
grammatical structure

#* Nonterminals (rectangles)
Requires further description

#* Terminals (ovals)

; Boolean
—> i —> oxpression —> then — StatementT else —» Statement

Polly Huang, NTU EE Programming Language

Syntax Diagram of Expression

Expression

Term +/- Term +/- Term +/-
Term ...

Factor *// Factor *// Factor *//
Factor ...

Polly Huang, NTU EE Programming Language

25



Quiz Time!

Polly Huang, NTU EE Programming Language

Parse Tree

# Pictorial form which represents a particular
string conforming to a set of syntax diagrams

#* The process of parsing a program is
essentially that of constructing a parse tree

for the source program

# A parse tree represents the parser’s
understanding of the programmer’s
grammatical composition

Polly Huang, NTU EE Programming Language

26



.
* Parse Tree x+y*z

Expression

+
Term Expression
Factor Term

Factor x Term

Factor

Polly Huang, NTU EE Programming Language

Double Quiz Time!

Polly Huang, NTU EE Programming Language

27



Dangling else Problem

#* if B1
then if B2 then S1
else S2

2 Boolean
—» if —» expression > then —» StatementT else —» Statement

#* if B1
then if B2 then S1
else S2

Polly Huang, NTU EE Programming Language

Quiz Time!

Polly Huang, NTU EE Programming Language

28



e  Statement

S2

Boolean
expression

B2 S1

then  Statement

Statement

1N

i Boolean
! expression

|

if hen

then = Statement

h
sion U

|
B1
Bool
expres:
|
B2

Polly Huang, NTU EE Programming Language

Syntax Tree Ambiguity

# There could be multiple syntax trees for
one statement

# \When the results are the same, it is OK

# \When the results are not the same, we
call the statement an ambiguous
statement

Polly Huang, NTU EE Programming Language



Code Generation

# Given the parse tree, create machine code
Z & X+Y,
Load X
LoadY
ADDI XY

# Complication

When Xis an integerand is a floating point
number
ConvertX from integerto floating point number

Use ADDF instead

Polly Huang, NTU EE Programming Language

Code Optimization

#Line1. X <€Y+/Z
#*Line2. W < X+ Z;

#* Valuesof Y, Z, and X already in
registers after Line 1

# No need to store the values back to

memory and then load again for Line 2.

Polly Huang, NTU EE Programming Language

30



Intertwined Process

#* Lexical analyzer
Recognize a token
Pass to parser

#* Parser
Analyze grammatical structure
Might need anothertoken
Back to lexical analyzer
Recognize a statement
Passto code generator
# Code generator
Generate machine code

Might need another statement

Back to parser
Polly Huang, NTU EE Programming Language

Object-Oriented Translation

Lexical
analyzer
Code

-,

Object
program

Polly Huang, NTU EE Programming Language

31



Extended Process

Source __, Translate —» Object Link —> Load —> Load —>
program program module program

So far, here!

Polly Huang, NTU EE Programming Language

Linker

# Most programming environments allow the
modules of a program to be developed and
translated as individual units at different times

#* Linker links several
Object programs
Operating system routines and utility software
#include <xxxx.h>
#* To produce a complete, executable program
(load module) thatis in turn stored as a file in
the mass storage system

Polly Huang, NTU EE Programming Language

Executablg

32



Loader

# Often part of the operating system’s
scheduler

# Places the load module in memory

#* Important in multitasking systems
Exact memory area available to the programsis
not known until it is time to execute it

Loaderalso makes any final adjustments that
might be needed once the exact memory location
of the programis known (e.g. dealing with the
JUMP instruction)

Polly Huang, NTU EE Programming Language

Software Development
Package

* Editor
Often customized

Example
Color forreserved words
Aligned indentation

#* Translator
The compiler/interpreter
The most important part
# Debugger
To allow easy tracking of program states

Polly Huang, NTU EE Programming Language

33



Chapter 6: Programming
Languages

#* 6.1 Historical Perspective

#* 6.2 Traditional Programming Concepts
#* 6.3 Procedural Units

#* 6.4 Language Implementation

# 6.5 Object Oriented Programming

# 6.6 Programming Concurrent Activities
#* 6.7 Declarative Programming

Polly Huang, NTU EE Programming Language

Objects and Classes

#* Object

Active program unit containing both data
and procedures

#* Class
A template for all objects of the same type

An Object is often called an instance of
the class.

Polly Huang, NTU EE Programming Language

34



Components of an object

# [nstance variable
Variable within an object

# Method

Function or procedure within an object
Can manipulate the object’sinstance variables

# Constructor
Special method to initialize a new objectinstance

Polly Huang, NTU EE Programming Language

Class Example

class LaserClass

{ int RemainingPower = 100;

— Description of the data

that will reside inside of
void turnRight ( each object of this “type.”

{ ...}

voild turnLeft ( ) Methods describing how an
object of this “type” should
{ coa ) respond to various messages

vionlel iEiiEe ()

C++:
1o

LaserClass Laser1, Laser2;
NEVEE
LaserClass Laser1 = new LaserClass();

Laser1 fire();

Polly Huang, NTU EE Programming Language

35



ii ¢ Constructor Example

class LaserClass Constructor assigns a
value to Remaining Power
{ int RemainingPower; when an object is created.

{ LaserClass (InitialPower)
{ RemainingPower = InitialPower;

}

void turnRight ( )

{ ...}

void turnLeft ( )

{ ...}

void fire ( ) [NOEEN

{...} LaserClass Laser1(50);

NEVEE
LaserClass Laser! =new LaserClass(50);

Polly Huang, NTU EE Programming Language 71

Encapsulation

#* Encapsulation
A way of restricting access to the internal
components of an object

Private vs. Public

Polly Huang, NTU EE Programming Language

36



Encapsulation Example

class LaserClass
private int RemainingPower;

[Components in the class
are designated public or
private depending on L. L
hether they should be {RemainingPower = InitialPower;
accessible from other
program units.

| —public LaserClass (InitialPower)

public void turnRight ( )
public void turnLeft ( )

(...}

public void fire ( )

Polly Huang, NTU EE Programming Language

Additional Concepts

# |Inheritance

Allows new classes to be defined in terms
of previously defined classes

#* Polymorphism

Allows method calls to be interpreted by
the object that receives the call

For example
draw()
Different for circle vs. square object

Polly Huang, NTU EE Programming Language




Chapter 6: Programming
Languages

#* 6.1 Historical Perspective

#* 6.2 Traditional Programming Concepts
#* 6.3 Procedural Units

#* 6.4 Language Implementation

# 6.5 Object Oriented Programming

# 6.6 Programming Concurrent Activities
#* 6.7 Declarative Programming

Polly Huang, NTU EE Programming Language

Program Concurrent Activities

#* Parallel or concurrent processing

#* Simultaneous execution of multiple
processes

#* True concurrent processing requires
multiple CPUs

# Can be simulated using time-sharing
with a single CPU

# Examples: Ada task and Java thread

Polly Huang, NTU EE Programming Language

38



Parallel Processing

Calling
program unit

Procedure is
activated.

/ A
\ Both units

execute
simultaneously.

Polly Huang, NTU EE Programming Language

Basic |ldea

# Creating new process
#* Handling communication between processes

# Problem accessing shared data

Mutually exclusive access over critical regions
Mechanism on the program
Data accessed by only one process at a time
Monitor
Mechanismon the data

A data item augmented with the ability to control access
to itself

Polly Huang, NTU EE Programming Language

39



Chapter 6: Programming
Languages

#* 6.1 Historical Perspective

#* 6.2 Traditional Programming Concepts
#* 6.3 Procedural Units

#* 6.4 Language Implementation

# 6.5 Object Oriented Programming

# 6.6 Programming Concurrent Activities
#* 6.7 Declarative Programming

Polly Huang, NTU EE Programming Language

Logical Deduction

# Either Kermit is on stage (Q) or Kermit
is sick (P)

# Kermit is not on stage (not Q)

#* Kermit is sick (P)

Polly Huang, NTU EE Programming Language

40



Resolution

# Combining two or more statements to
produce a new, logically equivalent
statement

#* Resolvent
A new statement deduced by resolution

Polly Huang, NTU EE Programming Language

Quiz Time!

Polly Huang, NTU EE Programming Language

41



v:OR A:AND -:NOT

Polly Huang, NTU EE Programming Language

4

g

Polly Huang, NTU EE Programming Language

42



Polly Huang, NTU EE Programming Language

(P v Q) and (™Q) both true
O G

Polly Huang, NTU EE Programming Language

43



Under
‘(P v Q) and (7Q) being true”

N O G T N G
A N U A S N L NN

#* There are only 2 cases that the (P v Q)
and (7Q) are both true.

# Under these 2 cases, P, (Rv™Q), (PvR)
are also true.

Polly Huang, NTU EE Programming Language 87

Resolution

# Combining two or more statements to
produce a new, logically equivalent
statement

= QO OR any statement

#* Resolvent
A new statement deduced by resolution

Polly Huang, NTU EE Programming Language

44



. -7"' %

Ask Your Brain to Resolve This
(no truth table)

Polly Huang, NTU EE Programming Language

Polly Huang, NTU EE Programming Language

45



Quiz Time!

Try the computer’'s way again

Polly Huang, NTU EE Programming Language

Magic

# Deduction computations are
implemented in the programming
language

#* Resolutions are done automatically

By checking the rows
And inferring the columns that are true

# All you need to do is to describe the
‘rules’ and ‘facts’ in the logical forms

Polly Huang, NTU EE Programming Language

46



Polly Huang, NTU EE Programming Language

"% Confirming the Inconsistency of a

‘E &
¥
@x

¢ Set of Inconsistent Clauses

E |
" »
¥

PORO ROR—|O

empty clause

Polly Huang, NTU EE Programming Language

47



Unification

#* The process of assigning values to
variables so that resolution can be

performed (Mary is at X)) — (Mary's lamb is at X)

Mary is at home

—~(Mary is at X)OR(Mary's lamb is at X)
(Mary is at home)

—~(Mary is at home)OR(Mary's lamb is at h¢

(Mary is at home)

(Mary's lamb is at home)
Polly Huang, NTU EE Programming Language

For Simplicity: Clause Form

»* P
»* P
#*P OR Q

# Clause form
(P, OR Q,)AND(P, OR Q,)AND:-- AND(P, OR Q)

Polly Huang, NTU EE Programming Language

48



Quiz Time!

Polly Huang, NTU EE Programming Language

Prolog

# PROgramming in LOGic

#* A Prolog program consists of a
collection of initial statements upon
which the underlying algorithm bases its
deductive reasoning

Polly Huang, NTU EE Programming Language

49



Prolog Syntax

#* Fact
predicateName(arguments).
Exanuﬂeiparent(bill, mary) .

#* Rule
conclusion :- premise.

- means “if”
Example:wise (x) :- old(X).

Example: faster (X,2) :- faster(X,Y),
faster (Y, 7).

# All statements must be fact or rules.

Polly Huang, NTU EE Programming Language

Using Prolog |

#* Given
faster (X, %) :- faster (X,Y), faster(Y,Z2)
faster (turtle, snail)

faster (rabbit, turtle)

# Request

faster (rabbit, snail)?

#* Result
True
Using unification

Polly Huang, NTU EE Programming Language

50



Using Prolog |l

#* Given
faster (X, Z) :- faster (X,Y),
faster (turtle, snail)
faster (rabbit, turtle)

#* Request

faster (W, snail)?

#» Result
faster (turtle, snail)

faster (rabbit, snail)

Polly Huang, NTU EE Programming Language

Using Prolog IlI

#* Given
faster (X, Z2) :- faster (X,Y),
faster (turtle, snail)

faster (rabbit, turtle)

# Request
faster (v, W)?

# Result

faster (turtle, snail)
faster (rabbit, turtle)

faster (rabbit, snail)

Polly Huang, NTU EE Programming Language

faster (Y, 2)

faster (Y, 2)

51



Questions?

Polly Huang, NTU EE

Programming Language

52



