
1

Polly Huang, NTU EE Programming Language 1

Introduction to Computer Science

Polly Huang
NTU EE
http://homepage.ntu.edu.tw/~pollyhuang
pollyhuang@ntu.edu.tw

Polly Huang, NTU EE Programming Language 2

Chapter 6

Programming Languages

2

Polly Huang, NTU EE Programming Language 3

Chapter 6: Programming
Languages
®6.1 Historical Perspective
®6.2 Traditional Programming Concepts
®6.3 Procedural Units
®6.4 Language Implementation
®6.5 Object Oriented Programming
®6.6 Programming Concurrent Activities
®6.7 Declarative Programming

Polly Huang, NTU EE Programming Language 4

Generations of
Programming Languages

3

Polly Huang, NTU EE Programming Language 5

1st Generation:
Machine Language

156C
166D
5056
30CE
C000

®Machine language
®Operations in op-codes
®Operands

® Numerical values
® Register number
® Memory location address

Polly Huang, NTU EE Programming Language 6

2nd Generation:
Assembly Language
® A mnemonic system for representing

programs
® Mnemonic: easy to remember

® More descriptive
® Enabling programming without tables such as the

one in Appendix C
® Things are mnemonic

® Op-codes in mnemonic names
® Registers in mnemonic names
® Memory locations in mnemonic names of the

programmer’s choice (Identifiers/variables)

4

Polly Huang, NTU EE Programming Language 7

Assembly Language Example
Machine language

156C
166D
5056
30CE
C000

Assembly language

LD R5, Price
LD R6, ShippingCharge
ADDI R0, R5 R6
ST R0, TotalCost
HLT

Polly Huang, NTU EE Programming Language 8

Just a Little Step Further
® One-to-one correspondence between

machine instructions and assembly
instructions

® Inherently machine-dependent
® Converted to machine language by a

program called an assembler

® Thing are easier to remember, yes.
® But programmer still needs to think like the

machine!

5

Polly Huang, NTU EE Programming Language 9

Third Generation Language
® Uses high-level primitives

® Similar to our pseudocode in Chapter 5

® Machine independent (mostly)
® Each primitive corresponds to a short

sequence of machine language instructions
® Converted to machine language by a

program called compiler
® Examples: FORTRAN, COBOL, BASIC

Polly Huang, NTU EE Programming Language 10

Compilers vs. Interpreters
®Compilers

®Compile several machine instructions into
short sequences to simulate the activity
requested by a single high-level primitive

®Produce a machine-language copy of a
program that would be executed later

® Interpreters
®Execute the instructions as they were

translated

6

Polly Huang, NTU EE Programming Language 11

The Evolution

Polly Huang, NTU EE Programming Language 12

Imperative Paradigm
®Procedural paradigm
®Develops a sequence of commands that

when followed, manipulate data to
produce the desired result

®Approaches a problem by trying to find
an algorithm for solving it

7

Polly Huang, NTU EE Programming Language 13

Object-Oriented Paradigm
® Grouping/classifying entities in the program

® Entities are the objects
® Groups are the classes
® Objects of a class share certain properties
® Properties are the variables or methods

® Encapsulation of data and procedures
® e.g., Lists come with sorting functions

® Natural modular structure and program reuse
® Inheriting from mother class definitions

® Many large-scale software systems are
developed in the object oriented fashion

Polly Huang, NTU EE Programming Language 14

Declarative Paradigm
® Emphasizes

® “What is the problem?”
® Rather than “What algorithm is required to solve

the problem?”

® Implemented a general problem-solving
algorithm in the language

® Develops a statement of the problem
compatible with the algorithm and then
applies the algorithm to solve it

8

Polly Huang, NTU EE Programming Language 15

Functional Paradigm
®Views the process of program

development as connecting predefined
“black boxes,” each of which accepts
inputs and produces outputs

®Mathematicians refer to such “boxes”
as functions

®Constructs functions as nested
complexes of simpler functions

Polly Huang, NTU EE Programming Language 16

Functional Paradigm Example

9

Polly Huang, NTU EE Programming Language 17

LISP Expressions
(Divide (Sum Numbers)

(Count Numbers))

(First (Sort List))

Polly Huang, NTU EE Programming Language 18

Advantages of FP
®Constructing complex software from

predefined primitive functions leads to
well-organized systems

®Provides an environment in which
hierarchies of abstraction are easily
implemented, enabling new software to
be constructed from large predefined
components rather than from scratch

10

Polly Huang, NTU EE Programming Language 19

Chapter 6: Programming
Languages
®6.1 Historical Perspective
®6.2 Traditional Programming Concepts
®6.3 Procedural Units
®6.4 Language Implementation
®6.5 Object Oriented Programming
®6.6 Programming Concurrent Activities
®6.7 Declarative Programming

Polly Huang, NTU EE Programming Language 20

Types of Statements
®Declarative statements

®Define customized terminology that is used
later in the program

® Imperative statements
®Describe steps in the underlying algorithms

®Comments
®Enhance the readability of a program

11

Polly Huang, NTU EE Programming Language 21

A Typical Imperative Program

Polly Huang, NTU EE Programming Language 22

Declaration Statements
®Data terms

®Variables
®Literals
®Constants

®Data types
®Declaring data terms with proper types
®Data structure

12

Polly Huang, NTU EE Programming Language 23

Variables, Literals
EffectiveAlt ß Altimeter + 645

®Variables
® EffectiveAlt, Altimeter

®Literals
® 645

Polly Huang, NTU EE Programming Language 24

Constants
const int AirportAlt = 645;

®Constants

13

Polly Huang, NTU EE Programming Language 25

Data Type
®Common types

® Integer, real, character, Boolean

®Decides
® Interpretation of data
®Operations that can be performed on the

data

Polly Huang, NTU EE Programming Language 26

Variable Declarations
® Pascal

Length, width: real;
Price, Tax, Total: integer;

® C, C++, Java
float Length, width;
int Price, Tax, Total;

® FORTRAN
REAL Length, Width
INTEGER Price, Tax, Total

14

Polly Huang, NTU EE Programming Language 27

Data Structure
®Conceptual shape of data
®Common data structure

®Homogeneous array
®Heterogeneous array

Polly Huang, NTU EE Programming Language 28

Declaration of a 2D Array
®C

int Scores[2][9];

® Java
int Scores[][]=new int [2][9];

®Pascal
Scores: array[3..4, 12..20] of

integer;

15

Polly Huang, NTU EE Programming Language 29

2D Array

Polly Huang, NTU EE Programming Language 30

Declaration of
Heterogeneous Array

16

Polly Huang, NTU EE Programming Language 31

Assignment Statements
®C, C++, Java

Total = Price + Tax;

®Ada, Pascal
Total := Price + Tax;

®APL
Total <- Price + Tax;

Polly Huang, NTU EE Programming Language 32

Operators
® Operator precedence

® Operator priority
® Plus and minus
® Multiply and divide
® Add and subtract

® Operator overloading
® Exact function depends on the operand data types
® 12 + 43
® ‘abc’ + ’def’

17

Polly Huang, NTU EE Programming Language 33

Control Statements
® Alter the execution sequence of the program
® goto is the simplest control statement

® Example
goto 40

20 Total = price + 10
goto 70

40 if Price < 50 goto 60
goto 20

60 Total = Price + 5
70 stop

if(Price < 50) then
Total = Price + 5

else
Total = Price + 10

endif
stop

Polly Huang, NTU EE Programming Language 34

4 Types of
Controls

18

Polly Huang, NTU EE Programming Language 35

Comments
®For inserting explanatory statements

(internal documentation)
®C++ and Java

/* This is
a comment

*/
// This is a comment

®Explain the program, not to repeat it
®Example: Total = Price + Tax;

Polly Huang, NTU EE Programming Language 36

Procedures
® A procedure

® A set of instructions for performing a task
® Used as an abstract tool by other program units

® Control
® Transferred to the procedure at the time its

services are required
® Returned to the original program unit (calling unit)

after the procedure is finished
® The process of transferring control to a

procedure is often referred to as calling or
invoking the procedure

19

Polly Huang, NTU EE Programming Language 37

The 5th Type of Control

Polly Huang, NTU EE Programming Language 38

Procedure Example

Header Body

20

Polly Huang, NTU EE Programming Language 39

Pass by
Value Formal ParameterActual Parameter

Polly Huang, NTU EE Programming Language 40

Pass by
Reference

21

Polly Huang, NTU EE Programming Language 41

Quiz Time!

Polly Huang, NTU EE Programming Language 42

Functions
®The 6th type of control
®A program unit similar to procedure unit

except that a value is transferred back
to the calling unit

®Example
Cost = 2 * TotalCost(Price, TaxRate);

22

Polly Huang, NTU EE Programming Language 43

Function Example

Polly Huang, NTU EE Programming Language 44

Input/Output Statements
® I/O statements are often not primitives of

programming languages
® Not really a control
® Most programming languages implement I/O

operations as procedures or functions
® Examples

printf(“%d %d\n”, value1, value2);

cout << value << endl;

23

Polly Huang, NTU EE Programming Language 45

Chapter 6: Programming
Languages
®6.1 Historical Perspective
®6.2 Traditional Programming Concepts
®6.3 Procedural Units
®6.4 Language Implementation
®6.5 Object Oriented Programming
®6.6 Programming Concurrent Activities
®6.7 Declarative Programming

Polly Huang, NTU EE Programming Language 46

The Translation Process

C code Machine
code

® Think of it being an automated English-
Chinese translator

24

Polly Huang, NTU EE Programming Language 47

Lexical Analyzer
® Reads the source program symbol by symbol,

identifying which groups of symbols represent
single units, and classifying those units

® As each unit is classified, the lexical analyzer
generates a bit pattern known as a token to
represent the unit and hands the token to the
parser

® Like mapping words according to a dictionary,
except the dictionary here is much smaller
and non-ambiguous

X + Y * Z ‘X’, ‘Y’, ‘Z’, ‘+’, ‘*’

Polly Huang, NTU EE Programming Language 48

Parsing
®Group lexical units (tokens) into

statements
® Identify the grammatical structure of the

program
®Recognize the role of each component

25

Polly Huang, NTU EE Programming Language 49

Syntax Diagram
®Pictorial representations of a program’s

grammatical structure
®Nonterminals (rectangles)

®Requires further description
®Terminals (ovals)

Polly Huang, NTU EE Programming Language 50

Syntax Diagram of Expression

Term +/- Term +/- Term +/-
Term …

Factor *// Factor *// Factor *//
Factor …

x/y/z

26

Polly Huang, NTU EE Programming Language 51

Quiz Time!

Polly Huang, NTU EE Programming Language 52

Parse Tree
® Pictorial form which represents a particular

string conforming to a set of syntax diagrams
® The process of parsing a program is

essentially that of constructing a parse tree
for the source program

® A parse tree represents the parser’s
understanding of the programmer’s
grammatical composition

27

Polly Huang, NTU EE Programming Language 53

Parse Tree x+y*z

Polly Huang, NTU EE Programming Language 54

Double Quiz Time!

28

Polly Huang, NTU EE Programming Language 55

Dangling else Problem
® if B1

then if B2 then S1
else S2

® if B1
then if B2 then S1

else S2

Polly Huang, NTU EE Programming Language 56

Quiz Time!

29

Polly Huang, NTU EE Programming Language 57

Parse
Trees

Polly Huang, NTU EE Programming Language 58

Syntax Tree Ambiguity
®There could be multiple syntax trees for

one statement

®When the results are the same, it is OK
®When the results are not the same, we

call the statement an ambiguous
statement

30

Polly Huang, NTU EE Programming Language 59

Code Generation
® Given the parse tree, create machine code

® Z ß X + Y;
® Load X
® Load Y
® ADDI X Y

® Complication
® When X is an integer and Y is a floating point

number
® Convert X from integer to floating point number
® Use ADDF instead

Polly Huang, NTU EE Programming Language 60

Code Optimization
®Line 1. X ß Y + Z;
®Line 2. W ß X + Z;

®Values of Y, Z, and X already in
registers after Line 1

®No need to store the values back to
memory and then load again for Line 2.

31

Polly Huang, NTU EE Programming Language 61

Intertwined Process
® Lexical analyzer

® Recognize a token
® Pass to parser

® Parser
® Analyze grammatical structure
® Might need another token

® Back to lexical analyzer
® Recognize a statement

® Pass to code generator

® Code generator
® Generate machine code
® Might need another statement

® Back to parser

Polly Huang, NTU EE Programming Language 62

Object-Oriented Translation

32

Polly Huang, NTU EE Programming Language 63

Extended Process

So far, here!

Polly Huang, NTU EE Programming Language 64

Linker
® Most programming environments allow the

modules of a program to be developed and
translated as individual units at different times

® Linker links several
® Object programs
® Operating system routines and utility software

® #include <xxxx.h>

® To produce a complete, executable program
(load module) that is in turn stored as a file in
the mass storage system

33

Polly Huang, NTU EE Programming Language 65

Loader
® Often part of the operating system’s

scheduler
® Places the load module in memory
® Important in multitasking systems

® Exact memory area available to the programs is
not known until it is time to execute it

® Loader also makes any final adjustments that
might be needed once the exact memory location
of the program is known (e.g. dealing with the
JUMP instruction)

Polly Huang, NTU EE Programming Language 66

Software Development
Package
® Editor

® Often customized
® Example

® Color for reserved words
® Aligned indentation

® Translator
® The compiler/interpreter
® The most important part

® Debugger
® To allow easy tracking of program states

34

Polly Huang, NTU EE Programming Language 67

Chapter 6: Programming
Languages
®6.1 Historical Perspective
®6.2 Traditional Programming Concepts
®6.3 Procedural Units
®6.4 Language Implementation
®6.5 Object Oriented Programming
®6.6 Programming Concurrent Activities
®6.7 Declarative Programming

Polly Huang, NTU EE Programming Language 68

Objects and Classes
®Object

®Active program unit containing both data
and procedures

®Class
®A template for all objects of the same type

An Object is often called an instance of
the class.

35

Polly Huang, NTU EE Programming Language 69

Components of an object
® Instance variable

® Variable within an object

® Method
® Function or procedure within an object
® Can manipulate the object’s instance variables

® Constructor
® Special method to initialize a new object instance

Polly Huang, NTU EE Programming Language 70

Class Example

C++:
LaserClass Laser1, Laser2;
Java:
LaserClass Laser1 = new LaserClass();

Laser1.fire();

36

Polly Huang, NTU EE Programming Language 71

Constructor Example

C++:
LaserClass Laser1(50);
Java:
LaserClass Laser1 = new LaserClass(50);

Polly Huang, NTU EE Programming Language 72

Encapsulation
®Encapsulation

®A way of restricting access to the internal
components of an object

®Private vs. Public

37

Polly Huang, NTU EE Programming Language 73

Encapsulation Example

Polly Huang, NTU EE Programming Language 74

Additional Concepts
® Inheritance

®Allows new classes to be defined in terms
of previously defined classes

®Polymorphism
®Allows method calls to be interpreted by

the object that receives the call
®For example

® draw()
® Different for circle vs. square object

38

Polly Huang, NTU EE Programming Language 75

Chapter 6: Programming
Languages
®6.1 Historical Perspective
®6.2 Traditional Programming Concepts
®6.3 Procedural Units
®6.4 Language Implementation
®6.5 Object Oriented Programming
®6.6 Programming Concurrent Activities
®6.7 Declarative Programming

Polly Huang, NTU EE Programming Language 76

Program Concurrent Activities
®Parallel or concurrent processing
®Simultaneous execution of multiple

processes
®True concurrent processing requires

multiple CPUs
®Can be simulated using time-sharing

with a single CPU
®Examples: Ada task and Java thread

39

Polly Huang, NTU EE Programming Language 77

Parallel Processing

Polly Huang, NTU EE Programming Language 78

Basic Idea
® Creating new process
® Handling communication between processes

® Problem accessing shared data
® Mutually exclusive access over critical regions

® Mechanism on the program
® Data accessed by only one process at a time

® Monitor
® Mechanism on the data
® A data item augmented with the ability to control access

to itself

40

Polly Huang, NTU EE Programming Language 79

Chapter 6: Programming
Languages
®6.1 Historical Perspective
®6.2 Traditional Programming Concepts
®6.3 Procedural Units
®6.4 Language Implementation
®6.5 Object Oriented Programming
®6.6 Programming Concurrent Activities
®6.7 Declarative Programming

Polly Huang, NTU EE Programming Language 80

Logical Deduction
®Either Kermit is on stage (Q) or Kermit

is sick (P)
®Kermit is not on stage (not Q)
®Kermit is sick (P)

PQ
PQQORP

¬

→¬

41

Polly Huang, NTU EE Programming Language 81

Resolution
®Combining two or more statements to

produce a new, logically equivalent
statement

®Resolvent
® A new statement deduced by resolution

Q
QORP

¬ P

Polly Huang, NTU EE Programming Language 82

Quiz Time!

42

The Truth Table

Polly Huang, NTU EE Programming Language 83

P R Q P	
 ∨ Q R	
 ∨ ¬Q P	
 ∨ R P	
 ∧ R ¬P	
 ∨ R

T T T T T T T T

T T F T T T T T

T F T T F T F F

T F F T T T F F

F T T T T T F T

F T F F T T F T

F F T T F F F T

F F F F T F F T

∨:	
 OR	
 	
 	
 	
 ∧:	
 AND	
 	
 	
 ¬:	
 NOT

(P v Q) being true

Polly Huang, NTU EE Programming Language 84

P R Q P	
 ∨ Q R	
 ∨ ¬Q P	
 ∨ R P	
 ∧ R ¬P	
 ∨ R

T T T T T T T T

T T F T T T T T

T F T T F T F F

T F F T T T F F

F T T T T T F T

F T F F T T F T

F F T T F F F T

F F F F T F F T

43

(¬Q) also true

Polly Huang, NTU EE Programming Language 85

P R Q P	
 ∨ Q R	
 ∨ ¬Q P	
 ∨ R P	
 ∧ R ¬P	
 ∨ R

T T T T T T T T

T T F T T T T T

T F T T F T F F

T F F T T T F F

F T T T T T F T

F T F F T T F T

F F T T F F F T

F F F F T F F T

(P v Q) and (¬Q) both true

Polly Huang, NTU EE Programming Language 86

P R Q P	
 ∨ Q R	
 ∨ ¬Q P	
 ∨ R P	
 ∧ R ¬P	
 ∨ R

T T T T T T T T

T T F T T T T T

T F T T F T F F

T F F T T T F F

F T T T T T F T

F T F F T T F T

F F T T F F F T

F F F F T F F T

44

Under
“(P v Q) and (¬Q) being true”

Polly Huang, NTU EE Programming Language 87

P R Q P	
 ∨ Q R	
 ∨ ¬Q P	
 ∨ R P	
 ∧ R ¬P	
 ∨ R

T T T T T T T T

T T F T T T T T

T F T T F T F F

T F F T T T F F

F T T T T T F T

F T F F T T F T

F F T T F F F T

F F F F T F F T
®There are only 2 cases that the (P v Q)

and (¬Q) are both true.
®Under these 2 cases, P, (R∨¬Q), (P∨R)

are also true.

Polly Huang, NTU EE Programming Language 88

Resolution
®Combining two or more statements to

produce a new, logically equivalent
statement

®Resolvent
® A new statement deduced by resolution

Q
QORP

¬ P
P OR any statement

OR any statementQ¬

45

Polly Huang, NTU EE Programming Language 89

Ask Your Brain to Resolve This
(no truth table)

??

Polly Huang, NTU EE Programming Language 90

Obvious? No?

46

Polly Huang, NTU EE Programming Language 91

Quiz Time!

Try the computer’s way again

Polly Huang, NTU EE Programming Language 92

Magic
®Deduction computations are

implemented in the programming
language

®Resolutions are done automatically
®By checking the rows
®And inferring the columns that are true

®All you need to do is to describe the
‘rules’ and ‘facts’ in the logical forms

47

Polly Huang, NTU EE Programming Language 93

Truth Table for (PvQ) and (¬Q)

P Q P¬ QP ∧ QP ∨ QP→ QP ↔

False False

False

False

False

False False

False

False False

False False

False

True

True

True True

True

True True

True

True

True

True

True

True

True

True

Polly Huang, NTU EE Programming Language 94

Confirming the Inconsistency of a
Set of Inconsistent Clauses

48

Polly Huang, NTU EE Programming Language 95

Unification
®The process of assigning values to

variables so that resolution can be
performed

homeatisMary
XatislambsMaryXatisMary)'()(→

)(
)'()(

homeatisMary
XatislambsMaryORXatisMary¬

)(
)'()(

homeatisMary
homeatislambsMaryORhomeatisMary¬

)'(homeatislambsMary

Polly Huang, NTU EE Programming Language 96

For Simplicity: Clause Form
®P
® P
®P OR Q

®Clause form
)()()(2211 NN QORPANDANDQORPANDQORP !

¬

49

Polly Huang, NTU EE Programming Language 97

Quiz Time!

Polly Huang, NTU EE Programming Language 98

Prolog
®PROgramming in LOGic
®A Prolog program consists of a

collection of initial statements upon
which the underlying algorithm bases its
deductive reasoning

50

Polly Huang, NTU EE Programming Language 99

Prolog Syntax
® Fact

® predicateName(arguments).
® Example: parent(bill, mary).

® Rule
® conclusion :- premise.
® :- means “if”
® Example: wise(X) :- old(X).

® Example: faster(X,Z) :- faster(X,Y),
faster(Y,Z).

® All statements must be fact or rules.

Polly Huang, NTU EE Programming Language 100

Using Prolog I
® Given

® faster(X,Z) :- faster(X,Y), faster(Y,Z)
® faster(turtle, snail)

® faster(rabbit, turtle)

® Request
® faster(rabbit, snail)?

® Result
® True
® Using unification

51

Polly Huang, NTU EE Programming Language 101

Using Prolog II
® Given

® faster(X,Z) :- faster(X,Y), faster(Y,Z)
® faster(turtle, snail)

® faster(rabbit, turtle)

® Request
® faster(W, snail)?

® Result
® faster(turtle, snail)

® faster(rabbit, snail)

Polly Huang, NTU EE Programming Language 102

Using Prolog III
® Given

® faster(X,Z) :- faster(X,Y), faster(Y,Z)
® faster(turtle, snail)

® faster(rabbit, turtle)

® Request
® faster(V, W)?

® Result
® faster(turtle, snail)
® faster(rabbit, turtle)

® faster(rabbit, snail)

52

Polly Huang, NTU EE Programming Language 103

Questions?

