
1

Polly Huang, NTU EE Algorithm 1

Introduction to Computer Science

Polly Huang
NTU EE
http://homepage.ntu.edu.tw/~pollyhuang
pollyhuang@ntu.edu.tw

Polly Huang, NTU EE Algorithm 2

Chapter 5

Algorithms

2

Polly Huang, NTU EE Algorithm 3

Chapter 5: Algorithms
®5.1 The Concept of an Algorithm
®5.2 Algorithm Representation
®5.3 Algorithm Discovery
®5.4 Iterative Structures
®5.5 Recursive Structures
®5.6 Efficiency and Correctness

Polly Huang, NTU EE Algorithm 4

Definition
®An algorithm is an ordered set of

unambiguous, executable steps that
defines a terminating process.

®Program
®Formal representation of an algorithm

®Process
®Activity of executing a program

3

Polly Huang, NTU EE Algorithm 5

Ordered Set
® Steps in an algorithm must have a well-

established structure in terms of the order in
which its steps are executed

® Each step must be an executable instruction
® Example: “Making a list of all the positive integers”

is not an executable instruction

® May involve more than one thread (parallel
algorithms)

Polly Huang, NTU EE Algorithm 6

Unambiguous Steps
® During execution of an algorithm, the

information in the state of the process must
be sufficient to determine uniquely and
completely the actions required by each step

® The execution of each step in an algorithm
does not require creative skills. Rather, it
requires only the ability to follow directions.

4

Polly Huang, NTU EE Algorithm 7

Terminating Process
® All execution of an algorithm must lead to an

end
® There are, however, many meaningful

application for non-terminating processes
® Computer science seeks to distinguish both

® Problems whose answers can be obtained
algorithmically

® Problems whose answers lie beyond the
capabilities of algorithmic systems

Polly Huang, NTU EE Algorithm 8

An algorithm is

an ordered set of unambiguous,
executable steps that defines a
terminating process.

5

Polly Huang, NTU EE Algorithm 9

Chapter 5: Algorithms
®5.1 The Concept of an Algorithm
®5.2 Algorithm Representation
®5.3 Algorithm Discovery
®5.4 Iterative Structures
®5.5 Recursive Structures
®5.6 Efficiency and Correctness

Polly Huang, NTU EE Algorithm 10

Algorithm and Its Representation
® Like a story and a story book
® Example: converting temperature readings

from Celsius to Fahrenheit
® 1. F = (9/5)C + 32
® 2. Multiply the temperature reading in Celsius by

9/5 and then add 32 to the product
® 3. Implemented by electronic circuit

® Underlying algorithm is the same, only the
representations differ

6

Polly Huang, NTU EE Algorithm 11

Level of Details
® May cause problems in communicating

algorithms
® Example:

® “Convert the Celsius reading to its Fahrenheit
equivalent”

® This might suffice for meteorologists
® But a layperson would argue that this instruction is

ambiguous
® The problem is that the algorithm is not

represented in enough detail for the layperson

Polly Huang, NTU EE Algorithm 12

An Example: Origami

7

Polly Huang, NTU EE Algorithm 13

Quiz Time!

Polly Huang, NTU EE Algorithm 14

Another Example: Origami

8

Polly Huang, NTU EE Algorithm 15

Algorithm Representation
®Primitive

®Set of building blocks from which algorithm
representations can be constructed

®Programming language
®Collection of primitives
®Collection of rules stating how the

primitives can be combined to represent
more complex ideas

Polly Huang, NTU EE Algorithm 16

Origami Primitives

9

Polly Huang, NTU EE Algorithm 17

Primitives
®Syntax

®Symbolic representation
®Semantics

®Concept represented (meaning of the
primitive)

Polly Huang, NTU EE Algorithm 18

Origami Primitives

10

Polly Huang, NTU EE Algorithm 19

Levels of Abstraction
®Algorithm

®Procedure to solve the problem
®Often one of many possibilities

®Representation
®Description of algorithm sufficient to

communicate it to the desired audience
®Always one of many possibilities

Polly Huang, NTU EE Algorithm 20

Quiz Time!

11

Polly Huang, NTU EE Algorithm 21

Machine Instructions as
Primitives
® Algorithm based on machine instructions is

suitable for machine execution
® However, expressing algorithms at this level

is tedious

® Normally uses a collection of higher level
primitives, each being an abstract tool
constructed from the low-level primitives
provided in the machine’s language

Polly Huang, NTU EE Algorithm 22

Pseudocode
® Less formal, more intuitive than the formal

programming languages
® A notation system in which ideas can be

expressed informally during the algorithm
development process

® A consistent, concise notation for
representing recurring semantic structure

® Comparison with flow chart

12

Polly Huang, NTU EE Algorithm 23

Pseudocode Primitives
®Assignment

® name ß expression

®Conditional selection
® if condition then action

®Repeated execution
® while condition do activity

®Procedure
® procedure name (generic names)

Polly Huang, NTU EE Algorithm 24

An Example: Greetings

13

Polly Huang, NTU EE Algorithm 25

Quiz Time!

Polly Huang, NTU EE Algorithm 26

Basic Primitives
® total ß price + tax

® if (sales have decreased)
then (lower the price by 5%)

® if (year is leap year)
then (divide total by 366)
else (divide total by 365)

® while(tickets remain to be sold) do
(sell a ticket)

14

Polly Huang, NTU EE Algorithm 27

Procedure Primitive
® total ß price + tax

® tax?
®A procedure to calculate tax

Polly Huang, NTU EE Algorithm 28

Tax as a Procedure

Procedure tax
if (item is taxable)
then (if (price > limit)

then (return price*0.1000)
else (return price*0.0825)
)

else (return 0)

15

Polly Huang, NTU EE Algorithm 29

Nested Statements
® One statement within another

if (item is taxable)
then (if (price > limit)

then (return price*0.1000)
else (return price*0.0825)

)
else (return 0)

Polly Huang, NTU EE Algorithm 30

Indentations
® Easier to tell the levels of nested statements

if (item is taxable)
then (if (price > limit)

then (return price*0.1000)
else (return price*0.0825)

)
else (return 0)

16

Polly Huang, NTU EE Algorithm 31

Structured Program
® Divide the long algorithm into smaller tasks
® Write the smaller tasks as procedures
® Call the procedures when needed
® This helps the readers to understand the

structure of the algorithm

if (customer credit is good)
then (ProcessLoan)
else (RejectApplication)

Polly Huang, NTU EE Algorithm 32

The Point of Pseudocode
®To communication the algorithm to the

readers
®The algorithm will later turn into

program
®Also help the program maintainer or

developer to understand the program

17

Polly Huang, NTU EE Algorithm 33

Quiz Time!

Polly Huang, NTU EE Algorithm 34

Chapter 5: Algorithms
®5.1 The Concept of an Algorithm
®5.2 Algorithm Representation
®5.3 Algorithm Discovery
®5.4 Iterative Structures
®5.5 Recursive Structures
®5.6 Efficiency and Correctness

18

Polly Huang, NTU EE Algorithm 35

Algorithm Discovery
®Development of a program consists of

®Discovering the underlying algorithm
®Representing the algorithm as a program

®Algorithm discovery is usually the more
challenging step in the software
development process

®Requires finding a method of solving the
problem

Polly Huang, NTU EE Algorithm 36

Problem Solving Steps
1. Understand the problem
2. Get an idea
3. Formulate the algorithm and represent

it as a program
4. Evaluate the program

1. For accuracy
2. For its potential as a tool for solving other

problems

19

Polly Huang, NTU EE Algorithm 37

Not Yet Sure What to Do
1. Understand the problem
2. Get an idea
3. Formulate the algorithm and represent

it as a program
4. Evaluate the program

1. For accuracy
2. For its potential as a tool for solving other

problems

Polly Huang, NTU EE Algorithm 38

Difficulties
®Understanding the problem

®There are complicated problems and easy
problems

®A complete understanding of the problem
before proposing any solutions is
somewhat idealistic

®Get an idea
®Take the ‘Algorithm’ course
®Mysterious inspiration

20

Polly Huang, NTU EE Algorithm 39

Getting a Foot in the Door
® Work the problem backwards

® Solve for an example and then generalize
® Solve an easier related problem

® Relax some of the problem constraints

® Divide and conquer
® Stepwise refinement

® top-down methodology
® Popular technique because it produces modular

programs
® Solve easy pieces of the problem first

® bottom up methodology

Polly Huang, NTU EE Algorithm 40

Work the Problem Backwards
®Simplify the problem
®Build up a scenario for the simplified

problem
®Try to solve this scenario
®Generalize the special solution to

general scenarios
®Consider a more general problem
®Repeat the process

21

Polly Huang, NTU EE Algorithm 41

Example Problem
® Person A is assigned the task of determining the

ages of B’s three children.
® B tells A that the product of the children’s ages is X.
® A replies that another clue is required.
® B tells A the sum of the children’s ages Y.
® A replies that another clue is needed.
® B tells A that the oldest child plays the piano.
® A tells B the ages of the three children.

® Come out with an algorithm for person A

Polly Huang, NTU EE Algorithm 42

Try This First!

a.k.a. Quiz Time!

22

Polly Huang, NTU EE Algorithm 43

Solving the Problem

Polly Huang, NTU EE Algorithm 44

Now Try This Problem Again!
® Person A is assigned the task of determining the

ages of B’s three children.
® B tells A that the product of the children’s ages is X.
® A replies that another clue is required.
® B tells A the sum of the children’s ages Y.
® A replies that another clue is needed.
® B tells A that the oldest child plays the piano.
® A tells B the ages of the three children.

® Come out with a solution for A

23

Polly Huang, NTU EE Algorithm 45

Divide and Conquer Concept
®Not trying to conquer an entire task at

once
®First view the problem at hand in terms

of several subproblems
®Approach the overall solution in terms of

steps, each of which is easier to solve
than the entire original problem

Polly Huang, NTU EE Algorithm 46

Divide and Conquer
®Steps be decomposed into smaller

steps
®These smaller steps be broken into still

smaller ones
®Until the entire problem has been

reduced to a collection of easily solved
subproblems

®Solve from the small subproblems and
gradually have it all.

24

Polly Huang, NTU EE Algorithm 47

Divide and Conquer Illustrated

Polly Huang, NTU EE Algorithm 48

Chapter 5: Algorithms
®5.1 The Concept of an Algorithm
®5.2 Algorithm Representation
®5.3 Algorithm Discovery
®5.4 Iterative Structures
®5.5 Recursive Structures
®5.6 Efficiency and Correctness

25

Polly Huang, NTU EE Algorithm 49

Iterative Structures
®Used in describing algorithmic process
®A collection of instructions is repeated in

a looping manner

Polly Huang, NTU EE Algorithm 50

Search Problem
®Search a list for the occurrence of a

particular target value
® If the value is in the list, we consider the

search a success; otherwise we
consider it a failure

®Assume that the list is sorted according
to some rule for ordering its entries

26

Polly Huang, NTU EE Algorithm 51

Search Scenario
Alice
Bob
Carol
David
Elaine
Fred
George
Harry
Irene
John
Kelly
Larry
Mary
Nancy
Oliver

List

John

Query

Result

Polly Huang, NTU EE Algorithm 52

Sequential Search Algorithm

27

Polly Huang, NTU EE Algorithm 53

The while Loop

Polly Huang, NTU EE Algorithm 54

Components of Repetitive
Control

28

Polly Huang, NTU EE Algorithm 55

while vs. repeat Structure
® In repeat structure the loop’s body is

always performed at least once
(posttest loop)

®While in while structure, the body is
never executed if the termination is
satisfied the first time it is tested (pretest
loop)

Polly Huang, NTU EE Algorithm 56

The repeat Loop

29

Polly Huang, NTU EE Algorithm 57

A Sort Problem
® Sort a list of names into alphabetical order
® The constraint is to sort the list “within itself”
® In other words, sort by shuffling its entries as

opposed to moving the list to another location
® Typical in computer applications to use the

storage space efficiently

Polly Huang, NTU EE Algorithm 58

Insertion Sort

30

Polly Huang, NTU EE Algorithm 59

Insertion Sort Algorithm

Polly Huang, NTU EE Algorithm 60

Chapter 5: Algorithms
®5.1 The Concept of an Algorithm
®5.2 Algorithm Representation
®5.3 Algorithm Discovery
®5.4 Iterative Structures
®5.5 Recursive Structures
®5.6 Efficiency and Correctness

31

Polly Huang, NTU EE Algorithm 61

Recursive Structures
® Involves repeating the set of instructions as a

subtask of itself
® An example is in processing incoming

telephone calls using the call-waiting feature
® An incomplete telephone conversation is set aside

while another incoming call is processed
® Two conversations are performed
® But not in a one-after-the-other manner as in the

loop structure
® Instead one is performed within the other

Polly Huang, NTU EE Algorithm 62

Binary Search (for John)

32

Polly Huang, NTU EE Algorithm 63

Binary Search Algorithm

Polly Huang, NTU EE Algorithm 64

Binary Search Algorithm in
Pseudocode

33

Polly Huang, NTU EE Algorithm 65

Searching for Bill

Polly Huang, NTU EE Algorithm 66

Searching for David

David

34

Polly Huang, NTU EE Algorithm 67

Searching for David

David David

Polly Huang, NTU EE Algorithm 68

Recursion
®Execution is performed in which each

stage of repetition is as a subtask of the
previous stage

®Example: divide-and-conquer in binary
search

35

Polly Huang, NTU EE Algorithm 69

Characteristics of Recursion
®Existence of multiple copies of itself (or

multiple activations of the program)
®At any given time only one is actively

progressing
®Each of the others waits for another

activation to terminate before it can
continue

Polly Huang, NTU EE Algorithm 70

Mandelbrot Set

•Credit: J. Gleick 原著, 林和譯, 混沌: 不測風雲的背後(Chaos), 天下文化, 1991

36

Polly Huang, NTU EE Algorithm 71

Recursive Control
® Also involves

® Initialization
® Modification
® Test for termination (degenerative case)

® Test for degenerative case
® Before requesting further activations
® If not met, assigns another activation to solve a

revised problem that is closer to the termination
condition

® Similar to a loop control

Polly Huang, NTU EE Algorithm 72

Chapter 5: Algorithms
®5.1 The Concept of an Algorithm
®5.2 Algorithm Representation
®5.3 Algorithm Discovery
®5.4 Iterative Structures
®5.5 Recursive Structures
®5.6 Efficiency and Correctness

37

Polly Huang, NTU EE Algorithm 73

Software Efficiency
®Measured as number of instructions

executed
® Θ notation for efficiency classes
®Best, worst, and average case

Polly Huang, NTU EE Algorithm 74

Insertion Sort in Worst Case

38

Polly Huang, NTU EE Algorithm 75

Number of Executions
®# of shifts for a list of N entries in the

worst case?

®1+2+3+…+N-1
® (1+N-1)*(N-1)/2 à (N2-N)/2

Polly Huang, NTU EE Algorithm 76

Worst-Case Analysis Insertion Sort

39

Polly Huang, NTU EE Algorithm 77

Binary Search in Worst Case
Alice
Bob
Carol
David
Elaine
Fred
George
Harry
Irene
John
Kelly
Larry
Mary
Nancy
Oliver

Irene
John
Kelly
Larry
Mary
Nancy
Oliver

Irene
John
Kelly

Irene

15 7 3 1 entries

Polly Huang, NTU EE Algorithm 78

Number of Executions
® # of comparing to the middle entry for a list of

N entries in the worst case?

® 1, 3, 7, 15, 31, 63 à N
® 2, 4, 8, 16, 32, 64 à N+1
® log2(N+1) à # of comparsions

40

Polly Huang, NTU EE Algorithm 79

Worst-Case Analysis Binary Search

Polly Huang, NTU EE Algorithm 80

Big-theta Notation
® Identification of the shape of the graph

representing the resources required
with respect to the size of the input data
®Normally based on the worst-case analysis
® Insertion sort: Θ(n2)
®Binary search: Θ(lg n)

(n2-n)/2

lg2(n+1)

41

Polly Huang, NTU EE Algorithm 81

Formal Definition
®Θ(n2): complexity is kn2+o(n2)

® f(n)/n2 à k, n à ∞

®o(n2): functions grow slower than n2

® f(n)/n2 à 0, n à ∞

(n2-n)/2 = ½ n2 -½ n o(n2)

Polly Huang, NTU EE Algorithm 82

Problem Solving Steps
1. Understand the problem
2. Get an idea
3. Formulate the algorithm and represent

it as a program
4. Evaluate the program

1. For its potential as a tool for solving other
problems (the faster, the better)

2. For accuracy

42

Polly Huang, NTU EE Algorithm 83

Software Verification
®Evaluate the accuracy of the solution
®This is not easy
®The programmer often does not know

whether the solution is accurate
(enough)

®Example: Traveler’s gold chain

Polly Huang, NTU EE Algorithm 84

Quiz Time!

43

Polly Huang, NTU EE Algorithm 85

Separating the chain using
only three cuts

Polly Huang, NTU EE Algorithm 86

Solving the problem with only
one cut

44

Polly Huang, NTU EE Algorithm 87

Moral of the Story
®You thought there is no better way
®You thought it is accurate enough
®But really, who knows?

Polly Huang, NTU EE Algorithm 88

Ways to Level the Confidence
® For perfect confidence

® Prove the correctness of a algorithm
® Application of formal logic to prove the correctness

of a program
® For high confidence

® Exhaustive tests
® Application specific test generation

® For some confidence
® Program verification
® Assertions

45

Polly Huang, NTU EE Algorithm 89

Program Conditions
®Preconditions

®Conditions satisfied at the beginning of
the program execution

®Propagations
®The next step is to consider how the

consequences of the preconditions
propagate through the program

Polly Huang, NTU EE Algorithm 90

Program Verification
® Assertions

® Statements that can be established at various
points in the program

® To check for rightful precondition & propagation

® Proof of correctness to some degree
® Establish a collection of assertions
® If all assertions pass
® The program is correct to some degree

46

Polly Huang, NTU EE Algorithm 91

In a while Structure

Polly Huang, NTU EE Algorithm 92

Insertion Sort Algorithm

47

Polly Huang, NTU EE Algorithm 93

Asserting of Insertion Sort
® Precondition

® N == 2, trivial

® Loop invariant of the outer loop
® The names preceding the Nth entry form a

sorted list

® Termination condition
® The value of N is greater than the length of the

list
® The list is sorted

Polly Huang, NTU EE Algorithm 94

Questions?

