

Representing Programs A program is composed by instructions An instruction contains an operation and data to operate Data are represented as numbers From Chapter 1 Operations are coded by numbers Section 2.2

Execution	on of the	e Program
Fetch		Decode &
IR	PC	Execute
	A0	
156C	A2	R5 ← 6C
166D	A4	R6 ← 6D
5056	A6	R0 ← R5+R6
306E	A8	6E ← R0
C000	AA	HALT
Polly Huang, NTU EE	Chap	ter 2


```
Printing
print(bin(0b10011010 & 0b11001001))
# Prints '0b10001000'
print(bin(0b10011010 | 0b11001001))
# Prints '0b11011011'
print(bin(0b10011010 ^ 0b11001001))
# Prints '0b1010011'
```



```
Input / Output

# Calculates the hypotenuse of a right
triangle
import math

# Inputting the side lengths, first try
sideA = int(input('Length of side A? '))
sideB = int(input('Length of side B? '))

# Calculate third side via Pythagorean Theorem
hypotenuse = math.sqrt(sideA**2 + sideB**2)
print(hypotenuse)
```


Example Marathon Training Data								
	Time F	Per Mile			Total Elapsed Time			
1	Minutes	Seconds	Miles	Speed (mph)	Minutes	Seconds		
A.	9	14	5	6.49819494584	46	10		
	8	0	3	7.5	24	0		
	7	45	6	7.74193548387	46	30		
B	7	25	1	8.08988764044	7	25		
	2-72			Zan				

