Introduction to Computer Science

Polly Huang

NTU EE
http://homepage.ntu.edu.tw/~pollyhuang
pollyhuang@ntu.edu.tw

Polly Huang, NTU EE Theory of Computation

Chapter 12

Theory of Computation

Polly Huang, NTU EE Theory of Computation

* ¢Chapter 12:

ke 2 Theory of Computation

we # 12.1 Functions and Their Computation
#* 12.2 Turing Machines

#* 12.3 Universal Programming Languages

#* 12.4 A Noncomputable Function

#* 12.5 Complexity of Problems

#* 12.6 Public Key Cryptography

Polly Huang, NTU EE Theory of Computation

Functions

The relationship between
F:x—>vy
A collection of possible input values
X
And a collection of possible output values

y

So that each possible inputis assigned a
single output

y = F(x)

Polly Huang, NTU EE Theory of Computation

Computing

#* To determine the output value given an
input value
Given x

Gety

Polly Huang, NTU EE Theory of Computation

Example:
Yards =2 Meters Conversion

Yards Meters
(input) (output)

0.9144
1.8288
2.7432
3.6576
4.5720

Polly Huang, NTU EE Theory of Computation

Computability

Computable function
Some functions are computable

Output values can be determined algorithmically
from the input values

#* Non-computable function
Some functions are not computable

No well-defined, step-by-step process for
determining outputbased given inputvalues

Beyond the ability of algorithmic systems

Polly Huang, NTU EE Theory of Computation

T & Chapter 12:
+# Theory of Computation

v # 12.1 Functions and Their Computation
#* 12.2 Turing Machines
#* 12.3 Universal Programming Languages
#* 12.4 A Noncomputable Function
#* 12.5 Complexity of Problems
#* 12.6 Public Key Cryptography

Polly Huang, NTU EE Theory of Computation

Turing Machine

Control
unit

Read/write head

Polly Huang, NTU EE Theory of Computation

That is not all!

Polly Huang, NTU EE Theory of Computation

Untitled State Diagram

#* The theoretical part
State machine

#* The practical part
Head and tape

k 0[]IIIIIIIIIIIBIBIHIBIHIRIBIBIHIlIIIIIIIIII[]

(Source: Turing’s World, http://www-csli.stanford.edu/hp/Turingl .html)

Polly Huang, NTU EE Theory of Computation

State Machines

#* Alphabets and symbols

* States
Sta rt State EE==— Untitled State Diagram

Halt state &
Start-g o Halt

Polly Huang, NTU EE Theory of Computation

Turing Machine Operation

#* Inputs at each step
1. Current state
2. Value at current tape position

#* Actions at each step
3. Write a value at current tape position
4. Move read/write head
5. Change state

Polly Huang, NTU EE Theory of Computation

Remember This?

O 2. Value on tape

3. Write value
O 1111 - / 4. Move head

/
<‘)(1’ =)L, <‘)()

Change state _(.

| A
1. Current State—O b @

(1,1~) (0,1,~) (1,1,-)

Polly Huang, NTU EE Theory of Computation

%
* Ex: Incrementing a Value

§

&
Current state Current cell Value Direction to move New state
content to write to enter
START & * Left ADD
ADD 0 1 Right RETURN
ADD 1 0 Left CARRY
ADD & * Right HALT
CARRY 0 1 Right RETURN
CARRY 1 0 Left CARRY
CARRY w 1 Left OVERFLOW
OVERFLOW & * Right RETURN
RETURN 0 0 Right RETURN
RETURN 1 1 Right RETURN
RETURN = * No move HALT

Polly Huang, NTU EE Theory of Computation

state = START

Current state Current cell Value Direction to move New state
content to write to enter
|__sTART * * Left ADD |
ADD 0 1 Right RETURN
ADD 1 0 Left CARRY
ADD @ & Right HALT
CARRY 0 1 Right RETURN
CARRY 1 0 Left CARRY
CARRY & 1 Left OVERFLOW
OVERFLOW & & Right RETURN
RETURN 0 0 Right RETURN
RETURN 1 1 Right RETURN
RETURN o &3 No move HALT

state = ADD

Current state Current cell Value Direction to move New state
content to write to enter
START & * Left ADD
ADD 0 1 Right RETURN
—ApD i 0]
ADD o & Right HALT
CARRY 0 1 Right RETURN
CARRY 1 0 Left CARRY
CARRY i 1 Left OVERFLOW
OVERFLOW o * Right RETURN
RETURN 0 0 Right RETURN
RETURN (1 Right RETURN
RETURN & & No move HALT

state = CARRY

Current state Current cell Value Direction to move New state
content to write to enter
START o & Left ADD
ADD 0 1 Right RETURN
ADD 1 0 Left CARRY
ADD * * Right
| CARRY 0 1 Right RETURN |
CARRY T 0 Lefr CARRY
CARRY & 1 Left OVERFLOW
OVERFLOW & & Right RETURN
RETURN 0 0 Right RETURN
RETURN 1 1 Right RETURN
RETURN o &3 No move HALT

state = RETURN

Current state Current cell Value Direction to move New state
content to write to enter
START @ * Left ADD
ADD 0 1 Right RETURN
ADD 1 0 Left CARRY
ADD @ & Right HALT
CARRY 0 1 Right RETURN
CARRY 1 0 Left CARRY
CARRY i 1 Left OVERFLOW
OVERFLOW. o * Right RETURN
|_RETURN 0 0 ight
RETURN (1 1 Right RETURN
RETURN & & No move HALT

state = HALT

Current state Current cell Value Direction to move New state
content to write to enter
START o e Left ADD
ADD 0 1 Right RETURN
ADD 1 0 Left CARRY
ADD o * Right HALT
CARRY 0 1 Right RETURN
CARRY 1 0 Left CARRY
CARRY 2 il Left OVERFLOW
OVERFLOW 2 * Right RETURN
RETURN 0 0 Right RETURN
RETURN fl] Right _B'EMN_I
* * No move HALT

10

Turing Computable Functions

Functions that can be computed
by a Turing machine

Polly Huang, NTU EE Theory of Computation

Church-Turing Thesis

“The computable functions and the
Turing computable functions are
considered one and the same.”

Polly Huang, NTU EE Theory of Computation

11

In Other Words

Any computable function is Turing
computable

#* Not proven, but generally accepted

Polly Huang, NTU EE Theory of Computation

A Turing Machine

Essence of computational process

As good as any algorithmic system

If a problem can not be solved by a Turing
machine, it can not be solved by any algorithmic
system

If a problem can be solved by any algorithmic
system, it can be solved by a Turing machine

Theoretical bound on the capabilities of
actual machines

Polly Huang, NTU EE Theory of Computation

12

¥ ¥ Chapter 12:
k2 Theory of Computation

o

i

12.1 Functions and Their Computation

#* 12.2 Turing Machines

#* 12.3 Universal Programming Languages
#* 12.4 A Noncomputable Function

#* 12.5 Complexity of Problems

#* 12.6 Public Key Cryptography

Polly Huang, NTU EE Theory of Computation

Universal Programming
Language

#* A language that can

Express a program to

Compute any computable function
Examples

“Bare Bones”
Most popular programming languages

|f a problem can be solved algorithmically, it
can be expressed using this language.

Polly Huang, NTU EE Theory of Computation

The Bare Bones Language

* Bare Bones

Very simple and yet universal language
#* Statements

clear name;

incr name;

decr name;

while name not 0 do; .. end,;

Polly Huang, NTU EE Theory of Computation

Tomorrow < Today

clear Aux;

clear Tomorrow;

while Today not 0 doj
incr Aux;
decr Today; Aux=Today, Today=0

end ; ~—Value of Aux, Today?

while Aux not 0 do;
:!‘ncr Today ; Today=Aux,
incr Tomorrow; Tomorrow=Aux,
decr Aux; Aux=0

end ; «—Value of Today,

Tomorrow, Aux?
Polly Huang, NTU EE Theory of Computation 28

14

«—Value of Z, W, Y?
Z+=Y, W=Y, =4

<—Value of Y and W?
Y=W, W=0

Polly Huang, NTU EE Theory of Computation

Quiz Time!

Polly Huang, NTU EE Theory of Computation

15

Universality of Bare Bones

#* Using the ‘increment’ Turing machine to
compute incr X

Bare Bones program for the addition function
Assign, add, multiply

#* Bare Bones language can be used to express
algorithms for computing all (Turing-)
computable functions

#* Any computable function can be computed by
a program written in Bare Bones

Polly Huang, NTU EE Theory of Computation

T & Chapter 12:
e ¢ Theory of Computation
)

12.1 Functions and Their Computation

#* 12.2 Turing Machines

#* 12.3 Universal Programming Languages
#* 12.4 A Noncomputable Function

#* 12.5 Complexity of Problems

#* 12.6 Public Key Cryptography

Polly Huang, NTU EE Theory of Computation

16

The Halting Problem

This problem is not computable!

#*# Given the encoded version of any program
Return 1 if the program will eventually halt
Return O if the program will run forever

#* Trying to predict in advance whether a
program will terminate (or halt)

Polly Huang, NTU EE Theory of Computation

Assume a Solution Exist

First: Propose the existence Then: If such a program exists,
of a program that, we could modify it by

given any encoded #

version of a program

adding a Proposed | to produce

while-end program a new

g structure program

Propose ;
while X

program not 0 do;

end;

will halt with variable
X equal to 1 if the
input represents a
self-terminating
program, or with X
equal to 0 otherwise.

Polly Huang, NTU EE Theory of Computation

3

%

Now: If this new program were
self-terminating and

we started it with
ﬁ its own encoding
as its input
execution would l

reach this point
with X equal to 1,

Proposed
program

while X
not 0 do;
end;

so execution
would become
trapped in this
loop forever;

i.e., if the new program is

self-terminating, then it
is not self-terminating.

Polly Huang, NTU EE Theory of Computation

Contradiction I

However: If this new program were
not self-terminating and

we started it with
its own encoding
as its input, Consequently:

execution would The existence of the existence of
reach this point the proposed a new program
with X equal to 0, program

Proposed Proposed | that s neither

program Proposed program self-terminating
nor not self-

while X program while X terminating

(rjlot 0 do; not 0 do;
end; end;

so this loop
would be skipped so the existence of the proposed

and execution program is impossible.
would halt;

i.e., if the new program
is not self-terminating,
then it is self-terminating

Polly Huang, NTU EE Theory of Computation

A Story of Contradiction

#* Mother and child coming across a river
#* The child falls
#* A crocodile grabs the child

#* Mother pleads that the crocodile let go
of the child

Polly Huang, NTU EE Theory of Computation

Crocodile’s Challenge

The Crocodile says to the mother

#* Say something

* [f it is right, I’ll give you your child back
* |[f wrong, I'll eat your child

Polly Huang, NTU EE Theory of Computation

19

Smart Mom?

#* The troubled mother thinks and says
#* You will eat my child
#* The crocodile ...

Polly Huang, NTU EE Theory of Computation

Moral of the Story

There are problems in the world
that is not computable!

Polly Huang, NTU EE Theory of Computation

20

¥ & Chapter 12:
i 2 Theory of Computation

o

i

12.1 Functions and Their Computation

#* 12.2 Turing Machines

#* 12.3 Universal Programming Languages
#* 12.4 A Noncomputable Function

#* 12.5 Complexity of Problems

#* 12.6 Public Key Cryptography

Polly Huang, NTU EE Theory of Computation

Complexity of Problems

Time complexity
Number of instruction executions required
“Complexity” - “time complexity”
For a series of n entries, f(n)

#* A problem is in class O(f(n)) if it can be
solved by an algorithm in ©(f(n)) or better.

#* O(n?): complexity is kn?+o(n?)
f(n)/n?2> k,n >

Polly Huang, NTU EE Theory of Computation

Merging Two Lists

procedure Mergelists (InputListA, InputListB, OutputList)

if (both input lists are empty) then (Stop, with OutputList empty)
if (InputListA is empty)
then (Declare it to be exhausted)
else (Declare its first entry to be its current entry)
if (InputListB is empty)
then (Declare it to be exhausted)
else (Declare its first entry to be its current entry)
while (neither input list is exhausted) do
(Put the “smaller” current entry in OutputList;
if (that current entry is the last entry in its corresponding input list)
then (Declare that input list to be exhausted)
else (Declare the next entry in that input list to be the list's current entry

)

Starting with the current entry in the input list that is not exhausted,
copy the remaining entries to OutputList.

Polly Huang, NTU EE Theory of Computation

%
* Merge Sort

N

lprocedure MergeSort (List)

if (List has more than one entry)
then (Apply the procedure MergeSort to sort the first half of List;
Apply the procedure MergeSort to sort the second half of List
Apply the procedure Mergelists to merge the first and second
halves of List to produce a sorted version of List

Polly Huang, NTU EE Theory of Computation

22

The Hierarchy

Sort list of
n names

Sort first half Sort second half
of list of list

Sort second Sort third
quarter quarter
of list of list

VAN VAN
’ N ’ \

Polly Huang, NTU EE Theory of Computation

y=nlgn

n n
a.nversuslign b. n2versus nlg n

Class P

Class P
All problems in any class ©(f(n)), where f(n)
is a polynomial

* Intractable

All problems too complex to be solved
practically

Most computer scientists consider all
problems not in class P to be intractable.

Polly Huang, NTU EE Theory of Computation

Intractable Problems

#* Intractable - All problems
too complex to be solved practically

#* (1) Most computer scientists consider all
problems not in class P to be intractable.

#* (2) Non-computable problems, of
course intractable

E.g., halting problem, the self-contradiced
crocodile problem

Polly Huang, NTU EE Theory of Computation

24

Solvable problems Unsolvable problems
| |
Il
computable non-computable
’ \\ \\
Polynomial Nonpolynomial
problems problems

Polly Huang, NTU EE Theory of Computation

The Challenge is

#* Given a problem

Can you tell for sure if it's P or non-P or
non-computable?

#* For some problems, yes
Search, sort, halting

But for some problems, not quite

Polly Huang, NTU EE Theory of Computation

25

P or non-P?

How do you know if there exists a
polynomial time algorithm for a
problem?

Polly Huang, NTU EE Theory of Computation

Recall Quiz #17

The old bank ATM system requires a
password of 4 digits (from 0-9)

#* Hack the password

Polly Huang, NTU EE

26

Many Solutions

Exhaustively try passwords
0000,0001, 0002, ...,0010,0011, ...

#* Try the popular passwords

#* |[dentify the birthday of the potential
victim

* ..

Polly Huang, NTU EE

Common of these Solutions

One can’t compute for the sure password

#* But one can compute to verify if the
guess/attempt is successful

Polly Huang, NTU EE

27

Class NP

Class NP - All problems

(1) whose answers can be verified in polynomial time
(2) that may be solved by a non-deterministic algorithm

* Non-deterministic algorithm - An “algorithm?

whose steps may not be uniquely and completely
determined by the process state

99 » on

May require “creativity”, “guessing”, randomness”

\Whether the class NP is bigger than class P
is currently unknown.

Polly Huang, NTU EE Theory of Computation

Unsolvable problems
| l
Il
NPproblems A USS$ 1 million ?
27
’ \\ \\
Polynomial Nonpolynomial
problems problems

Polly Huang, NTU EE Theory of Computation

28

NP-Complete Problems

#* Problems having the property that
A polynomial time solution for any of them

Would provide a polynomial time solution
for all the other problems in NP as well

#* ~Hardest problems in NP

Polly Huang, NTU EE Theory of Computation

The Quest is simiplified to

Find a polynomial solution for any
of the NP-Complete problems

Polly Huang, NTU EE Theory of Computation

29

¥ & Chapter 12:

¥

16 # Theory of Computation

12.1 Functions and Their Computation

#* 12.2 Turing Machines

#* 12.3 Universal Programming Languages
#* 12.4 A Noncomputable Function

#* 12.5 Complexity of Problems

12.6 Public Key Cryptography

Polly Huang, NTU EE Theory of Computation

Public Key Cryptography

* Key

Specially generated set of values used for
encryption

Publickey: used to encrypt messages
Private key: used to decryptmessages

#* RSA
A popular public key cryptographic algorithm

Relieson the (presumed)intractability of the
problem of factoring large numbers

Polly Huang, NTU EE Theory of Computation

30

Public domain Private domain

Messages in the form of
bit patterns are encrypted
using public keys.

Messages are decrypted

using the private keys.

Messages cannot be
decrypted because the
private keys are not known.

Polly Huang, NTU EE Theory of Computation

Encrypt and Decrypt

#* Publickey: e
#* Private key: d
#* Generator: n

#* (data)® mod n = secret
* (secret)d mod n = data

#* (secret)® mod n <> data

Polly Huang, NTU EE Theory of Computation

31

Encrypting 10111

Encrypting keys: e =5 and n =91

#* 101110 = 23¢en

#* 23 =23°=6,436,343

06,436,343 ~ 91 has a remainder of 4
4., = 1004,

#* Therefore, encrypted version of 10111
is 100.

Polly Huang, NTU EE Theory of Computation

Decrypting 100

Decrypting keys: d = 29, n =91
* 100two = 4ten
49 = 429 = 288,230,376,151,711,744

#* 288,230,376,151,711,744 - 91 has a
remainder of 23

#23,..= 10111y,

#* Therefore, decrypted version of 100 is
10111.

Polly Huang, NTU EE Theory of Computation

32

RSA Key Generation

Public domain Private domain

Based on the choice of
two large prime numbers
p and g, determine the
keys n, e, and d.

The keys n and e are
provided to anyone who

may want to encrypt
a message.

The values of p, g, and d
are kept private.

Polly Huang, NTU EE Theory of Computation

Given 2 Prime #: p and g

Compute n =pq
#* Compute ¢ = (p-1)(g-1)
#* Find d, e such that de mod ¢ = 1

#* Keep d in private
#* Give e to the public

Polly Huang, NTU EE Theory of Computation

33

Quiz Time!

Polly Huang, NTU EE Theory of Computation

One algorithm

#* 1. Factorize 91

#* 2. Compute @ = (p-1)(9-1)

#* 3. Populate possible de, say DE

#* 4. Find DE/e such that {(DE mod e) = 0}

Polly Huang, NTU EE Theory of Computation

34

Remember Q257

* Listento Gru’s ?\
plan on stealing

the moon

#*# Sounds easy?

Suffices as an
algorithm?

Polly Huang, NTU EE

Which step is the hardest?

#* 1. Factorize 91

#* 2. Compute @ = (p-1)(9-1)

#* 3. Populate possible de, say DE

#* 4. Find DE/e such that {(DE mod e) = 1}

Polly Huang, NTU EE Theory of Computation

Quiz Time!

Polly Huang, NTU EE Theory of Computation

295927 is an RSA-6

6 decimal digits (19 bits)

Polly Huang, NTU EE Theory of Computation

36

RSA-100

100 decimal digits (330 bits)

RSA-100 =
15226050279225333605356183781326374297 1806
811496138068865790849458012296325895289765
4000350692006139

RSA-100=
379752279369436739228088727554456278545655

36638199 x
400946909509208810306837352927614683892148

99724061

Polly Huang, NTU EE Theory of Computation

RSA-2048

617 decimal digits (2048 bits)
Cash prize: US$200,000

RSA-2048 =
251959084756578934940271832400483985714292821262040320277
771378360436620207075955562640185258807844069182906412495
150821892985591491761845028084891200728449926873928072877
767359714183472702618963750149718246911650776133798590957
000973304597488084284017974291006424586918171951187461215
151726546322822168699875491824224336372590851418654620435
767984233871847744479207399342365848238242811981638150106
748104516603773060562016196762561338441436038339044 149526
344321901146575444541784240209246165157233507787077498171
257724679629263863563732899121548314381678998850404453640
23527381951378636564391212010397122822120720357

Polly Huang, NTU EE Theory of Computation

37

Polly Huang, NTU EE

Questions?

Polly Huang, NTU EE

Rivest, Shamir, Adleman

Theory of Computation

Theory of Computation

38

