
 1

Name____________ Student ID_________________ Department/Year________

Final Examination

Introduction to Computer Science

Class#: EE1003, Session#: 03

Spring 2017

15:30-17:10 Wednesday

June 21, 2017

Prohibited

1. You are not allowed to write down the answers using pencils. Use only black- or

blue-inked pens.

2. You are not allowed to read books or any references not on the question sheets.

3. You are not allowed to use calculators or electronic devices in any form.

4. You are not allowed to use extra sheets of papers.

5. You are not allowed to have any oral, visual, gesture exchange about the exam

questions or answers during the exam.

Cautions

1. Check if you get 18 pages (including this title page), 13 questions.

2. Write your name (in Chinese), student ID, and department/year down on top of

the cover page.

3. There are in total 101 points to earn. You have 100 minutes to answer the

questions. Skim through all questions and start from the questions you feel more

confident with.

4. You are allowed to use English only to answer the questions. Misspelling and

grammar errors will be tolerated, but you want to make sure with those errors

your answers will still make sense.

5. If you have any extra-exam emergency or problem regarding the exam questions,

raise your hand quietly. The exam administrator will approach you and deal with

the problem.

 2

1. The Internet protocols are classified in layers. Identify the layer these 5 Internet

protocols, TCP, HTTP, FTP, Ethernet, RIP, belong to. (5%)

(a) Application Layer

(b) Transport Layer

(c) Network Layer

(d) Link Layer

Sample Solution:

TCP (b), HTTP (a), FTP (a), Ethernet (d), RIP (c)

2. Which of the following are functions of a Web browser? (5%)

(a) HTTP client

(b) HTTP server

(c) HTML interpreter

(d) HTML compiler

Sample Solution:

 (a), (c)

3. Given the following statements about the public-key encryption system, identify

the correct ones. (5%)

(a) a message encrypted by the public key can be decrypted by the public key

(b) a message encrypted by the private key can be decrypted by the public key

(c) a message that can be decrypted by the public key suggests authentication

(d) a message that can be decrypted by the private key suggests authentication

Sample Solution:

(b), (c)

 3

4. Consider the following algorithm.

F[0] <- 0;

F[1] <- 1;

for (i=2; i<=9; i++) do

 (F[i] <- F[i-1] + F[i-2];)

 print F[9];

(a) Write the print-out of the program. (5%)

(b) Rewrite the algorithm using a while-do loop. (5%)

(c) Rewrite the algorithm using a repeat-until loop. (5%)

(d) Rewrite the algorithm using a recursive structure. (5%)

Sample Solution:

(a) 34

F[0]=0, F[1]=1, F[2]=1, F[3]=2, F[4]=3,

F[5]=5, F[6]=8, F[7]=13, F[8]=21, F[9]=34

(b)

F[0] <- 0;

F[1] <- 1;

i=2;

while (i <= 9) do

 (F[i] <- F[i-1] + F[i-2];

 i++;)

print F[9];

(c)

F[0] <- 0;

F[1] <- 1;

i=2;

repeat

 (F[i] <- F[i-1] + F[i-2];

 i++;)

until (i > 9)

print F[9];

 4

(d)

int function Fibonacci (i)

 (if (i==0) then

return 0;

if (i==1) then

return 1;

if (i>=2) then

return Fibonacci(i-1)+Fibonacci(i-2);)

print Fibonacci (9);

 5

5. Given the syntax rules below. Draw the parse tree for z+x+y-z (5%)

Sample Solution:

 Expression

 Term + Expression

 Factor Term + Expression

 z Factor Term - Expression

 x Factor Term

 y Factor

 z

 6

6. Continue from 5. The syntax rules give precedence to multiplication and division.

Redefine the syntax rules such that the precedence is given to addition and

subtraction instead. (5%)

Sample Solution:

÷

*

+

-

 7

7. Find the resolution of multiple statements:

(a) (P  Q) and (¬Q  R) and ¬R (5%)

(b) (P  Q) and (¬Q  R) and ¬R and (¬P  ¬S) and (S  ¬T) (5%)

Sample Solution:

(a) Many possible resolvents. The key resolvents are: P, ¬Q

(b) Many possible resolvents. The key resolvents are: ¬T, ¬S, P

 8

 9

8. There is a sea of problems that computer scientists are curious about. The

Church-Turing Thesis states boldly that:

“Computable and Turing Computable problems are one and the same.”

To prove the Church-Turing Thesis, one will need to prove that (1) Any

Computable problem is Turing Computable, and (2) Any Turing Computable

problem is Computable. Proving (1) is not trivial and that’s when the Bare Bone

language is introduced. Before we attempt to prove the Church-Turing thesis

through Problem 9-11, define these basic terms first.

(a) What are ‘Computable’ problems? (2%)

(b) What are ‘Turing Computable’ problems? (2%)

(c) What are ‘Bare Bone Computable’ problems? (2%)

Sample Solution:

(a) Computable problem – a problem for which there exists an algorithmic

solution. Therefore, there exists a solution consisting of a set of ordered,

unambiguous steps that any programmer with the help of a general

programming language can implemented into a functional program that

solves the problem.

(b) Turing Computable problem – a problem for which there exists a Turing

machine solution

(c) Bare Bone Computable problem – a problem for which there exists a solution

implemented in the Bare Bone language

 10

9. Continue from 8. Proving (1) is equivalent of proving these two statements

together: (3) Any Computable problem is Bare Bone Computable and (4) Any Bare

Bone Computable problem is Turing Computable. Proving (3) is tedious. One will

need to show that for each statement in a general programming language, there

exists an equivalent Bare Bone program.

We’ve shown in the class and the old exams that the ‘assignment’ statement,

some of the ‘arithmetic’ operations, and the ‘if-then-else’ statement commonly

seen in a general programming language can be represented using the Bare Bone

language. Let’s try to enrich the set of statements in general languages that can

be written in Bare Bone to the ‘for-loop’ statement.

Assume X is a positive integer. Show how the following ‘for-loop’ statement could

be simulated in the Bare Bone language. (10%)

for (name1=1; name1<=X; name1++)

name2+=name1;

Sample Solution:

 There are many possibilities. Here’s just one example:

clear name1

clear name2

clear auxX

clear auxName1

while (X not 0)

 incr name1 ---> start from name1 = 1

while (name1 not 0) ---> name2+=name1

 incr name2

decr name1

incr auxName1

 while (auxName1 not 0) ---> restore name1

 incr name1

 decr auxName1

decr X

 11

 incr auxX

while (auxX not 0) ---> restore X

 incr X

 decr auxX

 12

10. Continue from 9. Proving (4) is less tedious. One just need to show for each of the

4 statements in Bare Bone, there exists a Turing machine equivalent.

We’ve discovered in the class that the Turing machine equivalent of the ‘incr’ and

‘decr’ statements. Let’s try to enrich the set of Turing machines to the ‘clear’

statement.

Use the same notation as the ‘incr’ and ‘decr’ Turing machine we’ve used in the

class. That is, on the tape, a number is represented by a sequence of 0 or 1 and

bounded by a pair of ‘*’s. The read/write head starts off reading the ‘*’ on the

right. Generate the state machine for the ‘clear’ statement, where all bits of a

sequence are reset to 0, as the state machine comes to halt. (10%)

Sample Solution:

 The solution can be either in the table for the graphic form.

Current

state

Current

value

Value to

write

Direction

to move

Next

state

START * * Left CLEAR

CLEAR 0 0 Left CLEAR

CLEAR 1 0 Left CLEAR

CLEAR * * Right RETURN

RETURN 0 0 Right RETURN

RETURN * * No move HALT

 13

 14

11. Continue from 8. Proving (2) is considered trivial. How would you argue a Turing

Computable problem is Computable? (5%)

Sample Solution:

Given a Turing machine, one can represent (1) the states as ‘procedures’, (2)

inside the procedure, the transitions as a number ‘if-then-else’ statements, and

(3) the content on the tape slots as variables.

 15

12. Draw the search tree to solve the eight-puzzle from the following start state.

 123

 485

 76

(a) Use the heuristic search as defined in the class. (5%)

(b) User the breadth-first search without any heuristics. (5%)

Sample Solution:

 (a)

 123

 485

 76

 +---------+---------+

 123 123

 48 485

 765 7 6

(5) (3)

 +------+-----+

 123 123

 4 5 485

 786 76

 (2) (4)

 +--------+---------+

 1 3 123 123

 425 45 45

 786 786 786

 (3) (3) (1)

 +---+--+

 123 12

 456 453

 78 786

 (0) (2)

 16

(b)

 17

13. The simple artificial neural network below takes the coordinate (x, y) of an input,

and outputs 1 if the input falls in the ‘y>0’ area, the space in light shadow.

Now, try to reconfigure the artificial neural network such that it detects inputs

falling in the shadowed ‘y>ax+b’ area instead.

How should you configure the Wx, Wy and Threshold? (5%)

Sample Solution:

 To ensure y-ax>b (equivalent of y>ax+b)

 Wx= -a

 Wy= 1

 Threshold= b

 18

