| Name | Student ID | Department/Year |
|------|------------|-----------------|
|------|------------|-----------------|

#### **Final Examination**

Introduction to Computer Science Class#: 901 E10110, Session#: 03 Spring 2015

> 15:40-17:20 Wednesday June 24, 2015

#### **Prohibited**

- 1. You are not allowed to write down the answers using pencils. Use only black- or blue-inked pens.
- 2. You are not allowed to read books or any references not on the question sheets.
- 3. You are not allowed to use calculators or electronic devices in any form.
- 4. You are not allowed to use extra sheets of papers.
- 5. You are not allowed to have any oral, visual, gesture exchange about the exam questions or answers during the exam.

#### **Cautions**

- 1. Check if you get 12 pages (including this title page), 14 questions.
- 2. Write your name (in Chinese), student ID, and department/year down on top of the cover page.
- 3. There are in total **100** points to earn. You have **100 minutes** to answer the questions. Skim through all questions and start from the questions you feel more confident with.
- 4. You are allowed to use **English only** to answer the questions. Misspelling and grammar errors will be tolerated, but you want to make sure with those errors your answers will still make sense.
- 5. If you have any extra-exam emergency or problem regarding the exam questions, raise your hand quietly. The exam administrator will approach you and deal with the problem.

- 1. Based on your understanding of IP address and network prefix, address the following questions. (5%)
  - (a) What is the group of IP addresses represented by 140.112.42.128/25
  - (b) What is the network prefix to represent 140.112.42.64~140.112.42.127

## Sample Solution:

- (a) 140.112.42.128~140.112.42.255
- (b) 140.112.42.64/26

- 2. Which of the following network services over the Internet use TCP as the transport layer protocol? (5%)
  - (a) FTP
  - (b) WWW
  - (c) Facebook Messenger
  - (d) LINE text messages
  - (e) YouTube live video streaming

## Sample Solution:

(a), (b), (c), (d)

3. What would happen if a user clicked the mouse on the term "hippopotamus" while viewing the html document shown below? (5%)

```
<html>
<head>
<title>This is the title</title>
</head>
<body>
<hl>Favorite Animals</hl>
Of all the animals in the world, the
<a href="http://pigs.org/pigs.html">pig</a> is
perhaps the most charming.
<a href="http://hippopotamuscity.org/hippo.html">hippopotamus</a> is also cute.
</body>
</html>
```

#### Sample Solution:

The http://hippopotamuscity.org/hippo.html page will be downloaded and displayed on screen.

- 4. Based on your understanding of public-key encryption, identify which of the following statements are correct. (5%)
  - (a) a message encrypted by the public key can only be decrypted by the secret key
  - (b) a message encrypted by the private key can only be decrypted by the public key
  - (c) a message encrypted by the public key can provide confidentiality
  - (d) a message encrypted by the private key can provide authentication

#### Sample Solution:

(a), (b), (c), (d)

5. Consider the following algorithm.

Sample Solution:

Temp <- CurrentValue + Lastest;</pre>

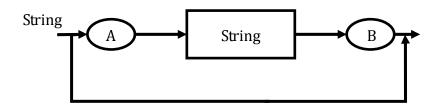
MysteryWrite (0, 1)

MysteryWrite (CurrentValue, Temp))

6. When searching for an entry within the list. Which entry to search will result in the worst-case performance for the sequential search algorithm and which entry to search will result in the worst-case performance for the binary search algorithm? (5%)

#### Sample Solution:

worst case for sequential search: O (15 entries considered) worst case for binary search: A, C, E, G, I, K, M, or O (4 entries considered)


7. When sorting (in alphabetical order) for a list possibly containing the following entries. Which sequence will result in the worst-case performance for the insertion sort algorithm presented in the lectures and which will result in the worst-case performance for the merge sort algorithm presented in the lectures? (10%)

A, B, C, D, E, F, G, H

#### Sample Solution:

worst case for insertion sort: H, G, F, E, D, C, B, A worst case for merge sort: any sequence is equally worst

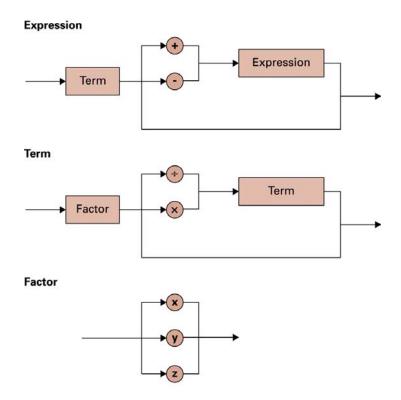
8. Describe the structure of the possible strings coming out of the String diagram below. (5%)



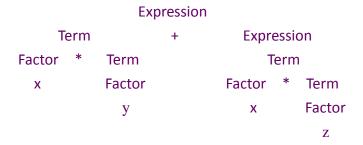
## Sample Solution:

A<sup>n</sup>B<sup>n</sup>, where n is a nonnegative integer

9. Consider the following definition of the class Example in an object-oriented program. (5%)


```
class Example
  {private int var1
  public int var2
  private void method1( )
      { . . . }
  public void method2( )
      { . . . }
}
```

- (a) How many instance variables are there in the class Example?
- (b) Which instance methods can be invoked from outside an instance of the class Example?


## Sample Solution:

- (a) 2
- (b) method 2

# 10. Given the syntax rules below. Draw one possible parse tree for x\*y+x\*z (10%)



# Sample Solution:



- 11. Populate the truth table below such that you can show clearly whether any of the following statements can be resolved from (P  $\vee$  Q) and (R  $\vee$   $\neg$ Q). (10%)
  - (a) P ∨ R
  - (b)  $P \wedge R$
  - (c) ¬P ∨ R

| Р | R | Q | $P \vee Q$ | R∨¬Q | $P \vee R$ | $P \wedge R$ | $\neg P \vee R$ |
|---|---|---|------------|------|------------|--------------|-----------------|
| Т | Т | Т | Т          | Т    | Т          | Т            | Т               |
| Т | Т | F | Т          | Т    | Т          | Т            | Т               |
| Т | F | Т | Т          | F    | Т          | F            | F               |
| Т | F | F | Т          | Т    | Т          | F            | F               |
| F | Т | Т | Т          | Т    | Т          | F            | Т               |
| F | Т | F | F          | Т    | Т          | F            | Т               |
| F | F | Т | Т          | F    | F          | F            | Т               |
| F | F | F | F          | Т    | F          | F            | Т               |

Sample Solution:

(a)

| <ul> <li>12. Compare 4 algorithms of different computation complexity. Sort and list the 4 algorithms by the efficiency as N approaches ∞, from the fastest to the slowest. (5%)</li> <li>(a) (lgN)²</li> <li>(b) N(lgN)²</li> <li>(c) N²lgN</li> <li>(d) NlgN²</li> </ul> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample Solution:                                                                                                                                                                                                                                                           |
| (a), (d), (b), (c)                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                            |
| 13. Which one(s) of the following statement is(are) correct? (5%)                                                                                                                                                                                                          |
| (a) The LinearSearch algorithm is P.                                                                                                                                                                                                                                       |
| (b) The sorting problem is P.                                                                                                                                                                                                                                              |
| <ul><li>(c) The MergeSort algorithm is P.</li><li>(d) The halting problem is non-P.</li></ul>                                                                                                                                                                              |
| (e) The searching problem is P.                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                            |
| Sample Solution:                                                                                                                                                                                                                                                           |
| (a) (b) (c) (e)                                                                                                                                                                                                                                                            |

14. Assume name1 and name2 are integers and name1 is a multiple of name2. Show how the statement could be simulated in Bare Bones. (10%)

```
name3 <- name1 / name2;</pre>
```

```
Sample Solution:
clear trackName2;
clear trackName1;
clear name3
while (name1 not 0) {
   while (name2 not 0) {
      decr name2;
      decr name1;
       incr trackName2;
      incr trackName1}
   while (trackName2 not 0) {
       incr name2;
       decr trackName2;}
   incr name3
while (trackName1 not 0) {
   decr trackName1;
   incr name1;}
```