
© Polly Huang, NTU EE

© Polly Huang, NTU EE

1

Programming Assignment #8
Introduction to Computer Networks

The Assignment
PA8.go should work like a Web (text/html) file server that receives and interprets the
HTTP request messages from curl, as well as a regular Web browser such as Google
Chrome and Mozilla Firefox and returns the requested file. More specifically, your
PA8.go needs to:

(1) listen at <your port#> until there’s an HTTP request
(2) read from the socket
(3) find the path and name of the text/html file requested
(4) In case the file exists, return the file so the Web browser displays the

text/html file on screen
(5) In case the file doesn’t exist, return a short message so the Web

browser displays “File not found” on screen.
(6) close the connections and go back to (1)

To prepare you for the task, follow through the 3 examples below.

1. HTTP Response as a string
Let’s start with the native string approach this time. Just like the 2nd example in PA7,
one needs to review the message format to interpret an HTTP request message. To
generate an HTTP Response from scratch, one will need to review HTTP response
message format as well. This is so the Web browser will be able to interpret and
render on the screen accordingly. This approach, seemingly tedious, is in fact
straightforward. Start a file string-Response.go and type up the following code.

© Polly Huang, NTU EE

© Polly Huang, NTU EE

2

Replace <your port#> with the port number assigned to your team. Start the
string-Response.go first. Then, start a Chrome or Firefox browser and request for

package main

import "fmt"

import "bufio"

import "net"

import "net/http"

func check(e error) {

 if e != nil {

 panic(e)

 }

}

func main() {

 fmt.Println("Launching server...")

 ln, _ := net.Listen("tcp", ":<your port#>")

 defer ln.Close()

 conn, _ := ln.Accept()

 defer conn.Close()

 reader := bufio.NewReader(conn)

 req, err := http.ReadRequest(reader)

 check(err)

 fmt.Printf("Method: %s\n", req.Method)

 fmt.Fprintf(conn, "HTTP/1.1 404 Not Found\r\n")

 fmt.Fprintf(conn, "Date: ...\r\n")

 fmt.Fprintf(conn, "\r\n")

 fmt.Fprintf(conn, "File not found\r\n")

 fmt.Fprintf(conn, "\r\n")

}

© Polly Huang, NTU EE

© Polly Huang, NTU EE

3

http://127.0.0.1:<your port#>/. Alternatively, curl an arbitrary Web object on
127.0.0.1:<your port#>.

$ curl 127.0.0.1:<your port#>/

File not found

$

If you are using a Web browser for testing, the browser should also display “File not
found”. The output is as expected given the example is returning 404 Not Found no
matter what.

Code walk-through:

• The first part of the example is identical to simple-Request.go.
• What’s new are the last 5 lines. fmt.Fprintf() has been introduced in PA2

(in the hello-whoever.go example). It writes 5 lines to conn, the network
socket connecting to the Web browser.

• The Web browser will be receiving a (minimal) HTTP response message, only
5 lines. First is the status line, second a lame header line, and third an empty
line that signals the end of the header lines. Fourth is the real data. The
empty line in the end signals the end of the HTTP response message.

• Most Web browsers receiving the first three lines (status line and at least 1
header line) will consider the message legitimate and displays the text/html
content in the data field.

• You go ahead and try other Web browsers out. Please let polly know if any
Web browser rejects this HTTP response message.

© Polly Huang, NTU EE

© Polly Huang, NTU EE

4

2. HTTP Response by the built-in http.FileServer()
The alternative is to send HTTP response messages exploiting the built-in file server –
http.FileServer(). It interprets the incoming HTTP request messages and
generates HTTP response messages accordingly. The functionality of a Web file server
is already implemented. simple-Response.go is super brief.

Replace <your port#> and start simple-Response.go. Try curl an existing
text/html file on 127.0.0.1:<your port#>, say string-Response.go.

$ curl 127.0.0.1:<your port#>/string-Response.go

package main

import "fmt"

import "bufio"

… <- (rest of string-Response.go)
$

We see the exact content of string-Response.go on the Web browser screen,
which means the text object is downloaded to the Web browser.

Perhaps copying simple-Response.go to PA8.go will do… Now curl a non-existing
text/html file, say qwerty.htm.

package main

import "fmt"

import “net/http”

func main() {

 fmt.Println("Launching server...")

 http.ListenAndServe(":<your port#>", \

 http.FileServer(http.Dir(".")))

}

© Polly Huang, NTU EE

© Polly Huang, NTU EE

5

$ curl 127.0.0.1:<your port#>/qwerty.htm

404 page not found

$

Ouch. 404 page not found is not quite what we are hoping to display – “File not
found”.

Code walk-through:

• http.ListenAndServe() meant to call the ListenAndServe() API defined
in the http package (short for net/http).

• ListenAndServe() takes in 2 parameters – (1) a port number (e.g., “:8080”)
and (2) a function handling the incoming HTTP request message. In the
example, http.FileServer() is called.

• What the API does is to (1) start a server listening at the port number and (2)
pass the HTTP request message to the handling function, or just “handler”.

• http.FileServer() meant to call the FileServer() API defined in the http
package, and FileServer() implements the Golang built-in Web file server.

• FileServer() takes in 1 parameter, the home directory of the Web file
server. In the example, it’s specified by http.Dir(“.”).

• Dir is a data type defined in the http package. It stores a directory in the file
system as a string. The string “.” meant the directory from which the server
code is started, and “/” meant the root directory of the file system.

• FileServer(http.Dir(“.”)) meant the built-in server will look from the
server’s home directory for the file being requested.

• If the file is not found, FileServer() returns all files in the directory
specified by http.Dir(), as a way to suggest alternative files to request.

• If the file is found, FileServer() returns the file to the requested.
• Taking this approach, one will need to find a way around FileServer() to

send back the a customized 404 response that says “File not found” instead.
This is not trivial and does require hacking and some googling.

© Polly Huang, NTU EE

© Polly Huang, NTU EE

6

3. HTTP Response by the custom http.FileServer()
Your first impression might be that the Golang built-in Web server is very specific. It is
quite the opposite. The file server part of it is quite specific alright, but there are
ways to customize the Web server and the file server as well. The Web server is
designed so that a client can send HTTP requests with specific URL prefixes for
custom functionalities. This example showcases the “customizability” of the built-in
Web server. handler-Response.go below implements a Web server that allows the
/hello command and file download at the same time.

Start handler-Response.go first. Then, curl from another terminal.

$ curl 127.0.0.1:<your port#>/hello

Hello, world!

$

package main

import "fmt"

import "net/http"

func helloHandler(w http.ResponseWriter, r *http.Request) {

 fmt.Fprintln(w, "Hello, world!")

}

func main() {

 fmt.Println("Launching server...")

 hh := http.HandlerFunc(helloHandler)

 http.Handle("/hello", hh)

 fs := http.FileServer(http.Dir("."))

 http.Handle("/", http.StripPrefix("/", fs))

 http.ListenAndServe(":<your port#>", nil)

}

© Polly Huang, NTU EE

© Polly Huang, NTU EE

7

The handler-Response.go server replies to the request a string “Hello, world!”. In
the meantime, the outputs of the following two curl commands remain the same as
the outputs from simple-Response.go.

$ curl 127.0.0.1:<your port#>/string-Response.go

$ curl 127.0.0.1:<your port#>/qwerty.htm

Code walk-through:

• The handler-Response.go server handles the /hello command and works
as well as a Web file server.

• The http.ListenAndServe() this time sets no handler. Note the 2nd
parameter is nil. No worries. There’s a default handler the HTTP request
messages will be forwarded to.

• The default handler, DefaultServeMux, is a demultiplexer in fact. The built-in
Web server allows multiple handlers and each is associated with a URL prefix.
The demultiplexer checks the URL prefix in the incoming HTTP request
message and determines which handler to forward the message for
processing.

• http.Handle() is the key API that associates a prefix to its handler and
inserts the prefix-handler entry to the DefaultServeMux.
http.Handle("/hello", hh) associates /hello with hh.

• hh is obtained by adapting a programmer-defined function to a handler
function – http.HandlerFunc(helloHandler).

• As a result, if the URL starts with /hello , helloHandler will be called and
"Hello, world!" will be sent through the data socket w back to the client.

• http.Handle("/", http.StripPrefix("/", fs)) associates / with
StripPrefix("/", fs).

• As a result, if the URL starts with / , StripPrefix("/", fs) will be called.
• StripPrefix() is a special API defined in net/http‘s source code,

particularly in server.go, line 2040-2056.
• We can see in the code that if the prefix is not empty, it returns the following

code block as the handler.

func(w ResponseWriter, r *Request) {

 if p := strings.TrimPrefix(r.URL.Path, prefix); len(p) <

len(r.URL.Path) {

© Polly Huang, NTU EE

© Polly Huang, NTU EE

8

 r2 := new(Request)

 *r2 = *r

 r2.URL = new(url.URL)

 *r2.URL = *r.URL

 r2.URL.Path = p

 h.ServeHTTP(w, r2)

 } else {

 NotFound(w, r)

 }

}

• It looks the prefix is trimmed off the URL.Path and then used to call the
server’s ServeHTTP() function. That is, the original URL.Path in the HTTP
request are /string-Response.go and /qwerty.htm after
StripPrefix("/", fs) will be simply string-Response.go and
qwerty.htm. ServeHTTP() looks like the main code looking for string-
Response.go and qwerty.htm in the file system.

• When the new path is not shorter than the original path, the handler function
branches to NotFound(), which is where 404 page not found is returned to
the client (server.go, line 2029). Perhaps one can build a custom
StripPrefix() and change the returned handler function to allow calling to
a custom NotFound() when the object requested does not exist.

• If tracing the source code does not quite inspire, try google and see if other
programmers have sought to send back custom 404 messages before.

© Polly Huang, NTU EE

© Polly Huang, NTU EE

9

4. PA8.go
Make sure your PA8.go is listening on the port number you are assigned to. To test
your PA8.go, use curl and at least Google Chrome and Mozilla Firefox to request a
text/html file existing and non-existing from the server’s home directory.

To help you verify your implementation, polly has made the compiled byte code of
her PA8.go (plain string solution) and PA8-http.go (FileServer() wrapper
approach) available here: http://homepage.ntu.edu.tw/~pollyhuang/teach/intro-cn-
pa/PA8/PA8 and http://homepage.ntu.edu.tw/~pollyhuang/teach/intro-cn-
pa/PA8/PA8-http. Again, polly’s PA8 and PA8-http are configured to run on port#
11999.

Things get a bit complicated when the index.html file exists in the server’s home
directory. Assume that your PA8.go will not be tested from a directory containing the
index.html. It is perfectly fine to see either the “File not found” response or to see
the files and subdirectories in the server’s home directory when the client requests
to 127.0.0.1:<your port#>/.

5. Submit your PA8
ssh to the 140.112.42.221 workstation. At the team account’s home directory,
create a directory PA8. Upload your PA8.go to directory PA8. Test your PA8.go again
on the workstation just to make sure it’s working as expected.

