
© Polly Huang, NTU EE

© Polly Huang, NTU EE

1

Programming Assignment #5
Introduction to Computer Networks

The Assignment
You might be thinking already. Isn’t a server always on and ready for client requests
any time? The PA4.go however accepts only a file upload and then quits. You are
right. PA4.go is far off a professional server. To address the issue, you need to extend
PA4.go to PA5.go where the file upload service will continue forever. More
specifically, the server:

(1) listens at <your port#> until there’s an upload request
(2) reads from the socket first the file size (just the number in a single line)
(3) reads from the socket one line at a time
(4) prepend the line count to each line and store the new line into a new

file: whatever.txt
(5) repeats (3) and (4) until all lines in the file is processed
(6) sends a message back that tells the client the original file and the new

file size
(7) closes the connection and goes back to (1)

Give it a bit of thought. You’ll see this assignment is light. There is no need of extra
APIs. The example below is just for your amusement.

1. Professional Simple Server
This example implements the simple server’s service in an infinite loop (receiving a
string from the socket, printing it on the screen, and sending back the size of the
string). Start a file server-loop.go and type up the following code.

© Polly Huang, NTU EE

© Polly Huang, NTU EE

2

package main

import "fmt"

import "bufio"

import "net"

func check(e error) {

 if e != nil {

 panic(e)

 }

}

func main() {

 fmt.Println("Launching server...")

 ln, _ := net.Listen("tcp", ":<your port#>")

 defer ln.Close()

 for {

 conn, _ := ln.Accept()

 defer conn.Close()

 reader := bufio.NewReader(conn)

 message, errr := reader.ReadString('\n')

 check(errr)

 fmt.Printf("%s", message)

 writer := bufio.NewWriter(conn)

 newline := fmt.Sprintf("%d bytes received\n",

len(message))

 _, errw := writer.WriteString(newline)

 check(errw)

 writer.Flush()

 }

}

© Polly Huang, NTU EE

© Polly Huang, NTU EE

3

Replace <your port#> with the port number assigned to your team. Start the server
code first.

$ go run server-loop.go

Launching server...

Then, run the client-102.go code (provided in PA4).

$ go run client-102.go

Send a string of 13 bytes

Server replies: 13 bytes received

$

The terminal running the server code should print the following and wait for the next
client request (instead of returning to the prompt).

$ go run server-loop.go

Launching server...

Hello World!

Run the client-102.go code again, you should see the server terminal now shows:

$ go run server-loop.go

Launching server...

Hello World!

Hello World!

server-loop.go will continue to wait for the next client request until (hopefully)
forever.

2. PA5.go
Again, make sure your PA5.go is listening on the port number you are assigned to. To
test your PA5.go, use the modified PA3.go (such as the one used in PA4) to dial to
the IP address of the machine your PA5.go is running on and the port number you
are assigned.

© Polly Huang, NTU EE

© Polly Huang, NTU EE

4

To help you verify your implementation, polly has made the compiled byte code of
her PA5.go available here: http://homepage.ntu.edu.tw/~pollyhuang/teach/intro-
cn-pa/PA5/PA5. Please refer to PA2’s section on how to curl and chmod the byte
code before execution. To not run into you guys’ port numbers, polly’s PA5 runs on
port# 11999.

3. Submit your PA5
ssh to the 140.112.42.161 workstation. At the team account’s home directory,
create a directory PA5. Upload your PA5.go to directory PA5. Test your PA5.go again
on the workstation just to make sure it’s working as expected.

