
© Polly Huang, NTU EE

© Polly Huang, NTU EE

1

Programming Assignment #2
Introduction to Computer Networks

The Assignment
The assignment will take you through a series of 5 examples and in the process
introduce the APIs to allow access to system I/Os, such as reading and writing to a
file. Embedded in the examples are also the statements to specify variables, to
control program flow, and to debug.

Skim through the assignment. Watch the companion videos. In the meantime, try the
examples out yourselves. When you are done, you should be ready to program
PA2.go that:

(1) prompts the user for the input and output filenames
(2) reads from the input file one line at a time,
(3) prepends the line count to each line, and
(4) writes the line into the output file.

Now follow through the examples below and practice the basic APIs of Go.

1. Hello World
Fashionable learning a programming language, we start by saying hello to the world.
I.e., writing a simple program that prints “hello world” on the computer screen. To do
so in Go, start a file hello-world.go and type up the following code. Here you
see .go is often the suffix of a Go source file.

package main

import "fmt"

func main() {

 fmt.Printf("hello world!\n")

}

© Polly Huang, NTU EE

© Polly Huang, NTU EE

2

To execute the code, type the following at the prompt.

$ go run hello-world.go

You should see the following and back to command prompt.

hello, world!

$

You may also compile the source code to byte code permanently by:

$ go build hello-world.go

After compilation, you should see a new file “hello-world” being created in the same
direction. Now start the byte code by:

$./hello-world

Code walk-through:

• package main is always the 1st line. What it means is that there’s already a
package main built in, which defines all the fundamental symbols (e.g., data
types) and syntax (e.g., assignment and if condition). With package main, the
compiler includes the most basic, minimum set of APIs.

• import indicates the additional API sets to include. C/C++ programmers call
these additional API sets libraries. In Go, they are called the packages. In this
example, fmt, short for format, is included. fmt package contains APIs that
generate output or take input of multiple formats for a variety of system I/Os.

• fmt.Printf() calls the Printf() API defined in the fmt package. This API
takes in a string as the argument and, simply, prints the string on the screen.
Some of you might find Printf() familiar. In C/C++, printf() function works
exactly the same. Later on, you will see more signs of Go being essentially the
extended and more programmer-friendly C/C++.

• \n in fmt.Printf() enforces a newline after printing the string.

© Polly Huang, NTU EE

© Polly Huang, NTU EE

3

2. Standard I/O
We now explore the fmt package further. Start a file hello-whoever.go and type up
the following code.

You will be prompted for a name after running the code. Type your name in and hit
return. You should see the following.

$ go run hello-whoever.go

Who's there? polly

Hello, polly

Hello, polly

Hello, polly

$

Code walk-through:
• text := "" declares the variable text and assigns an empty string to it. In

Go, to assign value to an existing variable, just say =. := is to declare and
assign at the same time. A way to quickly declare and initialize a variable.
What’s convenient in Go is that the compiler identifies the data type
automatically, looking at the initial value.

• fmt.Scanf("%s", &text) scans a string from the standard input (the

package main

import "fmt"

import “os”

func main() {

 fmt.Printf("Who's there?\n")

 text := ""

 fmt.Scanf("%s", &text)

 fmt.Printf("Hello, %s\n", text)

 fmt.Println("Hello,", text)

 fmt.Fprintf(os.Stdout, "Hello, %s\n", text)

}

© Polly Huang, NTU EE

© Polly Huang, NTU EE

4

keyboard) and assigns it to variable text. %s means string in fmt APIs. Note
that the string from standard input is copied to the address of text. That’s
why &text is used as the 2nd parameter to fmt.Scanf().

• fmt.Printf("Hello, %s\n", text) prints the content inside the double
quotes. The %s part will be replaced by the value of text.

• fmt.Println("Hello,", text) prints the same thing. The syntax of
Println() is different from that of Printf(). It outputs all parameters
separated by ,). Println() is pronounced print line, as it enforces a new line
after execution, i.e., no need of adding \n at the end such as Printf() does.

• An interesting and important alternative is fmt.Fprintf(os.Stdout,
"Hello, %s\n", text). Fprintf() means printing to a file in fact. The first
parameter of the API asks for the handle/pointer to the file. In Unix, a file is
also an I/O, just like the display and keyboard. Therefore, one can think of the
display as the standard output file and keyboard the standard input file.
Writing to the display is equivalent of writing to a file at os.Stdout.
os.Stdout and os.Stdin, the handles of standard input and output are
provided conveniently by the os package. Note the package is imported
upfront in this example. fmt.Fprintf(os.Stdout,) is equivalent of
fmt.Pintf(). fmt.Fscanf(os.Stdin,) is equivalent of fmt.Scanf().

© Polly Huang, NTU EE

© Polly Huang, NTU EE

5

3. File I/O
Next is to access a (real) file. Start file-access.go in the editor and type up the
following.

Below is what you will see running the code. It scans from the hello-world.go file
(which you’ve created earlier) one line at a time and records two strings per line.

$ go run file-access.go

package main

package main

import "fmt"

import "os"

func check(e error) {

 if e != nil {

 panic(e)

 }

}

func main() {

 f, err := os.Open("hello-world.go")

 check(err)

 word1, word2 := "", ""

 fmt.Fscanln(f, &word1, &word2)

 fmt.Printf("%s %s\n", word1, word2)

 for i := 2; i <= 5; i++ {

 word1, word2 = "", ""

 fmt.Fscanln(f, &word1, &word2)

 fmt.Println(word1, word2)

 }

 f.Close()

}

© Polly Huang, NTU EE

© Polly Huang, NTU EE

6

import "fmt"

func main()

$

Code walk-through:
• Let’s zoom in first to main(), os.Open() opens a file, provided the

filename. You might be able to infer that Open() is an API defined in the os
package. What’s a bit new is that the API returns two parameters and they
are assigned to f and err. f is the variable tracking the handle of the file
opened. err holds the error message in case of failure.

• check() is a function defined in the code itself. See the func check(e
error) code block right above func main(). func here is the keyword in Go
to begin defining your own function. (e error) indicates that the function
takes in one parameter e of type error. If e is not nil, call panic(), which is
one of the fundamental APIs defined in the main package. What it does is to
show the error message and to force-quit the execution.

• fmt.Fscanln() scans a line from a file. The first parameter is the file handle.
The rest are to hold the strings, separated by a space, in the line. word1 and
word2 there will hold only two words in a line.

• In the for loop, scanning of the file repeats 4 more times. One can see that
line 5 in hello-world.go consists of 3 strings. { at the end will be left out.
Although Fscanln() reading from a file works just like Scanln() reading
from os.Stdin, it will not be general to textual file scanning, where the
number of strings is very likely different from line to line.

• Try changing the exit condition of the for loop to i <= 6 and run the code
again. The compiler does not complain but the program fails to print the next
line expected. Fscanln() is expecting to read from a new line, but sees { in
the middle of a line instead. You see Fscanln() is good for files that are well
structured, i.e., the number of strings per line is fixed. It unfortunately does
not serve all files in general, particularly the textual files. This leads us to
bufio, a package to treat I/Os as general byte streams.

• Before we move on, the last line f.Close() is simply to close the file.

© Polly Huang, NTU EE

© Polly Huang, NTU EE

7

4. Buffer Input
bufio is a must-learn package. The example here shows how one uses bufio to read
from a file (i.e., a byte stream buffer). We will see how to write to a file right after
this. Now, start bufio-read-file.go in the editor and type up the following.

Below is what you will see running the code. It scans from the hello-world.go file
line by line, and prints on the screen till the end of file.

$ go run bufio-read-file.go

package main

import "fmt"

package main

import "fmt"

import "os"

import "bufio"

func check(e error) {

 if e != nil {

 panic(e)

 }

}

func main() {

 f, err := os.Open("hello-world.go")

check(err)

 scanner := bufio.NewScanner(f)

for scanner.Scan() {

 fmt.Println(scanner.Text())

}

 f.Close()

}

© Polly Huang, NTU EE

© Polly Huang, NTU EE

8

func main() {

 fmt.Printf("hello, world!\n")

}

$

Code walk-through:
• scanner := bufio.NewScanner(f) is where the program differs

significantly (vs. the previous example using Fscanln()). NewScanner() is an
API defined in the bufio package. It converts a regular I/O (f in this case) to a
buffer I/O (scanner in this case). By doing so, f can be accessed via a rich
variety of APIs. Note that bufio needs to be imported before one can call
bufio.NewScanner(). scanner is initialized and declared at the same time as
a buffer I/O.

• scanner.Scan() scans from f. The default is to scan one line at a time. One
can configure it to scan one word or one byte at a time. More details can be
found in Go documentation, in particular the Scanner section of bufio.
When the scanner.Scan() reaches the end of file, it returns false (true
otherwise).

• The for loop there essentially calls Scan() repeatedly until the end of the
file.

• scanner.Text() converts a byte stream to a string so it can be printed using
fmt.Println().

© Polly Huang, NTU EE

© Polly Huang, NTU EE

9

5. Buffer Output
The final example shows how one uses bufio to write to a file. Start bufio-write-
file.go in the editor and type up the following.

Below is what you will see running the code. It opens a file named PA2-outout.txt
and writes a line This is a test! to it. 15 is the length of the line.

$ go run bufio-write-file.go

15

$

Code walk-through:
• os.Create() is the API to open a file non-existing yet.

package main

import "fmt"

import "os"

import "bufio"

func check(e error) {

 if e != nil {

 panic(e)

 }

}

func main() {

 f, err := os.Create("PA2-output.txt")

 check(err)

 defer f.Close()

 writer := bufio.NewWriter(f)

 len, _ := writer.WriteString("This is a test!")

 fmt.Println(len)

 writer.Flush()

}

© Polly Huang, NTU EE

© Polly Huang, NTU EE

10

• defer f.Close() defers execution of f.Close() to the end of program. This
is often used in programs involving I/O access. Close() is necessary to shut
the I/O opened by os.Open() or os.Create(). But one often forgets about
closing after hours of coding/debugging. Typing the closing line up as soon
the I/O is opened and prepending it with defer prevents the bug entirely.

• bufio.NewWriter(f) converts a regular I/O (f) to a buffer I/O (writer),
much like bufio.NewScanner().

• writer.WriteString() writes a string through the writer to f.
• writer.WriteString() returns two parameters, length of the string and

error message. _ is used in place of the error message. This is a way to ignore
a certain returned parameter if it is not going to be used later anyway.

• writer.Flush() is to enforce the string temporarily stored on

the system memory to the file on the disk.

6. PA2.go
Now, start PA2.go and make sure it:

(1) prompts the user for the input and output filenames
(2) reads from the input file one line at a time,
(3) prepends the line count to each line, and
(4) writes the line into the output file.

To help you verify your implementation, polly has made the compiled byte code of
her PA2.go available here: http://homepage.ntu.edu.tw/~pollyhuang/teach/intro-
cn-pa/PA2/PA2. Login to the workstation and download the byte code to your
account:

$ curl homepage.ntu.edu.tw/~pollyhuang/teach/intro-cn-pa/PA2/PA2

> pollys-PA2

The curl command downloads the byte code and saves it as a file, filename
pollys-PA2. You’ll need to change the permission to allow user to execute the file by
the following before trying it out:

$ chmod u+x pollys-PA2

$./pollys-PA2

© Polly Huang, NTU EE

© Polly Huang, NTU EE

11

Cross compare execution result of your PA2.go to the outcome of executing pollys-
PA2. If they work the same, you will be done and safe.

7. More Go Examples
If you find extra time at hand, try fill in the other basic syntax not covered in the
examples here. https://gobyexample.com/ provides an extensive set of examples.
The ones listed below are very fundamental. You are strongly encouraged to try them
out: Hello World, Values, Variables, Constants, For, If/Else, Switch, Arrays, Slices,
Functions, Multiple Return Values

8. Go Documentation
For details and other APIs in the packages we’ve touched upon so far, visit these
pages:
 fmt : https://golang.org/pkg/fmt/
 os : https://golang.org/pkg/os/
 bufio: https://golang.org/pkg/bufio/

9. Submit your PA2
ssh to the 140.112.42.161 workstation. At the team account’s home directory,
create a directory PA2. Upload your PA2.go to directory PA2. Test your PA2.go again
on the workstation just to make sure it’s working as expected.

