
© Polly Huang, NTU EE

© Polly Huang, NTU EE

1

Practical Assignment #3
Introduction to Computer Networks

Description

Through Practical Assignment #1 to #4, you will build by the end of the semester
a simple Unix-based Web server. That server will be developed in C on a
Unix-based OS. This simple Web server will be capable of serving one request at a
time. To simplify the programming task and to proceed incrementally, we will lead
you through the simple Web server implementation in four stages. At the first stage,
you have been asked to get on a Unix-based system and practice a number of basic
commands to get around the Unix system.

From the second stage and on, you will be implementing towards a simplified
HTTP/1.0 (as defined in RFC 1945) Web server. In that, you will implement a Web
server, which listens for a Web client at a time. The entire Web server
implementation will be divided into three parts: 1) the echoer, 2) the parser, and 3) the
responder. One will be implemented based on another.

At the third stage, you will need to extend your server program from the echoer
to the parser, which interprets the HTTP Request (GET) messages from a Web
browser and check if the file requested exists. If the file exists, find out the size of
the file. We expect that your parser will be able to send back short messages about
whether it finds the file and the size of the file when it receives requests from Mozilla
Firefox (one of the Web browsers).

Parser Functionality
You will be building on top of your server.c from stage 2 of the assignment. The
convention is still that you would edit the server.c in a text editor (for example: emacs)
and compile it with the Unix C compiler.

In your server.c, instead of simply echoing the messages sent from a client, the server
would parse the message from the client as an HTTP GET request and send back
some information about the file requested by the GET message. More specifically,
your server.c will need to do at least the following:

1. Check whether the message is a GET message

© Polly Huang, NTU EE

© Polly Huang, NTU EE

2

2. If not, send back ‘Bad request’ string.
3. If so, find out the </path/name> of the file the client is requesting.
4. Check if the file, </path/name>, exists
5. If not, send back ‘File not existed’ string.
6. If so, send back

i. ‘File found’ string.
ii. ‘File size: <size in bytes>‘ string

Testing
For your reference, a sample parser program is available from the course website:
http://homepage.ntu.edu.tw/~pollyhuang/teach/intro-cn-pa/server-PA3.o.
server-PA3.o works for MacOS, the operating system used by the workstation
140.112.42.161. server-PA3.o listens from port 3499. A simple html file,
server-test.html, is also available for the testing purpose. You may find the file from:
http://homepage.ntu.edu.tw/~pollyhuang/teach/intro-cn-pa/server-test.html. Place
server-PA3.o and server-test.html in the same directory on 140.112.42.161. Start
server-PA3.o. Test the parser by http’ing to it from Mozilla Firefox (one of the
popular Web browsers):

http://140.112.42.161:3499/server-test.html

You should see the following from the Web browser:

File found
File size: 2183

Hints on Parsing
Having received the HTTP Request message (msg, a char array), you will need to
extract one word (one token) at a time to figure out 1) whether the message is a GET
request and 2) which file is being requested. Much of the trick to play here is about
string manipulation. Feel free to use function calls such as ‘strtok’ to grab words
(tokens) out of a long message one by one:

 pch1 = strtok (msg, " "); // gets the first word, words separated by space

pch2 = strtok (NULL, " "); // gets the subsequent word from msg

© Polly Huang, NTU EE

© Polly Huang, NTU EE

3

strcmp also comes in handy when checking whether the extracted word equals the
“GET” string.

strcmp(pch1,"GET"); // checks whether the first word is GET
strcmp(pch2,"/"); // “/” for filename meant to return index.html

Please refer to http://www.cplusplus.com/ref/cstring/ for the details of string.h library
function calls.

Hints on Finding out File Size
After obtaining the name of the file to be requested (filename, a string), you will need
to 1) figure out what is the file size and 2) send a short message about the file size
back to the client. This part of implementation concerns more the file manipulation.
One could use function calls such as ‘fseek’ and ‘ftell’ as follows to find out the file
size:

requested_file = fopen(filename, "rb"); // open file
 fseek(requested_file, 0, SEEK_END); // move to the end of the file
 end=ftell(requested_file); // get the position of the end of file
 stringlen=sprintf (tmpstring, "file size: %d
\n", end);
 send(new_fd, tmpstring, stringlen, 0);

An example about computing the file size is also available from:
http://www.cplusplus.com/ref/cstdio/ for the details of stdio.h library function calls.

Submission
You will rename your server.c following the assignment naming convention to, for
example, p3-2-1223-1843.c. Please note that the code for Practical Assignment #3
will be p3. Then, upload the file to the sftp server by the due date and time.

Port Assignment
To avoid conflicts, each team will be using a specified port number as shown in the
port assignment file provided.

