
© Polly Huang, NTU EE

© Polly Huang, NTU EE

1

Practical Assignment #2
Introduction to Computer Networks

Description

Through Practical Assignment #1 to #4, you will build by the end of the semester
a simple Unix-based Web server. That server will be developed in C on a
Unix-based OS. This simple Web server will be capable of serving one request at a
time. To simplify the programming task and to proceed incrementally, we will lead
you through the simple Web server implementation in four stages. At the first stage,
you have been asked to get on a Unix-based system and practice a number of basic
commands to get around the Unix system.

From the second stage and on, you will be implementing towards a simplified
HTTP/1.0 (as defined in RFC 1945) Web server. In that, you will implement a Web
server, which listens for a Web client at a time. The entire Web server
implementation will be divided into three parts: 1) the echoer, 2) the parser, and 3) the
responder. One will be implemented based on another.

At the second stage, you will need to implement the echoer part of the server that
simply sends back and displays the contents of the received data stream from the
client. To test your echoer, you will be asked to use the telnet program as the client,
type in random characters, and check whether the echoer is able to send the same
character stream back.

Developing Environment
You will be developing your code in C on a Unix-based system. The convention is
that you edit your code in a text editor (for example: emacs) and compile with the
GNU C compiler by:

$ gcc -o server server.c

gcc : the GNU C compiler
-o : the flag to specify the output filename (i.e. the resulting executable code)
server : the filename you specify for the resulting executable code
server.c : the filename of your C code for the Web server

© Polly Huang, NTU EE

© Polly Huang, NTU EE

2

After compilation, you may start the server program by:

$./server &

This will start the server and your server will be listening to any client attempt to
make a connection. You may check all the processes running under your username
by:

$ ps -u <your username>

For example, I might find the list of processes running under user phuang by:

$ ps -u phuang
 PID TTY TIME CMD
 24360 pts/5 0:00 server
 14679 pts/5 0:00 tcsh

PID : the process ID
TTY : controlling terminal of the process
TIME : cumulative execution time of the process
CMD : command of the process

Since the server is running in a infinite loop waiting for connections to be made,
please be aware that you need to terminate the server process after your are done
testing or when you need to run a re-compiled version of the server executable.
Termination of the process can be done by:

$ kill 24360

An example server.c is available from
http://homepage.ntu.edu.tw/~pollyhuang/teach/intro-cn-pa/server.c
In this example, the server prints “Hello, world!” upon accepting a connection.
Suppose the server is started on 140.112.42.161 port 3499. “Hello, world!” will be
sent to and displayed on the machine that we use to telnet to the server.

© Polly Huang, NTU EE

© Polly Huang, NTU EE

3

$ telnet 140.112.42.161 3499
Trying 140.112.42.161...
Connected to140.112.42.161.
Escape character is '^]'.
server: got connection from 140.112.42.161
Hello, world!
Connection closed by foreign host.

Students are required to change the port number in the sample code to avoid multiple
of your server.o running on the same port. One port is allowed for only one server on
Unix. Polly will assign a team specific port number for each team. Please use your
own port to work on your assignment. Check with Polly if it is not clear what your
team port number is.

You are free to use this server.c as a base to develop the echoer for PA#2. We expect
your echoer to print whatever stream that is typed in in a telnet session such as
follows.

$ telnet 140.112.42.161 3499
Trying 140.112.42.161...
Connected to 140.112.42.161.
Escape character is '^]'.

 Hi, test, 1, 2, 3
 Hi, test, 1, 2, 3
 …

You could also try to request to your echoer from any Web browser and see from the
echoer output the exact message sent from the Web browser:

http:// 140.112.42.161:3499/

Submission
You will rename your server.c following the assignment naming convention
PA#-team#-mmdd-hhmm.c. For example, p2-2-1223-1843.c is for Practical
Assignment #2 by team #2 on December 23 at 6:43pm. Then, upload the file to the
sftp server at the corresponding PA folder (similar to the Essay Assignment
submission instruction) by the due date and time.

© Polly Huang, NTU EE

© Polly Huang, NTU EE

4

Caution
As you are developing the code, remember that you SHOULD NOT be serving
through the standard port 80, so you need to specify the port number that your
echoer’s running on in the test telnet session. For example, if your machine's name
is host.someschool.edu, your server is listening at port 6789, you would telnet to the
specific port:

% telnet host.someschool.edu 6789

or type in the URL as follows from the web browser:

http://host.someschool.edu:6789/index.html

If you omit ":6789", the browser will assume port 80 which most likely will not have
a server listening on it. To avoid conflicts, each student will be using a specified
port number as shown below in the port assignment file provided by the TA/instructor.

