

Introduction to Flow Cytometry -- BD FACSCanto II[™]

Daisy Kuo Assistant Product Manager E-mail: daisy_kuo@bd.com BDBiosciences

Outline

- Basic Concept of Flow Cytometry
- FACSCanto II System Introduction
- Application Examples

What is Flow Cytometry?

- Flow = Fluid
- Cyto = Cell
- Metry = Measurement
- A variety of measurements are made on cells, cell organelles, and other objects suspended in a liquid and flowing at rates of several thousands per second through a flow chamber.

Particle Size

Detection range: 0.5~50um

What Can a Flow Cytometer Tell Us About a Cell?

- Its relative size (Forward Scatter—FSC)
- Its relative granularity or internal complexity (Side Scatter—SSC)
- Its relative fluorescence intensity

Scatter Light Laser **FSC Sensor** Right Angle Light Detector a Cell Complexity SSC Sensor Forward Scatter-diffracted light Related to cell surface area Incident Forward Light Detector Detected along axis of incident light in the forward direction Light a Cell Surface Area Source Side Scatter-reflected and refracted light · Related to cell granularity and complexity $\sim \sim \sim$ Detected at 90° to the laser beam

Lysed Whole Blood

Fluorescence Light

- The fluorochrome absorbs energy from the laser.
- The fluorochrome releases the absorbed energy by:
 - vibration and heat dissipation.
 - emission of photons of a longer wavelength.

Fluorescence

Emitted fluorescence intensity proportional to binding sites

BD FACSCanto II[™]

Subsystems

Fluidics

To introduce and focus the cells for interrogation.

Optics

To generate and collect the light signals.

Electronics

To convert the optical signals to proportional digital signals, process the signals, and communicate with the computer.

Sample Flow

Sample Differential

High Differential Pressure

Optics

- Excitation optics
 - Lasers
 - Lenses to shape and focus the laser beam
- Collection optics
 - A collection lens to collect light emitted from the article-laser beam interaction
 - A system of optical mirrors and filters to route specified wavelengths of emitted light to designated optical detectors

Fluorochrome Spectra

Wavelength (nm)

Excitation Optics

 Spatially separated laser beams lower the possibility of fluorescence spillover

Collection Optics

Optics-- Configuration

Laser	Primary Fluorochrome	РМТ	Dichroic Mirror	Bandpass Filter	Other Fluorochrome
488 nm	Side Scatter	F	none	488/10	*
(blue)	FITC	E	502LP	530/30	GFP
	PE	D	556LP	585/42	PI
	—	С	610LP	blank optical holder	*
	PerCP or PerCP- Cy5.5	В	655LP	670LP	PI, PE-Cy5.5, 7-AAD
	PE-Cy7	А	735LP	780/60	*
633 nm	APC	С	none	660/20	Alexa Fluor® 633
(red)	—	В	685LP	blank optical holder	*
	APC-Cy7	А	735LP	780/60	*
407 nm	Pacific Blue™	В	none	450/50	DAPI, Hoechst Dye
(violet)	AmCyan	А	502 LP	510/50	Cascade Blue®

Electronics

- PMTs and preamps convert photons to voltage pulses.
- Analog-to-digital converters translate analog signals to proportional digital signals.
- Compute area and height for each pulse.
- Perform compensation and calculate ratios and width.
- An embedded computer interfaces with the computer workstation for data transfer.

Creation of a Voltage Pulse

Analog-to-Digital Converter

Digitized values

Quantification of a Voltage Pulse

Doublet Discrimination

Data Storage

Data Display: Linear vs Log

Spectral Overlap- Compensation Theory

Spillover

FITC Spillover

Wavelength (nm)

FITC Compensation

-54

Compensation Examples

FITC

FITC

73

245

FITC

2	2
.5	U
-	~

Application Examples

Applications

- Phenotype Analysis (Cell Surface Antigens/Markers)
- Intracellular Analysis
 -- Eg. Cytokines, Signal Transduction molecules...etc.
- DNA Analysis
 -- Eg. Viability, Cell cycle, Apoptosis...etc.
- Cell Fuction Analysis
 -- Eg. Free radicals, Ca²⁺, Reporter genes...etc.
- CBA (Cytometric Bead Array)
- Others

Phenotype Analysis

• ...etc

Lymphocyte Immunophenotyping

Intracellular Analysis Cytokine Enzyme Permeabilizing signal transduction solution molecule ...etc. \bigcirc С \bigcirc **Fixation** solution

Cytokine Detection

Picture From www.fredonia.estu

Combination of Cell Surface and Cytoplasmic Staining

Th1/Th2/Th17 Phenotyping Kit

Signal Transduction

BD Intracellular Staining in Activated Lysed Whole Blood

DNA Analysis

Cell Cycle Analysis

Apoptosis (Sub G1)

۰<u>۲</u>

45

1023

Empty

Cell Function Analysis

- Membrane Potential (DiOC6, JC-1)
- Oxidative Metabolism (Free Radicals)
- Intracellular PH Value (Snarf-1)
- Ca++ Influx (Fluo-4/Fura Red, Indo-1)
- Phagocytosis
- Cell Proliferation (PI, BrdU, Intracellular Cyclins)
- Apoptosis (Annexin V, active Caspase-3)

Annexin V Assay

47

Annexin V/PI Double Staining

Bordón et al. Radiation Oncology 2009 4:58

Cytometric Beads Array (CBA)

Beads Provide a Flexible Platform

Advantages of Bead-Based Immunoassays

- Analyze multiple analytes simultaneously
- Reduced sample volume requirements
- Reduced hands-on time by parallel analysis of samples
- Wide dynamic range of fluorescence detection (requires fewer sample dilutions)

Proteins Measured

- A. Interleukin (IL)-2
- B. IL-4
- C. IL-5
- D. IL-10
- E. Tumor Necrosis Factor- α F. Interferon- γ

Cytometry Beads Array (CBA)

Typical Data

Standard Curves

Representative standard curves generated using the BD CBA Human Inflammatory Cytokines Kit.

CBA Flex Sets

- Open configuration (Up to 30 plex)
- Clustering based on Red and NIR fluorescence intensity
- Need to be used at dual-laser(488nm blue v.s 633nm red) instrument

CBA Functional Beads

Can be conjugated with any Ab

Standard curve for a soluble IL-6 receptor assay generated using BD CBA Functional Bead E4 following the conjugation procedure in the BD CBA Functional Bead Conjugation Buffer Set manual.

Data courtesy of Joseph Cannon and Gloria Sloan, Medical College of Georgia.