On the effects of preprocessing for matrix variate regression analysis

Student : Chin-Chun, Yeh / Advisor : Hung Hung P.h.D

Introduction

PCA and logistic regression has been widely used in the statistic field. However, when applying on a tensor data, MV-logistic regression has been proofed to having a better performance then the conventional logistic regression. m-PCA is also a method specially developed for the dimension reduction on tensor data.

 $X_{i,j}$ =voltage value at time point *i* and channel of electrode *j*

 Y_i = binary random variable with value 1 indicating alcoholism and 0 otherwise

Aim to examine EEG correlates of genetic predisposition to alcoholism.

Matrix Variate logistic regression

logit $P(Y = 1|X) = \gamma + vec(\eta)^T vec(M) = \gamma + A^T XB$ with $\eta = AB^T, A \in R^p, B \in R^q$

 \Rightarrow conventional logistic model

The parameters inquired would be 1 + p + q, which is less

than 1 + pq.

PCA & m-PCA

PCA: $vec(X - \mu) = \Gamma v + vec(\epsilon)$

m-PCA: $vec(X - \mu) = (B_0 \otimes A_0)vec(U) + vec(\epsilon)$, $A_0 \in \mathbb{R}^{p \times p_0}, B_0 \in \mathbb{R}^{q \times q_0}$

By leading the constraint, $\Gamma \cong A \otimes B$, make the parameters required reduced to 2r(p+q), which is less than 1 + pq

Problem

- 1. Find a better preprocess procedure which lead to a better performance.

MV-logistic	rank-r	2	3	4	5	6
model	Accuracy	0.655	0.754	0.770	0.770	0.778
Accuracy	rank-r	7	8	9	10	20
0.803	Accuracy	0.77	0.762	0.762	0.754	0.762

Table: 1. The leave-one-out classification accuracy of MV-logistic regression and the leave-one-out classification accuracies of PCA followed by conventional logistic model under different r

		q_0	
p_0	15	20	30
15	0.795/0.795	0.779/0.803	0.787/0.77
20	0.811/0.820	0.746/0.754	0.730/0.762
30	0.754/0.828	0.730/0.746	0.746/0.721

Table: 2. The leave-one-out classification accuracies of m-PCA followed by MV-logistic regression / PCA and conventional logistic regression, under different (p_0, q_0)

q_0							
<i>p</i> 0	15	20	30				
15	0.795/0.828	0.779/ 0.770	0.787/0.746				
20	0.811/0.779	0.746/0.746	0.730/0.697				
30	0.754/0.738	0.730/0.705	0.746/0.738				

Table: 3. The leave-one-out classification accuracies of m-PCA followed by MV-logistic regression / PCA by time then by channel followed by MV-logistic regression, under different (p_0, q_0)

2. Compare m-PCA and MV,-logistic regression to the conventional models.

Discussion and conclusion

Compare to the conventional logistic regression, MV-logistic has a better performance.(Table 1) However, after using m-PCA,

the PCA followed by the conventional logistic had a better accuracy. (Table 2) Implies that m-PCA is a critical component of processing even followed by a conventional methods. In the Table 3, PCA by time then by channel aim to simulate the same affect as m-PCA does. The performance only beyond the one of the m-PCA on the smallest (p_0, q_0).

PCA is a more complex method compare to m-PCA. On other hand, m-PCA is specialized to fit on tensor data. When processing a high dimensional tensor data, we would recommend m-PCA and MV-logistic model. Even using m-PCA only could also help the performance of conventional methods followed by.