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Abstract

This paper studies herd behavior, bubbles and social interactions in financial markets through
the asset pricing models with heterogeneous interacting agents. The relationship between social
interactions, herd behavior and bubbles is examined. It is found that herd behavior arises naturally
when there are strong enough social interactions among individual investors. In addition, an ex-
tremely small bubble may cause a sufficiently large number of traders to engage in herd behavior
when the social interactions among traders are strong.
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1 Introduction

There is a strong evidence of herd behavior among traders in the financial
markets indicating that agents are influenced in their decision-making process
in the markets by what others around them are doing. For example, Hong,
Kubik and Stein (2004) cite empirical evidence by using Health and Retirement
Study data that show that social interactions help to increase the participation
rate of the stock market. Scharfstein and Stein (1990) also point out that
reputation concerns and “share the blame” effects are possible reasons that
drive professional money managers to follow the herd.

Moreover, the empirical evidence of the existence of social interactions
among investors in the financial market can be found in the survey in Shiller
and Pound (1989). The survey evidence in Shiller and Pound (1989) indicates
that since investors lack any clear sense of objective evidence regarding the
prices of speculative assets, the process by which their opinions are derived
may be especially social. In particular, investors form their decisions based on
the decisions of their colleagues.

Herding behavior has also been demonstrated in the trading decisions
of institutional investors and in recommendation decisions of stock analysts in
Welch (2000). It is found in Welch (2000) that the tendency of analysts to
follow the prevailing consensus is not stronger when that consensus proves to
be correct than when it is wrong. Thus, the consensus on herding is consistent
with models in which analysts herd based on little information.

The asset pricing models with heterogeneous interacting agents have
recently been proposed to deal with these important social and economic phe-
nomena, for example, Brock and Hommes (1997), Lux (1998), Chang (2007)
and Alfarano and Milakovic (2009). The agent-based model is typically imple-
mented to model interacting agents with heterogeneous beliefs. Traders with
heterogeneous beliefs, that is, groups of investors with different expectations
about future prices, are also examined in a structural asset pricing model by
Friedman (1953); DeLong, Shleifer, Summers and Waldmann (1990); Brock,
Lakonishok and LeBaron (1992); Hommes (2001, 2006); LeBaron (2006); and
Brock and Hommes (1997, 1998). An important question raised by these
papers is whether the “irrational” traders can survive in the financial mar-
ket when trading alongside the “rational” traders. Brock, Lakonishok and
LeBaron (1992) have shown empirically that simple technical trading strate-
gies applied to the Dow Jones index may outperform several efficient market
hypothesis stochastic finance models such as the random walk model or a
GARCH-model. Moreover, DeLong, Shleifer, Summers and Waldmann (1990)
have shown that a constant fraction of “noise traders” may on average earn
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a higher expected return than “rational” traders in a finite horizon financial
market, and may survive in the market with positive probability.

Vaglica, Lillo, Moro and Mantegna (2008) also show that the heteroge-
neous agents are key ingredients for the emergence of some aggregate properties
which characterize the financial market. Moreover, Gerasymchuk, Panchenko
and Pavlov (2010) consider the performance of the strategies to be available
only locally through some local networks due to the different speeds of trans-
formation of the information. Four types of networks, including a fully con-
nected network, a regular lattice, a small world, and a random network, are
presented in their paper to investigate the asset price dynamics with local in-
teractions under heterogeneous beliefs. Gerasymchuk, Panchenko and Pavlov
(2010) demonstrate that, due to a different speed of information transmission
in different networks, the network structure influences asset price dynamics
in terms of the region of stability and volatility. In Gerasymchuk, Panchenko
and Pavlov (2010), there is no direct imitation among traders and coordination
arises when traders adopt the same rule dynamically. By allowing uninformed
noise traders to directly imitate each other, Tedeschi, Iori and Gallegati (2012)
show on the other hand, that the notion that noise traders quickly go bankrupt
and are eliminated from the market is unrealistic in the presence of herding and
positive feedback. Tedeschi, Iori and Gallegati (2012) also show that chartists
and fundamentalists under-perform noise traders when imitation is high.

Brock and Hommes (1998) introduce a simple asset pricing model with
heterogeneous beliefs based on the model presented by Lucas (1978). The
Adaptive Belief System (ABS) presented in Brock and Hommes (1998) is able
to create extremely rich asset price dynamics under the hypothesis of heteroge-
neous expectations among traders. On the other hand, the interacting agents
model in financial markets has also been discussed in some recent papers in
order to explain the herd behavior in the financial market and to capture
the complexity of asset price dynamics. For example, Kaizoji (2000), Leom-
bruni, Palestrini, and Gallegati (2003), and Chiarella, Gallegati, Leombruni,
and Palestrini (2003). Moreover, Chang (2007) investigates the dynamics of
a simple present value asset pricing model with both social interactions and
heterogeneous beliefs. Investors revise their beliefs in each period according
to two features: the “fitness measure”,1 which is the past realized profit, and
the exogenous “social interactions measure”, which is the interaction among
traders’ expectations of the mean choice level in the economy. Chang (2007)
found that the endogenous type of social interactions arises naturally when
there exist both exogenous social interactions and heterogeneous beliefs among
traders. Furthermore, it is shown in Chang (2007) that the characteristics of

1See also Blume and Easley (1992, 1993).
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the steady state and the dynamic behavior of asset prices are determined by
the strength of the endogenous type of social interactions.

The main purpose of this paper is to examine the resulting price dy-
namics, the existence of herd behavior, and the existence of bubbles in the
asset pricing model with social interactions and heterogeneous beliefs. Thus,
this paper utilizes the well-known framework of Brock and Hommes (1998) and
the modification by Chang (2007) to examine the relationship between social
interactions, herd behavior and bubbles in a stylized financial market with het-
erogeneous agent beliefs. It is found that herd behavior among traders occurs
naturally when the exogenously given social interactions are strong enough.
Furthermore, an extremely small deviation from the fundamental asset value,
i.e. a “bubble”, can cause a sufficiently large number of traders to engage in
herd behavior when the exogenously given social interactions among traders
are strong. Therefore, under the framework of Brock and Hommes (1998), this
paper demonstrates the relationship between social interactions, herd behav-
ior and bubbles in a stylized financial market resulting in heterogeneous agent
beliefs analytically.

The strategy for this paper is as follows. An asset pricing model with
social interactions and heterogeneous beliefs, which retains the basic features
of the model by Brock and Durlauf (2001a, 2001b), Brock and Hommes (1998)
and Chang (2007), is developed in Section 2. Section 2 also contains a descrip-
tion of the model’s steady states along with some local stability results. The
main results of the paper are presented in Section 3. In particular, Section 3
contains a detailed discussion of the relationships between social interactions,
herd behavior, and bubbles. Section 4 concludes the paper.

2 Basic Asset Pricing Model with Social In-

teractions and Heterogeneous Beliefs

By following Brock and Hommes (1998) and Chang (2007), the basic asset
pricing model with social interactions and heterogeneous beliefs is developed
in this section. It is assumed that there are two belief types emerging in the
financial market when the asset price deviates from its fundamental value.
One is referred to as noise traders who believe that the trend will continue,
and the other group is referred to as arbitrageurs who believe that the asset
price will eventually be driven back to its fundamental values.

Following Brock and Hommes (1998), the Adaptive Belief System is
developed as follows. There are two assets, one a risky asset and the other
a risk-free asset. The risk-free asset is perfectly elastically supplied at gross
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interest rate R, where R > 1. Therefore, the dynamics of wealth is given by

Wt+1 = RWt + (pt+1 + dt+1 −Rpt)zht (2.1)

where Wt is the total wealth in period t, {dt} is a stochastic dividend process
of the risky asset, pt is the price (ex dividend) per share of the risky asset at
time t, and zht denotes the number of shares of the risky asset purchased at
date t for type h investors.

Let Et and Vt be the conditional expectation and conditional variance
based on a publicly available information set containing current and past prices
and dividends. In other words, they are the conditional expectation and condi-
tional variance based on the information set containing {pt, pt−1, · · · ; dt, dt−1, · · · }.
Moreover, let Eht and Vht be the “belief” of an investor of type h regarding
the conditional expectation and conditional variance, respectively.

Therefore, assuming that Vht(pt+1 + dt+1 − Rpt) ≡ σ2 for simplicity,
beliefs with regard to the conditional variance of excess returns are the same
for all investors and are also constant over time. This assumption is made for
tractability following Brock and Hommes (1998).

Each type of investor is assumed to be a myopic mean variance maxi-
mizer. That is, the investor of type h solves

Maxzht{EhtWt+1 − (a/2)Vht(Wt+1)} (2.2)

where a is the measure of risk aversion, which is assumed to be equal for all
traders.2

The demand for shares zht for a type h investor is given by

zht = Eht(pt+1 + dt+1 −Rpt)/aσ2 (2.3)

Moreover, let zst represent the supply of shares per investor and nht be the
fraction of investors of type h at time t. Therefore, equating demand with

2It is possible that rational arbitrageurs are risk-averse, and noise traders are risk-loving.
Therefore, as pointed out by one of the referees, the assumption of homogeneous risk-aversion
is unreasonable in the current paper. By relaxing the assumptions of homogeneous degrees of
risk-aversion and homogeneous expected conditional variance, Chiarella and He (2002) test
the robustness of the results of Brock and Hommes (1998). They also investigate the effects
of different memory lengths on the dynamics. Chiarella and He (2002) found that Brock
and Hommes’s (1998) results are robust to this generalization. However, they do point out
that the resulting dynamic behavior with this generalization is considerably enriched and
exhibits some significant differences. Thus, how to incorporate the heterogeneous beliefs
and risk in a simple asset pricing model with social interactions in order to investigate the
resulting herd behavior and bubbles in financial markets will be an important extension of
the current paper.
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supply gives

zst =
∑
h

nht{Eht(pt+1 + dt+1 −Rpt)/aσ2} (2.4)

Assuming there is a zero supply of outside shares for simplicity, (zst = 0) for
all t. Thus,

Rpt =
∑
h

nhtEht(pt+1 + dt+1) (2.5)

Therefore, the fundamental solution p?t can be defined as the benchmark of
the rational expectations solution as follows:

Rp?t = Et(p
?
t+1 + dt+1) (2.6)

Let xt be the deviation in the asset price from the fundamental value,
that is,

xt = pt − p?t

Moreover, the traders’ beliefs with regard to the conditional expectation are
assumed to take the following form:

Eht(pt+1 + dt+1) = Et(p
?
t+1 + dt+1) + fh,t (2.7)

where fh,t is the belief of a type h investor that is conditional on current and
past prices and dividends. That is, an investor’s belief is some deterministic
function of current and past deviations from the fundamental value.

Let nh,t and fh,t represent the fraction of type h investors and their belief
type at the beginning of period t before xt has been observed. Rearranging
(2.5) we have

Rxt =
∑
h

nh,tfh,t (2.8)

Notice that nh,t represents the fraction of type h investors at the be-
ginning of period t before xt has been observed. Thus xt is determined by nh,t
and fh,t at the beginning of period t. After xt has been observed, the profit for
period t, πh,t, is also determined and so realized profits for period t for both
types can be calculated by investors using all relevant information. Traders
make their belief-type choice based on the performance measure, and in the
process examine the choices of other people. Therefore, the new fraction of
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nh,t+1 is based upon all traders’ choices of beliefs. Next, xt+1 is determined by
nh,t+1 and fh,t+1 at the beginning of period t+ 1, and so on.

In order to calculate the realized profit for trader h as the “fitness
function”, the realized excess return (Rt+1) from period t to period t+ 1 must
be obtained. It is given by

Rt+1 = xt+1 −Rxt + δt+1 (2.9)

where δt+1 = p?t+1 +dt+1−Et(p?t+1 +dt+1) and Et(δt+1) = 0 for all t. Therefore,
the realized profit for a type h investor that is conditional upon the time t
information set can be represented as

πht = Rtzh,t−1 = (xt −Rxt−1 + δt)
(fh,t−1 −Rxt−1)

aσ2
(2.10)

The belief of a noise trader is assumed to be of the simple linear form

ft = kxt−1 + b k ≥ 0 b ≥ 0

where k is the trend and b is the bias of the trader type. So from (2.7) the
belief type of noise traders is given by

Eit(pt+1 + dt+1) = Et(p
?
t+1 + dt+1) + kxt−1 + b

The linear form of the traders’ belief is regarded as the idealization of overre-
acting securities analysts or overreacting investors. This type of belief setting
can also be found in De Bondt and Thaler (1985).3

The belief of arbitrageurs will also be of the simple linear form

ft = −kxt−1 − b

Thus, all arbitrageurs are rational arbitrageurs and they are contrarians to
noise traders since they believe that the asset price will eventually be driven
back to the fundamental value. This assumption is also employed by DeLong,
Shleifer, Summers and Waldmann (1990).4 From the assumption above, the
belief type of rational arbitrageurs is given by

Eit(pt+1 + dt+1) = Et(p
?
t+1 + dt+1)− kxt−1 − b

3The belief type of the noise trader used in this paper is equivalent to the term “trend
chaser” with a belief bias in Brock and Hommes (1998). Notice that the term “noise trader”
may have a different scope than a “trend chaser” with a belief bias in Brock and Hommes
(1998). See for example, DeLong, Shleifer, Summers and Waldmann (1990).

4The belief type of arbitrageurs used in this paper is equivalent to the term “contrarian”
with a belief bias in Brock and Hommes (1998). Notice that the term “arbitrageurs” may be
used differently in the finance literature. For example, in Hull (2011), “arbitrageurs” is used
to denote the traders who are involved in “locking in a risk-less profit by simultaneously
entering into transactions in two or more markets.”
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Following Durlauf (2001a, 2001b), we assume that investor i’s utility
at time t is given by

U(ωit) = πt−1(ωit) + S(ωit,m
e
it) + ε(ωit) (2.11)

where ωit is a binary belief type choice with support {−1, 1}, and πt−1(ωit)
is the past realized profit associated with the individual’s belief choice. In
other words, the fitness measure associated with a belief type is past realized
profit. me

it denotes the conditional probability measure that agent i places
on the choices of others at the time of making his own decision. That is,
me
it = 1

N−1
∑

j,j 6=im
e
i,j,t where me

i,j,t is the subjective expectation from the
perspective of agent i about the choice of agent j at time t. S(.) is the social
utility associated with the choices, and ε(ωit) is a random utility term which is
I.I.D. across agents and is extreme-value distributed. It is assumed that agent i
knows ε(ωi) at the time of his decision. We assume that S(ωit,m

e
it) = Jωit·me

it,
5

where J represents the degree of dependence across agents, that is, J represents
the strength of exogenous social interactions.

Therefore, the objective function of investors:

U(ωit) = πt−1(ωit) + Jωit ·me
it + ε(ωit) (2.12)

The investor is a noise trader if he or she chooses ωit = 1, and a rational
arbitrageur if he or she chooses ωit = −1. The deterministic asset pricing
dynamics with δt = 0 are assumed here for all t. Based on (2.10), the “fitness
measure” associated with a trader’s choice at time t is

πt−1(ωit = 1) =
(xt−1 −Rxt−2)(kxt−3 −Rxt−2 + b)

aσ2
(2.13)

πt−1(ωit = −1) =
−(xt−1 −Rxt−2)(kxt−3 +Rxt−2 + b)

aσ2
(2.14)

Therefore, the fraction of trader types is given by

n
(+)
t = Prob(ωi,t = 1) =

exp(β(kxt−3+b)(xt−1−Rxt−2)
aσ2 + βJ ·mt)

Z
(2.15)

n
(−)
t = Prob(ωi,t = −1) =

exp(−β(kxt−3+b)(xt−1−Rxt−2)
aσ2 − βJ ·mt)

Z
(2.16)

where β represents the intensity of choice, n
(+)
t represents the fraction of noise

traders, n
(−)
t stands for the fraction of rational arbitrageurs, Z = exp(β(kxt−3+b)(xt−1−Rxt−2)

aσ2 +

5Here, S(.) represents proportional spillover-type social interactions; see Brock and
Durlauf (2001a, 2001b).
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βJ · mt) + exp(−β(kxt−3+b)(xt−1−Rxt−2)
aσ2 − βJ · mt).

6 The probability structure
is equivalent to the so-called mean field version of the Curie-Weiss model of
statistical mechanics. According to the mean field theory, each individual’s
expectation of the mean choice level is replaced with a common value, that is,
me
it ≡ mt is fixed ∀i. The expected value of each of these random variables

will be equal to

E(ωit) = tanh(
β(kxt−3 + b)(xt−1 −Rxt−2)

aσ2
+ βJ ·mt). (2.17)

since we require that expectations be rational in a steady state, so that E(ωit) =
mt. Therefore, the Law of Large Numbers can be applied to the large economy
behavior under non-cooperative decision-making. In other words, there exists
at least one value of mt such that

mt = tanh(βJmt +
β(kxt−3 + b)(xt−1 −Rxt−2)

aσ2
) (2.18)

where mt is a self-consistent expectation of the mean of choices across all
agents in the large economy. On the other hand, from (2.8)

Rxt = (kxt−1 + b)mt (2.19)

Rearranging (2.19)

xt =
mt(kxt−1 + b)

R
(2.20)

The two crucial equations are (2.18) and (2.20).
Thus, from (2.18) and (2.20), the steady state of the dynamic system

is

x? =
m?b

R− km?
(2.21)

m? = tanh(
β(kx? + b)(1−R)x?

aσ2
+ βJm?) (2.22)

Let

Jb =
b2R(1−R)

aσ2(R− km?)2

6See Brock and Durlauf (2001a, 2001b) and Anderson, Palma and Thisse (1996) for a
derivation.
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Then

m? = tanh(βJmm
?) (2.23)

where Jm = J + Jb.
The properties of steady states of the dynamic system can be found in

the following proposition:

Proposition 1. (Steady State)
The steady states (m?, x?) of equations (2.18) and (2.20)
(1) If βJ < 1, there exists only one steady state (0, 0).
(2) If βJ ≥ 1, there exist one or three or five steady states. Furthermore, at
least one steady state will be (0, 0).

Proof of Proposition 1: (See the Appendix)
Thus, the fundamental solution (x? = 0) will always be one possible

steady state in the financial market, based on Propositions 1 even with strong
social interactions.

The traders’ profit at the steady state is discussed in the following
proposition:

Proposition 2. (Steady State Profit)
At the steady state, all traders earn zero profit if the steady state asset price
is at its fundamental value. Furthermore, rational arbitrageurs make more
profit than noise traders if the steady state asset price is above its fundamental
value. On the other hand, when the steady state asset price is below its fun-
damental value, rational arbitrageurs make more profit than noise traders if
x? < − b

k
, rational arbitrageurs earn less profit than noise traders if x? > − b

k
,

and rational arbitrageurs make the same profit as noise traders if x? = − b
k
.

Proof of Proposition 2: (See the Appendix)
In order to investigate the dynamic stability of (2.18) and (2.20), all

traders’ expectations of the mean choice level at time t are assumed to be given
by me

it ≡ mt−1 ∀i. In other words, we consider the dynamics of a sequence
of economies in which expectations are myopic. Therefore, (2.18) and (2.20)
can be rewritten as

mt = tanh(βJmt−1 +
β(kxt−3 + b)(xt−1 −Rxt−2)

aσ2
) (2.24)

xt =
kmt−1xt−1 + bmt−1

R
(2.25)

Therefore, the local dynamic characteristics of the steady state can be
analyzed by expanding (mt, xt) around the steady state value (m?, x?).
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Proposition 3. (Local Dynamics)
Assume that all arbitrageurs are rational arbitrageurs. Then, the local dynamic
of the steady states (m?, x?) of (2.24) and (2.25) can be characterized as:
(1) When βJ < 1, (0, 0) is a unique and locally stable steady state.
(2) When βJ ≥ 1:
(i) If b = 0, there are three steady states. One is (0, 0), a locally unstable
one. The other two steady states are (m?

+, 0) and (m?
−, 0), where m?

+ > 0 and
m?
− < 0. These two steady states are locally stable if |km?| < R and locally

unstable if |km?| > R.
(ii) If b 6= 0, there will be one or three or five steady states. (0, 0) will be one
of the steady states in all cases. If there is only one steady state in the market,
(0, 0) is locally stable. Otherwise, (0, 0) is locally unstable. In the three steady

states case, the other two steady states are (m?
+,

m?
+b

R−km?
+

) and (m?
−,

m?
−b

R−km?
−

),

where m?
+ > 0 and m?

− < 0. These two steady states are locally stable if

|∂ tanh(βJmm)
∂m

| evaluated at m? is less than 1 and |km?| < R. Otherwise, they are
locally unstable steady states. In the five steady states case, in addition to the
three steady states described above, the other two steady states are (m?

1,
m?

1b

R−km?
1
)

and (m?
2,

m?
2b

R−km?
2
), where m?

1 > 0 and m?
2 > 0. These two steady states are

locally stable if |∂ tanh(βJmm)
∂m

| evaluated at m? is less than 1 and |km?| < R.
Otherwise, they are locally unstable steady states.

Proof of Proposition 3 (See the Appendix)
According to Proposition 3, when the noise traders extrapolate only

weakly (k < R) and there is no belief bias (b = 0), (m?
+, 0) and (m?

−, 0) will
be locally stable steady states under strong exogenous social interactions.7

Moreover, when the noise traders extrapolate only weakly (k < R) and traders
have belief bias (b 6= 0), there is a positive probability that a unique locally
stable steady state (0, 0) will exist in the market, even under strong social
interactions.

3 Herd Behavior, Bubbles and Social Interac-

tions

Based on the theoretical model developed in the previous section, a com-
parison between the current model and the existing literature with rational
arbitrageurs and noise traders is presented in this section. Moreover, the

7Notice that the sufficient condition for |km?| < R is k < R.
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connections among social interactions, herd behavior and price bubbles are
explored.

According to Proposition 1, at least one steady state asset price is the
asset’s fundamental value when all arbitrageurs are rational arbitrageurs. Note
that this result is similar to the argument given by Friedman (1953).8 Fried-
man’s argument consists of two parts. First, rational arbitrageurs will push
asset prices towards the fundamental values and, second, irrational traders will
eventually be driven from the market. The first part of his argument coincides
with the present paper. However, by emphasizing the interactions among in-
vestors, the second part of Friedman’s argument is less likely to be true in
the current model. Recalling the previous section, noise traders can coexist
with rational arbitrageurs under weak social interactions (J < 1/β) at the
steady state when all traders’ expectations are myopic.9 With strong social
interactions (J > 1/β), noise traders are possibly driven out by rational ar-
bitrageurs. However, depending on the initial conditions within the economy,
rational arbitrageurs can also be driven out of the market by noise traders at
the steady state.

By examining the common belief that the market selects for rational
investors, Blume and Easley (1992, 1993) find that the link between rationality
and fitness is weak. That is, not every rational rule survives and not every
irrational rule vanishes relative to any rational rule.10 The finding in Blume
and Easley (1992, 1993) is also supported in the current model. By using past
realized profit as the fitness measure, rational arbitrageurs are driven from
the market with strong enough social interactions under some specific initial
conditions, while noise traders survive in the market even though asset prices
are always consistent with rationality.

Based on Proposition 3, regardless of the strength of social interactions,
one possible asset price steady state is the asset’s fundamental value when all
arbitrageurs are rational arbitrageurs. Thus, the “fundamentalist” equilibrium
price equation will be reestablished at the steady state if there are investors
with rational beliefs in the economy. However, rational arbitrageurs do not
always survive at the steady state. Moreover, with weak social interactions
(J < 1/β), it is impossible to find any rational rule which beats all irrational
rules since m? = 0 is the unique equilibrium at the steady state and also both

8Friedman (1953, p. 175) argues, “People who argue that speculation is generally desta-
bilizing seldom realize that this is largely equivalent to saying that speculators lose money,
since speculation can be destabilizing in general only if speculators on average sell when
currency is low and buy when it is high.”

9That is, me
it ≡ mt−1 ∀i

10Blume and Easley (1992, 1993) find that the most fit behavior in the financial market
is that which maximizes the expected growth rate of wealth share accumulation.
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types of investors survive in the long run. However, due to nonlinearity, there
is no obvious answer as to whether every irrational rule vanishes relative to
some rational rule under strong social interactions (J > 1/β).

In order to investigate the relationships among social interactions, herd
behavior and bubbles, the following definition is offered:

Definition 1. (Herd Behavior)
A trader i with belief choice ωi engages in herd behavior at steady state (m?, x?)
if
(1) ωi has the same sign as m? at the steady state.
(2) m? 6= 0.

Therefore, a trader that engages in herd behavior has two characteris-
tics. First, his or her belief choice has the same sign as the mean choice level
in the market at the steady state. In addition, the steady state mean choice
level does not equal zero.

The definition of herd behavior here is somewhat different from the
one in Leombruni, Palestrini, and Gallegati (2003), and Chiarella, Gallegati,
Leombruni, and Palestrini (2003). There are two major components in the
agent’s utility function in the current paper, one being the past realized profit
as the fitness measure associated with the agent’s belief type and the other
the social utility associated with the choice of belief type. Thus, although
there exist social interactions among all traders, the herd behavior arises only
when the agent’s belief choice is the same as the belief type of more than
50% of the traders in the market. By contrast, in Leombruni, Palestrini, and
Gallegati (2003), and Chiarella, Gallegati, Leombruni, and Palestrini (2003),
herd behavior is one of the agents’ belief type choices in an economy that is
against fundamentalism.

However, the findings in Proposition 2 are consistent with the results in
Leombruni, Palestrini, and Gallegati (2003), and Chiarella, Gallegati, Leom-
bruni, and Palestrini (2003), where they show that herd behavior can be a
rational strategy since it allows a herd agent to gain excess returns on an asset
by exploiting information not contained in the fundamental solution. Based on
Proposition 2, rational arbitrageurs will make more profit than noise traders
if the steady state asset price is above its fundamental value, and rational ar-
bitrageurs will make more or less profit than noise traders if the steady state
asset price is below its fundamental value, depending on the parameter values.
Thus, by introducing social interactions into the models, both types of traders
can gain excess returns on a risky asset, with some positive probability, based
on their expectation schemes.

With this definition we obtain the following observation:
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Proposition 4. (Herd Behavior and Social Interactions)
Assume that
(1) All traders’ expectations of the mean choice level at time t are me

t = mt−1.
(2) All arbitrageurs are rational arbitrageurs.
(3) The initial state is at the steady state (m?, x?) = (0, 0).
(4) k < R.
Then, assuming an extremely small expectation deviation from the steady state
(0, 0),
1. Without exogenous social interactions (J = 0), herd behavior occurs at the
new steady state with probability 0.
2. With weak exogenous social interactions (βJ < 1), herd behavior occurs at
the new steady state with probability 0.
3. With strong exogenous social interactions (βJ > 1), herd behavior occurs
at the new steady state with some positive probability. Furthermore, the scale
of herd behavior depends on the strength of exogenous social interactions, and
the direction of herd behavior depends on the direction of the deviation.

Proof of Proposition 4: (See the Appendix)
Based on Proposition 4, the existence of strong exogenous social inter-

actions in the market is a necessary condition for the existence of herd behavior
at the new steady state. However, it is not a sufficient condition to generate
herd behavior at the new steady state in the financial market.

The bubble is defined as the deviation from the fundamental solution
x? = 0. The relationship between bubbles and social interactions is presented
in the next proposition:

Proposition 5. (Bubbles and Social Interactions)
Assume that
(1) All traders’ expectations of the mean choice level at time t are me

t = mt−1,
(2) All arbitrageurs are rational arbitrageurs,
(3) The initial state is at the steady state (m?, x?) = (0, 0),
(4) k < R and b 6= 0.
Then, assuming an extremely small bubble occurs at the steady state (m?, x?),
1. Without exogenous social interactions (J = 0), the bubble crashes at the
new steady state with probability 1.
2. With weak exogenous social interactions (βJ < 1), the bubble crashes at the
new steady state with probability 1.
3. With strong exogenous social interactions (βJ > 1), the bubble crashes at
the new steady state when there is a unique steady state. Otherwise, the bubble
will stay in the economy, and traders may engage in herd behavior at the new
steady state.
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Proof of Proposition 5: (See the Appendix).
Based on Proposition 4 and Proposition 5, the relationship between

bubbles, herd behavior and social interactions is described in the following
observation: when there exist strong exogenous social interactions (βJ > 1) in
the economy, an extremely small bubble occurring at the initial steady state
will, with some positive probability, result in herd behavior among investors
and a price bubble in the economy at the new steady state.

Thus, a bubble will crash in finite times with probability 1 when ex-
ogenous social interactions are weak and the noise traders extrapolate weakly,
namely, k < R. However, when there exists belief bias among traders (i.e.,
b 6= 0) and exogenous social interactions are strong (βJ > 1) in the economy,
even the noise traders will extrapolate only weakly, and a bubble may stay
at the new steady state and traders will engage in herd behavior with some
positive probability.

4 Concluding Remarks

The model presented in this paper explains the social interactions of investors
and provides a method for examining closely-related phenomena in financial
markets such as herd behavior and bubbles. In particular, it is found that herd
behavior can arise naturally when the strength of exogenous social interactions
is sufficiently great. Furthermore, an extremely small bubble may cause a
sufficiently large number of traders to engage in herd behavior when social
interactions among investors are strong.

The most important extension to this paper would be to extract the
exact strength of social interactions from economic data. In other words, it
would be useful to estimate J from financial data exactly. In addition, ex-
tending the belief type selection from a binary choice to a multiple choice
framework and relaxing the assumptions of homogeneous degrees of risk aver-
sion and homogeneous expected conditional variance would also constitute an
important direction for this paper in the future.

Appendix

Proof of Proposition 1.

Proof. (1) When βJ < 1, since bR > 0 and R > 1, then Jb < 0. Since βJ < 1,
βJm < 1. Then there exists a unique steady state (0, 0).
(2) When βJ ≥ 1, since bR > 0 and R > 1, then Jb < 0, and there exists
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a threshold HR, (which depends on k): (a) If βJm < 1, there exists only one
steady state (0, 0). (b) If βJm > 1 and R > HR, there exist three steady states.
One of these roots is (0, 0), one root is (m+,

m+b
R

), and one root is (m−,
m−b

R−km−
)

where m+ > 0 and m− < 0. (c) If βJm > 1 and R < HR, there exist five steady

states. One of these roots is (0, 0), three roots are (m1
+,

m1
+b

R−km1
+

), (m2
+,

m2
+b

R−km2
+

),

and (m3
+,

m3
+b

R−km3
+

), and one root is (m−,
m−b

R−km−
), where m1

+,m
2
+,m

3
+ > 0 and

m− < 0.

Proof of Proposition 2.

Proof. The profit of each type of trader at the steady state is

π?(ωit = 1) =
x?(1−R)((k −R)x? + b)

aσ2

π?(ωit = −1) =
−x?(1−R)((k +R)x? + b)

aσ2

Thus, π?(ωit = 1) = π?(ωit = −1) = 0 when x? = 0. Furthermore,

π?(ωit = 1)− π?(ωit = −1) =
x?(1−R)(2kx? + 2b)

aσ2

Then, when x? > 0, kx? + b > 0 since k, b ≥ 0. Thus π?(ωit = 1) − π?(ωit =
−1) < 0 since R > 1. Therefore, rational arbitrageurs (ωit = −1) make more
profit than noise traders (ωit = 1) at the steady state if the steady state asset
price is above its fundamental value (i.e., x? > 0).
On the other hand, when the steady state asset price is below its fundamental
value, that is, x? < 0, then kx? + b > 0 if x? > − b

k
, kx? + b < 0 if x? < − b

k
,

and kx? + b = 0 if x? = − b
k
. Thus, rational arbitrageurs make more profit

than noise traders if x? < − b
k
, rational arbitrageurs earn less profit than noise

traders if x? > − b
k
, and rational arbitrageurs make the same profit as noise

traders if x? = − b
k
.

Proof of Proposition 3.

Proof. Since all arbitrageurs are rational arbitrageurs, all local dynamic char-
acteristics are discussed around steady states:
(1) When βJ < 1, (m?, x?) = (0, 0) is a unique steady state based on Propo-
sition 1. Also tanh′(0) = 1. Therefore, βJm tanh′(0) < 1 since βJ < 1 and
Jb ≤ 0. Thus (m?, x?) = (0, 0) is a unique locally stable steady state.
(2) When βJ ≥ 1: (i) When b = 0: according to Proposition 3, there are 3
steady states (the same situations as bR = 0) and Jb = 0. Since tanh′(0) = 1,
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therefore βJm tanh′(0) = βJ tanh′(0) > 1 and so (m?, x?) = (0, 0) is locally
unstable. On the other hand, the other two steady states will be locally
stable if |km?| < R and locally unstable steady states if |km?| > R, since
βJ tanh′(βJm?) < 1 for the other two steady states. See the proof argu-

ments in Brock and Durlauf (2001b). (ii) When b 6= 0: since ∂ tanh(βJmm)
∂m

=
(βJm + βmJ ′m) tanh′(βmJm), where J ′m = ∂Jm

∂m
. According to Proposition 3,

(m?, x?) = (0, 0) is a unique steady state if βJm < 1. Furthermore, (0, 0) is
locally stable when (0, 0) is a unique steady state since βJm tanh′(0) < 1. On
the other hand, if there is more than one steady state in the economy, then
βJm > 1 and (0, 0) is a locally unstable steady state since βJm tanh′(0) ≥ 1.

The other steady states will be locally stable if |∂ tanh(βJmm)
∂m

| evaluated at m?

is less than 1 and |km?| < R. Otherwise, they will be locally unstable steady
states.

Proof of Proposition 4.

Proof. Based on Proposition 1, there is a unique steady state (m?, x?) = (0, 0)
if βJ < 1. Moreover, (0, 0) is also a locally stable steady state. Therefore,
according to the definition of herd behavior, it is impossible to have herd
behavior at the new steady state since m? = 0. On the other hand, based
on Proposition 3, there exist one or three or five steady states with strong
exogenous social interactions (βJ > 1). Furthermore, (m?, x?) = (0, 0) is a
locally unstable steady state if there is more than one steady state in the
economy, according to Proposition 3. |km?| < R since k < R, and thus

the other two or four steady states are the locally stable ones if |∂ tanh(βJmm)
∂m

|
evaluated at m? is less than 1. Therefore, at least one new steady state will be
m? which is different from zero when there is more than one steady state in the
economy. In other words, herd behavior occurs at the new steady state with
some positive probability. Furthermore, with β fixed, |m?| −→ 1 if J −→ ∞
and |m?| −→ 0 if J −→ 1

β
. Therefore, the scale of herd behavior depends on

the strength of the social interactions. Moreover, the sign of the new steady
state value m? is also determined by the sign of the expectation deviation.

Proof of Proposition 5.

Proof. (1) According to Proposition 1, (0, 0) is the unique stable steady state
if βJ < 1. Therefore, the bubble crashes in finite time and goes back to its
fundamental value. (2) When βJ > 1, (0, 0) will be a locally unstable steady
state with some positive probability, according to the proof of Proposition 1.
Then if there is an extremely small bubble at the initial locally unstable steady
state (0, 0), it will cause an extremely small expectation deviation from the
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steady state (0, 0). Thus, the new steady state will be (m?, m?b
R−km? ) with some

positive probability where m? 6= 0, according to Propositions 3 and 4. In other
words, with some positive probability, the traders will engage in herd behavior
and the price bubble will stay at the new steady state when the exogenous
social interactions are strong.
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