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Abstract

In order to calculate the worth of a coalition of players, the coalition needs to predict the a
of outsiders. We propose that, for a given solution concept, such predictions should be m
applying the solution concept to the “reduced society” consisting of the non-members. We illu
by computing ther-core for the case of Bertrand competition with differentiated commodities.
 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

Classical cooperative game theory studies situations where agreements ar
binding and enforceable (Aumann, 1989; Luce and Raiffa, 1957). The starting po
a characteristic function which specifies theworth of each coalition. The worth is wha
the coalition can achieve on its own without cooperating with outside players. If the
no externalities, i.e., if the payoffs to the members of a coalition do not depend on a
taken by non-members, then the worth can be defined without specifying the acti
non-members. But if externalities are present, then in order to calculate the wort
coalition one must predict the actions of non-members. This article considers the pr
of defining a characteristic function in the presence of externalities. No newsolution
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concept is proposed. Since the classical literature contains a number of solutions for
in characteristic function form, we think a basic step in the exploration of games
externalities should be to look at the predictions made by the classical solution conc

Suppose a set of players, denotedN, play a normal form game with transferable utili
It will be efficient for the grand coalitionN to form and choose a strategy profile whi
maximizes the joint surplus. But a coalitionS ⊆ N may refuse to cooperate with th
other players. Since there are externalities among the coalitions, to calculate the
of coalitionS we must predict what the players inN\S will do onceS has formed. Two
well-known ways of defining the worth of a coalition, i.e., of constructing a characte
function, are theα- and β-theories (Shubik, 1983, pp. 136–138). We introduce a
recursive method, called the r-theory. Once a method for defining the characte
function has been found, all the classical solution concepts such as the core, the bar
set, or the stable set can be applied. But a novel aspect of our theory is that the
of a coalition depends on which solution concept is used to predict the behavior
complement, i.e., the characteristic function will depend on the solution concept.

We assume utility is transferable and binding contracts can be written within coali
Given a coalition structure, we assume (following Ichiishi (1981) and Ray and V
(1997)) that each coalition acts as a “composite player” who maximizes the joint pay
its members, and we look at the Nash equilibria of the resulting normal form game
main concern is to study the formation of coalitions. The main assumption is that coa
S, if it forms, predicts that the players inN\S will behave in a way which is consiste
with the same solution concept that is proposed for the game itself (but now appl
the reduced game with player setN\S). The definition is recursive. Thus, for examp
the r-core is defined as follows. Fork = 1, we define the r-core fork-player societies
by individual payoff maximization. Suppose for anyk � 1, the r-core is defined for an
society which has no more thank players. Then the r-core for a(k + 1)-player societyN
consists of those payoff vectors that give each coalitionS ⊆N at least its worth. The wort
of a proper subcoalitionS ⊂ N is defined by using the r-core to predict the behavio
the players in the remaining “reduced society”N\S. This can be done becauseN\S has at
mostk members. The worth ofN itself is defined by joint payoff maximization.

A possible ambiguity in this definition is that the r-core forN\S need not be a singleton
In such cases we assume the players inS pessimistically expect that r-core outcome
N\S which is worst forS. Thus, coalitions are pessimistic subject to the constraint
outcomes must be consistent with the solution concept. In contrast, according toα-
theory coalitions are pessimistic without paying attention to such a constraint. That
α-theory defines the worth of a coalition to be what it can guarantee itselfregardless of
the actions of outsiders. In the r-theory, the actions of the outsiders must be con
with the solution concept. Since this makes coalitions less pessimistic about what th
achieve, the r-core is a subset of theα-core. (Since we will allow players in a coalition
use correlated strategies the distinction between theα- andβ-cores will not be important
and we will refer only to theα-core.)

Ray and Vohra (1997) pioneered the application of consistency to cooperative
with externalities. They proposed a new solution concept called Equilibrium Bin
Agreements (EBA). Since our focus is on sustaining cooperation in the grand coalitio
will mainly compare our predictions to the EBA for the grand coalition. In Ray and Voh
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theory a strategy vector for the grand coalition is blocked if there is a “leading perpet
S ⊂N that can induce another strategy vector under a finer coalition structure which
make itself better off. The new finer coalition structure must be stable in the sens
coalitions should not break apart due to the same type of internally credible (equilib
deviations. (It is assumed that coalitions can break apart but not re-merge, hence th
possible coalition structure is always by definition stable.) Also, if the deviation invo
other coalitions exceptS breaking apart, then all newly formed coalitions (except perh
one) must be “secondary perpetrators” who are better off than they would have
if the coalition had not deviated. We do not use the notions of leading and seco
perpetrators. Instead we propose a recursive definition for the worth of a coalition
can be used together with the classical solution concepts. Moreover, we will follo
classical approach to cooperative games by assuming that when coalitionS calculates
its worth, it doesnot worry about destabilizing deviationswithin S. This is because, b
assumption, coalitionS can sign an agreement which is fully binding and enforceable

A non-cooperative view of coalition formation with binding agreements is provide
Perry and Reny (1994). In their non-cooperative game, playeri can propose that playerj,
for example, signs a binding agreement to form the coalition{i, j }. After signing the
agreement himself, playeri hands it over to playerj. By signing, playerj can guarante
that{i, j } forms (as can playeri, after playerj has signed). Of course, the fact that{i, j }
can sign such a binding agreement does not mean that the players inN\{i, j } predict that
{i, j } will actually do so, even if the players inN\{i, j } should refuse to cooperate wi
playersi and j. In Section 6 we prove that, with three players, a version of Perry
Reny’s game gives a non-cooperative foundation for the r-core. The details of a ful
cooperative implementation are left for another paper. Several recent articles have
the non-cooperative equilibria of different extensive form games of coalition forma
Major contributions are due to Bloch (1995), Ray and Vohra (1999), and Yi (1997
practise one may have insufficient information about the appropriate extensive form,
cooperative and non-cooperative approaches may be useful complements.

In the model presented in this article, it will always be efficient for the grand coal
to form. However, in general partition function form games it need not be efficien
the grand coalition to form. For example, transactions costs might make large coa
costly to organize. In this case, the r-theory can still be used, and it may predict co
structures that are strict refinements of the grand coalition. The analysis of general p
function form games is avoided in this article in order to simplify the exposition.

2. Definitions

There is a setN = {1,2, . . . , n} of players who play a normal form gameΓ . Let Ai
denote playeri ’s set of pure strategies, and∆(Ai) his set of mixed strategies. For simplici
we assume|Ai |<∞, where|Ai| denotes the number of elements inAi . Playeri ’s payoff
in Γ is πi(a), wherea = (a1, . . . , an) ∈ A ≡× Ai. If σi ∈ ∆(Ai) is a probability
i∈N
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distribution overAi , thenσi(ai) denotes the probability of taking actionai . We extend
playeri ’s payoff function to mixed strategy profiles in the usual way:

πi(σ1, . . . , σn)=
∑
a∈A

∏
j∈N

σj (aj )πi(a).

Before playing the game, then players can organize themselves into coalitions.
result is a partitionPN = (S1, . . . , SK) of N, whereK is the number of coalitions. W
assume the possibility of unrestricted side payments within a coalition. There a
transfers across coalitions. ForSk ∈ PN , let tij � 0 denote the side payment playeri ∈ Sk
makes to playerj ∈ Sk . The net transfer received by playeri ∈ Sk is

ti ≡
∑
j∈Sk

(tji − tij ).

Playeri ’s utility if action profilea ∈A is taken and his net transfer isti isπi(a)+ ti . Within
the coalition transfers must balance:∑

i∈Sk
ti = 0. (1)

For a given partitionPN , letTPN denote the set of feasible net transfer profiles(t1, . . . , tn),

i.e., transfers that satisfy Eq. (1) for allSk ∈ PN . A partition of a subsetS ⊂ N is
denotedPS , andTPS denotes the set of feasible net transfers(ti)i∈S, i.e., transfers tha
satisfy Eq. (1) for allSk ∈PS .

A partitionPN induces a normal form gameΓ (PN) among the coalitions as follow
Each coalitionSk ∈ PN is a “composite player.” Composite playerSk has a pure strateg
setASk ≡×i∈Sk Ai, so a strategy specifies an action for each coalition member. De
a typical element ofASk by aSk . Since there is transferable utility within a coalition, ea
coalition should aim to maximize the sum of the payoffs of its members. The payo
composite playerSk is therefore the sum of the members’ payoffs:

πSk (aS1, . . . , aSK )≡
∑
i∈Sk

πi(aS1, . . . , aSK ).

Let σSk ∈ ∆(ASk ) denote a probability distribution over the setASk . The members o
coalitionSk can use correlated strategies, i.e., strategies in∆(ASk). Letσ = (σS1, . . . , σSK )

and (σ ′
Sk
, σ−Sk ) ≡ (σS1, . . . , σSk−1, σ

′
Sk
, σSk+1, . . . , σSK ). Extend the payoff function to

mixed strategies in the usual way:

πSk (σ )=
∑

aS1∈AS1

. . .
∑

aSK∈ASK
σS1(aS1) . . .σSK (aSK )πSk (aS1, . . . , aSK ).

We identify the original gameΓ with Γ ({1}, {2}, . . . , {n}), i.e., it is the game wher
each coalition is a singleton.

Let E(PN) denote the set of Nash equilibria of the gameΓ (PN). That is,σ ∈ E(PN)
iff σ ∈×Sk∈PN ∆(ASk ), and for everySk ∈PN and everyσ ′

Sk
∈∆(ASk),

πSk (σSk , σ−Sk )� πSk
(
σ ′
Sk
, σ−Sk

)
.

Following Ichiishi’s (1981) notion of non-cooperative play between coalitions, we
assume that if the coalition structure isPN, the outcome will be some strategyσ ∈E(PN).
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3. The r-theory

For any S ⊆ N, let 2S denote the set of all subsets ofS, and letRS denote the
payoff space pertaining toS. Let V : 2S → R be acharacteristic function for the reduced
society S, i.e., a function which assigns a valueV (T ) to eachT ⊆ S. Let VS denote the
set of all such functions. Apresolution for society S is a correspondenceGS :VS → RS.

To illustrate, we give two examples of presolutions.

Example A. The core presolution:

GS(V )=
{
{ui}i∈S :

∑
i∈T

ui � V (T ) for all T ⊆ S

}
. (2)

Example B. The Zhou (1994) bargaining set presolution. Here{ui}i∈S ∈ GS(V ) if and
only if the following is true. For eachT ⊆ S, if we can find a vector{yk}k∈T so that for
everyk ∈ T

uk < yk and
∑
k∈T

yk = V (T )

then there must exist a coalitionU ⊆ S and a vector{zh}h∈U such that

U\T �= ∅, T \U �= ∅, and U ∩ T �= ∅,
uh � zh, for all h ∈U\T , yh � zh, for all h ∈ U ∩ T , (3)

and ∑
h∈U

zh = V (U).

In our theory, when a coalitionU ⊆ N calculates its “worth,” it will use som
presolutionGN\U , together with feasibility constraints, to predict the outcome of
“reduced game” made up of the players in theN\U. In order to useGN\U to solve the
reduced game, coalitionU needs to know the worth of every coalitionT ⊆ N\U, i.e., it
needs to know a characteristic functionV ∈ VN\U . We will now show how to derive suc
a characteristic function. As a first step we assume a presolutionGS has been exogenous
assigned to everyS ⊆N.

Fix a coalition S ⊆ N, and consider the reduced game among the players iS,

given that the coalition structure of the complement is given by the partitionPN\S . Let
C(S | S,PN\S) denote the set of strategies that can possibly be played in this situ
To determine this set, we will first estimate the worth of each subcoalitionT ⊆ S in
this reduced game, denotedV (T | S,PN\S). Then, we will apply the exogenously give
presolutionGS. We do this recursively in a consistent way.

For any i ∈ N , and any coalition structurePN\{i} for the players inN\{i}, the set
of strategies that can possibly be played in the gameΓ ({i},PN\{i}) is the set of Nash
equilibria of this game, so

C
({i} ∣∣ {i},PN\{i}

)≡E
({i},PN\{i}

)
. (4)
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Now make the induction hypothesis that we have defined a set of possible stra
C(S | S,PN\S) for all S such that 1� |S| � s − 1, and all partitionsPN\S of N\S.
ConsiderS such that|S| = s. Define

V (S | S,PN\S)≡ min
{
πS : πS = πS(σ) for someσ ∈E(S,PN\S)

}
(5)

and for any non-empty proper subsetT ⊂ S define

V (T | S,PN\S)
≡ min

{
πT : πT = πT (σ) for someσ ∈C(S\T | S\T ,T ,PN\S)

}
. (6)

The right-hand side of (6) is well-defined by the induction hypothesis, becauseS\T is
a non-empty set which has strictly fewer players thanS, and(T ,PN\S) is a partition of
N\(S\T ). We will calculateC(S | S,PN\S) by using the (exogenously given) presoluti
GS together with the characteristic function forS defined by:

V (T )= V (T | S,PN\S), for all T ⊆ S, (7)

whereV (T | S,PN\S) is given by Eq. (5) forT = S, and by Eq. (6) forT ⊂ S. So let
C(S | S,PN\S) be the set of strategiesσ such that, for some partitionPS of S and some
net transfer profile(ti)i∈S ∈ TPS , (8) and (9) hold:

σ ∈E(PS,PN\S), (8){
πi(σ )+ ti

}
i∈S ∈GS(V ), (9)

whereV ∈ VS is defined by Eq. (7). Notice that in the definition ofC(S | S,PN\S) we
allow coalition S to divide itself into a non-trivial partitionPS . (For example, in the
quantity setting Cournot oligopoly studied in Huang and Sjöström (1998), the firm
a coalitionS �= N may prefer to break apart, because the output of the firms inN\S is
lower whenS is divided into several firms than whenS is one big firm.)

We have now definedC(S | S,PN\S) for S such that|S| = s. Continuing this way,
we can defineC(S | S,PN\S) for larger and largerS. The final step occurs whenS = N.

Although the method in the final step is the same as in the preceding steps, it may be
to describe this last step explicitly. First, to calculateV (N |N) according to (5), notice tha
E(N) is simply the set of strategies that maximize the joint payoffs of the players iN ;
thus

V (N |N)≡ max

{∑
i∈N

πi(σ ): σ ∈∆(A)
}
. (10)

Strictly speaking,V (N |N) should be writtenV (N |N,PN\N) to conform to (5). But
PN\N is the trivial partitioning of the empty set sinceN\N = ∅, and to simplify notation
we writeV (N |N) instead ofV (N |N,PN\N).

For any non-empty proper subsetT ⊂N defineV (T |N) according to (6), by

V (T |N)≡ min
{
πT : πT = πT (σ) for someσ ∈C(N\T |N\T ,T )}. (11)

Finally, let

V (T )= V (T |N), for all T ⊆N. (12)
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Then,C(N | N) is the set of strategiesσ ∈ ∆(A) such that there exists a net trans
profile (t1, . . . , tn) ∈ TN such that:{

πi(σ )+ ti
}
i∈N ∈GN(V ), (13)

whereV ∈ VN is defined by Eq. (12).
In payoff space, the solution to the game is the set of payoff vectors that c

expressed as(π1, . . . , πn) = (π1(σ ) + t1, . . . , πn(σ ) + tn), for someσ and (t1, . . . , tn)
that satisfy (13). For example, ther-core is the set of payoff vectors that can be expres
as (π1, . . . , πn) = (π1(σ ) + t1, . . . , πn(σ ) + tn), for someσ and (t1, . . . , tn) that satisfy
(13), where at each step of the recursive argument we use the core presolution (i.eGS is
always given by (2)). Ther-bargaining set is defined in the same way, but replacing
core presolution by the Zhou bargaining set presolution.

Notice also that if we apply the core (say) presolution to all societies, we may
about the r-core for a reduced society in a natural way. More precisely, for anyS ⊂ N,

the r-core forS given the partitionPN\S is the set of payoff vectors that can be expres
as(πi)i∈S = (πi(σ )+ ti)i∈S, for someσ and(ti)i∈S that satisfy (8) and (9) (whereGS is
given by (2)).

In contrast to our theory, in theα-theory coalitions apply maximal pessimism (Shub
1983, pp. 136–138). The worst that can happen to coalitionS is that the complementN\S
forms and “maximins”S. Hence, in theα-theory the worth ofS is

V α(S)= max
σS∈∆(AS)

min
σN\S∈∆(AN\S)

πS(σS, σN\S). (14)

Now consider a payoff vector(π1, . . . , πn) = (π1(σ ) + t1, . . . , πn(σ ) + tn), whereσ ∈
∆(A) and(t1, . . . , tn) ∈ TN . To take the core as an example,(π1, . . . , πn) is in theα-core
iff
∑
i∈S πi � V α(S) for all S ⊆ N. But (π1, . . . , πn) is in the r-core iff

∑
i∈S πi � V (S)

for all S ⊆N, whereV is defined by our recursive procedure. CertainlyV (S)� V α(S), so
if the r-core exists then it must be a subset of theα-core. The characteristic function defin
by (14) was introduced by von Neumann and Morgenstern (1944). They showed thV α

is superadditive. In contrast, our characteristic functionV need not be superadditive. F
example, superadditivity fails in the Cournot oligopoly discussed by Huang and Sjö
(1998).

The r-solution suffers from two kinds of existence problems. First, it may happen
C(N\T | N\T ,T ) is empty for someT ⊂ N, in which case there is no prediction th
coalitionT can make about the behavior of its complement. ThenV (T )= V (TN) cannot
even be defined as in (11). In this case we may say that the r-solution does not exis
we are not able to define characteristic functions in a consistent way for all reduced
eties. Second, even ifV (T ) is well defined for eachT ⊆N , it may still not be possible to
satisfy (13). For example, in the case of the r-core, we may be able to define the funcV,
but it may not be balanced. In such a case we may say that the r-solution exists but is

Thus, for the r-solution to exist, it must exist and be non-empty for every reduce
ciety T ⊂ N, or else the complementN\T cannot calculate its worth. This requireme
may be too strong. The following argument was made by D. Ray. SupposeN = {1,2,3,4},
and consider the reduced societyT = {2,3,4}. Suppose we have recursively calculated
worth of T and all its subcoalitions, using the core presolution, and found thatT itself is
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worth six, and any of the two player sub coalitions{2,3}, {2,4}, and{3,4} is worth five.
Player 2, 3 or 4 on his own is worth zero. Then, the r-core of the reduced societyT is empty,
because in this society it would be efficient for all ofT to cooperate and divide up the s
but there is no way to satisfy all two-player subcoalitions ofT (each two-player subcoal
tion would insist on at least five). Therefore, player 1 cannot make any prediction wh
consistent with the r-core about what his complementN\{1} = T would do if he went on
his own. Hence he cannot calculate his worth, and the r-core of this game does not ex
suppose player 1 has a dominant strategy that gives him five no matter what the othe
ers do. It would seem reasonable to define the worth of player 1 to be five, and theα-core
does this, but not the r-core. It is a topic for future research to develop solution concep
relax the requirement of existence of a non-empty solution set for each reduced socie
anonymous referee suggested that by defining a Shapley value presolution we cou
erate a prediction even when the r-core does not exist.) We note, however, that in th
cooperative approach of Perry and Reny (1994), discussed in Section 6, the requ
that the r-core is non-empty for every reduced society corresponds to the requireme
an equilibrium exists in every subgame, even those that are not reached along the
rium path. Thus, the requirement has a natural interpretation in the non-cooperative s

Remark 1. There are cases when it is not reasonable to expect a particular coalit
form. Fortunately, this does not matter for the r-core. To illustrate, supposen = 4, and
suppose in our analysis of the r-core we have derived the following characteristic fun
V (N) = 20, V ({1,2,3}) = 7, V ({1,2}) = V ({1,3}) = V ({2,3}) = 6, and V (S) = 0
otherwise. The payoff vectorx = (1,1,1,17) can be blocked by coalitionS = {1,2,3}.
However, ifS forms, how would they divide up the 7? At least some pair{i, j } ⊂ S would
get strictly less than six, but playersi andj would not agree to this because they can bl
x on their own and takeV ({i, j })= 6. In the terminology of Ray (1989),{1,2,3} does not
credibly blockx = (1,1,1,17).On the other hand, any two-player subcoalition of{1,2,3}
can credibly blockx. Ray (1989) showed that this situation is general. That is, whene
coalitionS ⊂N blocks a payoff vectorx and the blocking is not credible, then there ex
a subcoalitionT ⊂ S that credibly blocksx. Thus, restricting attention to credibly blockin
coalitions would not make any difference to the r-core.

4. An example

In this section we provide an example to illustrate the role of binding agreem
Player 1 chooses a row, player 2 chooses a column, player 3 chooses a matrix. N
players 1 and 2 are symmetric.

L R

$ m r $ m r

U 5, 5, 5 −10, 1, 9 2, 6, −1 U 7, 7, 0 0, 0, 0 0, 8, 0
M 1, −10, 9 −11, −11, 21 1, −9, 9 M 0, 0, 0 0, 0, 0 0, 1, 0
D 6, 2, −1 −9, 1, 9 4, 4, −1 D 8, 0, 0 1, 0, 0 6, 6, 0
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We first derive theα-core and the r-core, usingV α(S) andV (S) to denote the worth o
coalitionS according to theα- and r-theories, respectively. StrategyD is strictly dominant
for player 1, strategyr is strictly dominant for player 2, and player 3’s best response ag
Dr is R. Thus, for the finest coalition structure({1}, {2}, {3}) we predict the outcom
(D, r,R) with payoffs(6,6,0).

The grand coalitionN = {1,2,3} maximizes its joint payoff by choosingU$L. Thus,
V α(N) = V (N) = 15. What is the worth of coalition{2,3}? The greatest joint payo
players 2 and 3 can get is ten, and by playingmL they get tenregardless of player 1’s
action. Thus,V α({2,3}) = V ({2,3}) = 10. By symmetry,V α({1,3}) = V ({1,3}) = 10.
For coalition{1,2}, U$ is a strictly dominant strategy which gives them at least 10
V α({1,2})= 10. Since player 3’s best response againstU$ is L, in fact alsoV ({1,2})=
10.

Next, consider the singleton coalition{3}. Player 3 can guarantee himself at most 0, by
playingR, soV α({3})= 0. To calculateV ({3}), player 3 has to predict how players 1 an
would behave if player 3 refuses to cooperate with them. Would 1 and 2 stay toget
break up? If coalition{1,2} forms, they get 10 as argued above. On the other hand, if p
1 refuses to cooperate with player 2, the result is the finest coalition structure({1}, {2}, {3})
in which case player 1 gets 6. Similarly, player 2 can get 6 by separating from 1. Since
6+ 6> 10, the r-core prediction for the reduced society{1,2} is that players 1 and 2 spl
up. The outcome will be(D, r,R), soV ({3})= 0.

For the other two non-trivial reduced societies,{1,3} and{2,3}, the r-core predicts tha
the coalition stays together. Hence, we calculateV ({1})= V ({2})= −9. Also,V α({1})=
V α({2})= −9.

SinceV α(S) = V (S) for all S, theα-core equals the r-core in this example. In eit
case, the payoffs must satisfy:

π1 + π2 + π3 = 15, π1 + π3 � 10, π2 + π3 � 10, π1 + π2 � 10,

π1 � −9, π2 � −9, π3 � 0.

The unique payoff in the r-core is, therefore,(5,5,5).
Notice that, since each two-player coalition canguarantee itself ten, ten is their worth

according to theα-theory. Thus, each pair of players must get at least ten in theα-core.
Since we allow for less pessimistic expectations, it must be true thatV ({i, j })� V α({i, j }).
In fact, in this example, a two-player coalition cannot realistically hope formore than ten,
so its worth according to the r-theory is ten as well. There are EBA for the grand coa
that give two-player coalitions much less than ten, however, as we now discuss.

According to Ray and Vohra (1997), every coalition has to worry about destabil
internal deviations, which can prevent a coalition from forming. In this example
set of EBA for the grand coalition consists of all payoff vectors(π1,π2,π3) such that
π1 +π2 +π3 = 15, π1 +π3 � 10, π2 +π3 � 10, π1 � −9, π2 � −9, π3 � 0. Thus, there
is an EBA for the grand coalition which gives minus nine each to players 1 and 2, and
three to player 3. While a single player (either player 1 or 2) who leaves the grand co
expects only−9, a single player who leaves the coalition{1,2} expects 6. This is becaus
if coalition {1,2} breaks up then neither player is expected to merge with player 3, s
the result will be the finest coalition structure({1}, {2}, {3}) with outcome(D, r,R). Since
coalition{1,2} only expects 10, and 6+ 6> 10, the coalition{1,2} is not internally stable



C.-Y. Huang, T. Sjöström / Games and Economic Behavior 43 (2003) 196–213 205

er
ate

rson
either

e
strong.
—
a
inding
ible in
r

n
om
to
ince
and

37)).
ator
king

by an

ow
t a
off
the

he
heir
binding

r
imply
s out

d hurt
east,
. In the
k it

ition
as in
rther.
and is not allowed to block(−9,−9,33) according to the theory behind the EBA. Neith
can any playeri ∈ {1,2} block (−9,−9,33) on his own, because refusing to cooper
with the other two players would yield him only−9 (recall that playeri ∈ {1,2} fears that
if he defects from the grand coalition then the other two players will form a two-pe
coalition). Thus, according to the EBA, players 1 and 2 have no blocking power,
jointly or individually.

We agree with Ray and Vohra thatindividually players 1 and 2 are weak. However, w
argue that if binding contracts are possible, then together players 1 and 2 are quite
They can and should insist on getting at leastV ({1,2})= 10, because—by assumption
they can sign a binding contract whichguarantees ten. If (−9,−9,33) is proposed as
payoff vector for the grand coalition, then players 1 and 2 can do better by signing a b
agreement which gives them five each. (Notice in passing that such blocking is cred
the sense of Ray (1989) because each playeri ∈ {1,2} prefers to signthis agreement rathe
than trying to block on his own—recall thatV ({i})= −9.)

In this example, even if a break-up of coalition{1,2} results in the finest coalitio
structure and strategy profile(D, r,R), then this should not prevent players 1 and 2 fr
blocking a payoff vector such as(−9,−9,33). Indeed, if players 1 and 2 can conspire
induce(D, r,R), then their blocking power in the grand coalition is even increased, s
(D, r,R) gives them six each. A modified version of EBA would indeed allow players 1
2 to induce(D, r,R), by treating both as leading perpetrators (cf. (Vohra, 1997, p. 1
However, the modified EBA will still rule out blocking by a single leading perpetr
consisting of one internally unstable coalition. In contrast, the r-theory allows bloc
regardless of the internal instability of the blocking coalition.

To see the distinction more clearly, consider a modified example suggested
anonymous referee. Let us change the payoffs for(D, r,R) to (10.1,0.1,−0.75). Then,
(D, r,R) is still the unique Nash equilibrium for the finest coalition structure. But n
the internal instability of coalition{1,2} is more serious for player 2, who fears tha
break-up will leave him with 0.1. Now there is an EBA for the grand coalition with pay
vector(1,1,13), even if we use Vohra’s (1997) modified definition of EBA. Indeed, by
logic of EBA, player 2 will not join together with player 1 to block(1,1,13), since player
2 fears being “double-crossed” and getting 0.1. In contrast, according to the r-theory t
coalition {1,2} will block any agreement in the grand coalition where the sum of t
payoffs is less than ten, even in the modified example, because they can sign a
contract which guarantees them ten. It is true that player 2 might suffer if coalition{1,2}
breaks apart. But if player 2 joins the coalition{1,2} only after having obtained playe
1’s signature on a contract, then there is no downside risk for player 2. Player 2 s
has to hold on to his copy of the contract. By assumption, the binding contract rule
any unilateral defection by player 1. It is especially in cases where a break-up woul
some coalition member that the possibility of binding contract is crucial. At the very l
a binding agreement would eliminate break-ups that are not supported unanimously
modified example, coalition{1,2} will not break up by unanimous consent, so we thin
is reasonable to assign the value of ten to this coalition.

The notion that internal instability should not impede the blocking ability of a coal
is also implicit in Perry and Reny’s (1994) non-cooperative game. In their model,
ours, coalitions can sign binding contracts which prevent members from defecting fu
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Thus, it is not surprising that a version of Perry and Reny’s (1994) game can be us
a non-cooperative implementation of the r-core (see Section 6).

Remark 2. In general, when there are many possible predictions about the behavio
reduced society, the r-theory assumes a degree of pessimism. Ray and Vohra (1997)
players are optimistic, in the sense that when a coalition deviates it can name th
equilibrium under the best coalition structure it can induce. In the example in this se
however, there is a unique consistent prediction for each reduced society, so op
versus pessimism is not an issue. An “optimistic r-core” would also predict(5,5,5).

Remark 3. In this example ther-bargaining set consists of all payoff vectors that satisfy

π1 + π2 + π3 = 15, π1 � −9, π2 � −9, π3 � 0,

and eitherπ1 = π2 � 5, π2 = π3 � 5 or π1 = π3 � 5. (For calculations, see (Huang a
Sjöström, 1998).) Theα-bargaining set is the same as the r-bargaining set.

5. Bertrand competition with differentiated commodities

There aren symmetric price-setting oligopolistic firms, each with constant margina
average cost equal to zero. Each firm produces a unique product. Firmi ’s demand function
is

qi(p1, . . . , pn)= 1− pi − r

(
pi − 1

n

n∑
j=1

pj

)
,

wherepi is the price set by firmi, qi is the quantity demanded of firmi ’s product, and
r > 0 is a parameter of substitutability. The market is more competitive, the greater.
The goods become perfect substitutes asr → ∞. Notice that for anyr > 0, the grand
coalitionN has a unique joint payoff maximizing strategyσm = (1/2,1/2, . . . ,1/2). That
is, each firmi should charge the monopoly pricepi = 1/2. With monopolistic pricing,
the total industry profit isn/4. We consider the r-core of this game. Our result is that
monopolistic outcome can be achieved by the grand coalition if and only ifn � 9 andr
exceeds a critical valuêr(n). The functionr̂(n) is increasing inn because it is harder t
sustain cooperation when there are more players. Notice that the symmetry of the
implies that transfers will not be of any value in supporting the grand coalition.

For the grand coalition to be sustained, no coalition should profit from a deviation
means no coalitionS should be able to profit by free riding on the collusion of other fir
while S itself captures a larger market share. If goods are very close substitutes, th
riding is unattractive because a defection byS triggers severe competition. Thus, whenr
is large the potential for ruinous competition should make it easier for the firms to co
Recall that more competitive market conditions also help firms collude in the theo
repeated games (Shapiro, 1989).

Deneckere and Davidson (1985) studied the incentives for mergers in the differen
Bertrand model, assuming all other non-merging coalitions stay fixed. Notice tha
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game has “positive externalities” in the sense that a merger of two firms reduc
competition and thus benefits outside firms. Deneckere and Davidson derived the fol
formulas. Suppose in a market withn firms a merger of sizem happens. This leads t
a merged entity consisting of thesem players, andn − m outside firms playing non
cooperatively. The per member profit of the merged firm is

πci (m) =
[

2n+ r(2n− 1)

4n+ 2r(3n−m− 1)+ r2((n−m)/n)(2n+m− 2)

]2

×
[
1+ r

n−m

n

]
(15)

and each outsider earns profit equal to

π0
i (m) =

[
2n+ r(2n−m)

4n+ 2r(3n−m− 1)+ r2((n−m)/n)(2n+m− 2)

]2

×
[
1+ r

n− 1

n

]
. (16)

For any given coalition structure, a merger of two coalitions will benefit all outsid
Deneckere and Davidson showed that the game also has a superadditive propert
sense that for any given coalition structure, a merger of two coalitions results in a
after-merger profit for them which is greater than the sum of their pre-merger profits.
they showed:

Proposition 1. Let {B1,B2, . . . ,Bk} be a partition of N. Let π(Bi ∪ Bj) be the profit of
Bi ∪ Bj after a merger of Bi and Bj occurs (and nothing else happens to the coalition
structure) and let π(Bi) denote the pre-merger profits. Then π(Bi ∪Bj ) > π(Bi)+π(Bj).

Proposition 1 implies that it is never efficient for a coalition to break up. (In contra
the Cournot model analyzed in Huang and Sjöström (1998) it may be to the advanta
coalitionS ⊂N to break apart, as it will reduce the output of the complement.) This im
that if the r-core exists and is non-empty in reduced societyS, then coalitionS must form.
There cannot exist a finer r-core partitionPS �= {S} because the definition of the r-co
implies that the sum of the payoffs for the players inS under the finer partitionPS would
have to at least equal what they could get by sticking together, but this is impossible i
of Proposition 1. This result greatly simplifies the calculation of coalitional values in
reduced society. Deneckere and Davidson also showed that in any given coalition str
a member of a large coalition earns strictly less than a member of a small coalition:

Proposition 2. Let {B1,B2, . . . ,Bk} be a partition of theN with n1 � n2 � · · · � nk , where
ni = |Bi |. Then πi � πi+1 (with equality if and only if ni = ni+1), where πi denote the per
member profit of coalition Bi .

This result implies that if the r-core exists, the most difficult blocking constraint
pertain to singleton coalitions. But notice that to verify that the r-core is non-empt
must verify that every reduced society has a non-empty r-core. In effect, we must



208 C.-Y. Huang, T. Sjöström / Games and Economic Behavior 43 (2003) 196–213

,

re for

lity

layer
a
rms

for

ive to
and
ate
it
t there

e
hen

ore).
ced
n

,

that in any reduced societyS, given any coalition structurePN\S for the complement
no single firm inS wants to deviate from coalitionS if it thinks the complementS\{i}
will stick together (as we have argued, this is the only belief consistent with the r-co
reduced societyS\{i}). Definer̂(n) as follows:

r̂(1)= r̂(2)= r̂(3)= 0, r̂(4)= 1.86, r̂(5)= 4.55, r̂(6)= 8.12,

r̂(7)= 12.56, r̂(8)= 19, r̂(9)= 43.75, r̂(n)= +∞ if n� 10.

Proposition 3. The r-core exists and is non-empty in the n-firm Bertrand model with
differentiated commodities if and only if r � r̂(n).

We can express Proposition 3 in an alternative way: for given level of substitutabir,
there exists a critical numbern̂(r) (increasing inr, with limr→∞ n̂(r) = 9) such that the
r-core exists if and only ifn� n̂(r).

The proof of Proposition 3 consists of straightforward calculations. In a two-p
society, free-riding cannot possibly pay. Forn = 3 we only need to make sure that
single firm will not defect from the grand coalition (assuming the remaining two fi
stick together). This is true if and only if what the defector gets,π0

i (2), is no bigger than
the per-capita monopoly profit 1/4. Straightforward calculations show that this holds
all r > 0. Thus, the r-core exists and is non-empty for anyr > 0 if n� 3.When 4� n� 7,
the most difficult constraint to satisfy is that a single firm should not have an incent
defect from the grand coalitionN . Calculations show that there is no such incentive if
only if r � r̂(n). When 8� n� 9, the most difficult free rider constraint turns out to rel
to a single firm in a reduced society withn− 1 players (recall that for the r-core to exist,
must exist and be non-empty in every reduced society). Again, calculations show tha
is no such incentive if and only ifr � r̂(n).

Finally, supposen� 10. Consider a reduced societyS with |S| = 8 players, and suppos
the outsiden− 8 � 2 players are all split into singleton coalitions. If the r-core exists t
any firm i ∈ S who defects fromS must expect the complementS\{i} to stick together
(Proposition 1 implies that it is the only possible belief that is consistent with the r-c
The free riding payoff would beπ0

i (7) as given by (16). On the other hand, if the redu
societyS forms a coalition of 8 players, given all outsiden − 8 players are singleto
coalitions, the per capita payoff for coalitionS is πci (8) as given by (15). Hence, firmi can
block cooperation within the reduced societyS if π0

i (7) > π
c
i (8), which, by (16) and (15)

is equivalent to

(
2n+ r(2n− 7)

)2[1+ r
n− 1

n

](
4n+ 2r(3n− 9)+ r2

(
n− 8

n

)
(2n+ 6)

)2

>
(
2n+ r(2n− 1)

)2[1+ r
n− 8

n

]

×
(

4n+ 2r(3n− 8)+ r2
(
n− 7

n

)
(2n+ 5)

)2

. (17)
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One can calculate that (17) is satisfied if and only if(
28n5 + 84n4 + 27538n2 + 94983n− 7189n3 − 103096

)
r7

+ (
420n5 + 99498n2 + 61271n− 1792n4 − 27489n3)r6

+ (
1652n5 + 69216n2 − 7868n4 − 28756n3)r5

+ (
2716n5 − 10024n4 − 8456n3)r4 + (

2016n5 − 4032n4)r3 + (
560n5)r2

> 0. (18)

Given n � 10, all polynomials in the parentheses in (18) are positive. Therefore
any r > 0, (18) holds, soπ0

i (7) > π
c
i (8). Hence there is no outcome in the r-core for

8-person reduced societyS, so no characteristic function can be defined. Hence, ifn� 10
then the r-core does not exist for anyr.

The negative result forn � 10 may be surprising since whenr is large the firms have
strong incentives to merge into a monopoly, and any defection from the grand co
triggers cut-throat competition. So one may have expected cooperation to be poss
sufficiently larger. But while it is true that a firm can never benefit from defecting from
grand coalition whenr is sufficiently large, the key point is that for the r-core to exist a
be non-empty it must exist and be non-empty for all coalition structures. Whenn � 10,
then (as we just argued) the r-core is empty for an 8-player reduced societyS given that
the complementN\S is divided into singletons. This can be explained as follows.
8-player coalitionS maximizes its joint profit by sticking together. However, even if th
stick together there will be at least three competing firms (at least two singleton coa
in N\S, plus the merged entityS) playing non-cooperatively, which is enough to dr
profits down close to zero whenr is large. Thus, there is not much surplus to be distribu
among the members ofS. A firm i ∈ S that considers a defection fromS has to compare
the payoff it gets in two very competitive situations, one where it has defected (andS\{i}
sticks together) and one where it has joinedS in competition with the outside firms. I
fact, (18) shows that the surplus available toS is not big enough to prevent firmi from
defecting. Even though free riding on the grand coalitionN does not pay when the mark
is very competitive, itdoes pay to free ride on large subcoalitions when most of the pr
are anyway destroyed by competition with outsiders. For this reason, the r-core m
exist even whenr is very large.

In contrast, for anyn there exists̄r(n) < ∞ such that an EBA exists for the gran
coalition wheneverr > r̄(n). Indeed, an equal share of the monopoly profit is worth 1/4,
regardless ofr. If firm i defects from the grand coalition, the best it can hope for is
the complementN\{i} stays together, but even in this best of all possible cases firmi ’s
profit is close to zero forr large enough. For even if there are only two firms,{i} and the
composite firmN\{i}, profits are almost completely dissipated if the goods are very c
substitutes. Thus, no leading perpetrator can possibly gain from a defection ifr is large
enough, soσm (together with zero transfer payments) is an EBA. Thus, there can
an EBA for the grand coalition even though the r-core does not exist (in particular, t
true whenn � 10). On the other hand, in this application any EBA payoff for the gr
coalition belongs to theα-core, which is always non-empty (cf. (Ray and Vohra, 19
Remark 6.1)).
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Notice that, unlike the example in Section 4, the difference between the EBA an
r-core has nothing to do with the internal stability of blocking coalitions, since the argu
here depends completely on blocking by singletons (which are by definition inter
stable). Instead, it depends on our insistence that the r-core exists for every possible r
society. Again, this insistence has a natural counterpart in the subgame perfect equi
of Perry and Reny’s (1994) non-cooperative model, where a continuation equilibrium
exist for every possible subgame.

If the r-core does exist and is non-empty in this application, then there exists an EB
the grand coalition. For if the r-core is not empty then clearly it containsσm together with
a zero net transfer profile (by symmetry). By definition of the r-core, no coalitionS ⊂ N

can block this outcome. That is, eachS gets at leastV (S), whereV (S) is calculated unde
the expectations that the complementN\S sticks together (this is the only possible bel
about the r-core outcome in reduced societyN/S onceS has left, in view of Proposition 1)
But then it is clear thatσm together with a zero net transfer profile is also an EBA. Inde
the best any leading perpetratorS can hope for is for the complement to stick together
payoff decreases when the complement breaks up), but not even this situation mS
better off if the r-core is non-empty. Hence, we have:

Proposition 4. In the differentiated Bertrand model, if the r-core exists and is non-empty
then σm together with a zero net transfer profile is an equilibrium binding agreement for
the grand coalition.

This result does not say anything about the complete set of r-core payoff vecto
fact, when the r-core exists the most difficult blocking constraint pertains to sing
coalitions, and both the r-core and the EBA payoffs for the grand coalition have to s
this constraint. Thus, in this application, any r-core payoff is an EBA payoff for the g
coalition, while on the other hand (as argued above) an EBA can exist even if the
does not exist.

If we use the Zhou bargaining set as the presolution instead of the core, we get e
the same result: the cutoff thresholdr̂(n) is also the threshold for the r-bargaining set
be non-empty. This is so because the binding constraints relate to defections by sin
coalitions for which there is no difference between the core and bargaining set.

6. Non-cooperative implementation

Perry and Reny (1994) studied the non-cooperative implementation of the co
a given characteristic functionV . In their model, proposals to form a coalition a
made anonymously and consist of a coalitionS and a set of payoffs(xj )j∈S such that∑
j∈S xj � V (S). Time is continuous. At any timeτ � 0 a player can make a propos

accept a current proposal, be quiet, or leave. If a current proposal((xj )j∈S, S) is accepted
by all members ofS, then it becomesbinding and coalitionS is said to have formed. In thi
case, any playeri ∈ S can choose to “leave” and consumexi , in which case every othe
memberj ∈ S must also “leave” and consumexj . If S has formed, then a new propos
cannot be directed to a non-empty strict subset ofS, but (as long as the members ofS have
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not “left”) a proposal can be directed to asuperset T ⊇ S. If a new proposal is madebefore
the current proposal has become binding, then the current proposal is void. The
to a player who never leaves is low enough that, following any history, any continu
equilibrium will be such that all players will leave in finite time. (Playeri cannot leave
before accepting a proposal, but he can always propose(xi, {i}) wherexi = V ({i}), accept,
and then leave and consumeV ({i}).) Perry and Reny make the technical assumption
for any timeτ > 0 and for any history up toτ, there isε > 0 such that each playeri is
quiet in the open intervals(τ − ε, τ ) and (τ, τ + ε). They consider stationary subgam
perfect equilibria (SSPE), where a player’s action can only depend on the set of p
remaining, the existing set of binding proposals, the current proposal, and which p
have accepted it. They show that only core payoff vectors can be SSPE payoff vecto
will consider a slightly modified version of Perry and Reny’s game which is appropria
the presence of externalities.

The modification we need is that a proposal to form coalitionS cannot specify payoff
directly. Instead, a proposal((αi)i∈S, S) specifies a vector of non-negativeshares (αi)i∈S
that sum to one:∑

i∈S
αi = 1. (19)

If S forms and playeri ∈ S decides to “leave,” then the members ofS must “sit on the side
line” until all players inN have “left.” Suppose the last player leaves at timeτ ∗ (we will
haveτ ∗ <∞ in equilibrium since never leaving gives a very low payoff by assumpti
Then at timeτ ∗, each player is a member of a unique coalition, i.e., there is a par
PN = {S1, . . . , SK } of N . Then the gameΓ (PN) is played. For eachS ∈ PN, a member
of S whose share is strictly positive choosesσS ∈∆(AS) on behalf of his coalition. If the
resulting strategy profile isσ , then each playeri ’s final payoff isαi

∑
j∈S πj (σ ), where

αi � 0 is playeri ’s share of the payoff of the coalition of which he is a member (i ∈ S).
Notice that any player withαi > 0 is motivated to maximize the joint payoff

∑
j∈S πj (a).

Thus, in subgame perfect equilibrium,σ = (σS1, . . . , σSK ) ∈E(PN).
If a proposal((αi)i∈S, S) becomes binding, then eitherS will be a part of the final

coalition structure, orS will by unanimous consent be absorbed into some larger coal
T ⊃ S. The rules do not allow defections from the binding proposal by any s
subcoalition ofS. If the proposal((αi)i∈S, S) is binding and playeri ∈ S “leaves,” then
he cannot consume immediately because his final payoffαi

∑
j∈S πj (σ ) will depend on

the final partitionPN (that is, σ ∈ E(PN)). What he can guarantee by leaving is t
coalitionS will be one element of the final partitionPN , and that he will get a shareαi of
the coalition’s payoff. Although playeri ∈ S does not know his final payoff until he know
which other coalitions form, he does not fear that some partners inS will “double-cross”
him by defecting fromS, because the rules do not allow such destabilizing deviations
a binding proposal.

For this modified game we can reprove Theorem 1 of Perry and Reny (1994), with
replacing core, essentially using their arguments. For the sake of exposition we r
attention to the casen= 3. Notice that in any three person game,V (S) is well-defined for
all S ⊆ N , becauseC(N\S | N\S,S) �= ∅. This is clearly true for the grand coalition
any two-person coalitionS, and for any singleton coalitionS = {i} it is also true becaus



212 C.-Y. Huang, T. Sjöström / Games and Economic Behavior 43 (2003) 196–213

ays

n

sing

on

n
alition

er 2
better

ure is
en

osal
ch
us and
e have

PE

yers 2
that

rium
in
e
st
the remaining two players inN\{i} either stay together or break up. Hence, we can alw
defineV (S) whenn= 3.

Proposition 5. Suppose n= 3. In the modified Perry–Reny game, only r-core payoff vectors
can be SSPE payoff vector.

Proof. Fix an SSPE of the modified Perry–Reny game andx = (x1, x2, x3) be the
corresponding payoff vector. We will show thatx must be in the r-core. If it is not, the
there isS ⊆ N such that

∑
i∈S xi < V (S), whereV (S) is the worth of coalitionS ⊆ N

calculated according to the r-core theory. There are three possibilities forS, and each will
yield a contradiction.

Case 1. |S| = 2, sayS = {1,2}. Suppose player 1 deviates from the SSPE by propo
((α1, α2), {1,2}) such thatα1V ({1,2}) > x1 andα2V ({1,2}) > x2 andα1 + α2 = 1. Such
a proposal is possible sincex1 + x2 < V ({1,2}) by hypothesis. Moreover, by assumpti
there isε > 0 such that no proposal is accepted in the interval[0, ε], and any player can
deviate by making a proposal before timeε. Let player 1 immediately accept his ow
proposal. If player 2 also accepts, then player 1 can guarantee that the final co
structure is({1,2}, {3}) in which case his payoff is at leastα1V ({1,2}) > x1. This is
so becauseV ({1,2}) is by definition the minimum that coalition{1,2} gets in coalition
structure({1,2}, {3}), andα1 is player 1’s share of it. So to support the SSPE, play
must not accept this proposal, for if he accepts it then the deviation makes player 1
off. By accepting, however, player 2 can guarantee that the final coalition struct
({1,2}, {3})which gives him at leastα2V ({1,2}) > x2. So, if player 2 does not accept th
he must expect that some later proposal will give him even more thanα2V ({1,2}). But
then he couldhimself have deviated from the original SSPE by making that very prop
and obtained a payoff greater thanx2, which is a contradiction. This argument, whi
follows Perry and Reny (1994), relies on the assumption that proposals are anonymo
strategies stationary so it does not matter who makes a particular proposal. Thus, w
shown that ifx1 + x2<V ({1,2}) thenx is not an SSPE payoff vector.

Case 2. S =N. The argument is similar to Case 1.

Case 3. S = {i}, sayS = {1}. Thenx1<V ({1}). Suppose player 1 deviates from the SS
by proposing and accepting the coalition{1} and then “leaving” at timeτ very close to
zero. By doing so he irrevocably commits not to cooperate with players 2 and 3. Pla
and 3 remain at timeτ without any current proposal on the table. Now, the subgame
starts at timeτ must either end with the formation of{2,3}, or by the formation of two
singletons,{2} and{3}. By the same argument as in Case 1, the continuation equilib
must agree with the r-core for the reduced society{1,2}, i.e., the outcome must be
C({2,3} | {2,3}, {1}). However, sinceV ({1}) is player 1’s minimal payoff among all th
strategy vectors inC({2,3} | {2,3}, {1}), the deviation by player 1 will give him at lea
V ({1}) > x1, which is a contradiction. Thus, we have shown that ifx1< V ({1}) thenx is
not an SSPE payoff vector.✷
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