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Abstract

In order to calculate the worth of a coalition of players, the coalition needs to predict the actions
of outsiders. We propose that, for a given solution concept, such predictions should be made by
applying the solution concept to the “reduced society” consisting of the non-members. We illustrate
by computing the-core for the case of Bertrand competition with differentiated commaodities.
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1. Introduction

Classical cooperative game theory studies situations where agreements are fully
binding and enforceable (Aumann, 1989; Luce and Raiffa, 1957). The starting point is
a characterigtic function which specifies thevorth of each coalition. The worth is what
the coalition can achieve on its own without cooperating with outside players. If there are
no externalities, i.e., if the payoffs to the members of a coalition do not depend on actions
taken by non-members, then the worth can be defined without specifying the actions of
non-members. But if externalities are present, then in order to calculate the worth of a
coalition one must predict the actions of non-members. This article considers the problem
of defining a characteristic function in the presence of externalities. No sokwion
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concept is proposed. Since the classical literature contains a number of solutions for games
in characteristic function form, we think a basic step in the exploration of games with
externalities should be to look at the predictions made by the classical solution concepts.

Suppose a set of players, denofédplay a normal form game with transferable utility.

It will be efficient for the grand coalitiov to form and choose a strategy profile which
maximizes the joint surplus. But a coalitichC N may refuse to cooperate with the
other players. Since there are externalities among the coalitions, to calculate the worth
of coalition S we must predict what the players M\ S will do once S has formed. Two
well-known ways of defining the worth of a coalition, i.e., of constructing a characteristic
function, are thex- and g-theories (Shubik, 1983, pp. 136-138). We introduce a new
recursive method, called the r-theory. Once a method for defining the characteristic
function has been found, all the classical solution concepts such as the core, the bargaining
set, or the stable set can be applied. But a novel aspect of our theory is that the worth
of a coalition depends on which solution concept is used to predict the behavior of the
complement, i.e., the characteristic function will depend on the solution concept.

We assume utility is transferable and binding contracts can be written within coalitions.
Given a coalition structure, we assume (following Ichiishi (1981) and Ray and Vohra
(1997)) that each coalition acts as a “composite player” who maximizes the joint payoff of
its members, and we look at the Nash equilibria of the resulting normal form game. Our
main concern is to study the formation of coalitions. The main assumption is that coalition
S, if it forms, predicts that the players iN\S will behave in a way which is consistent
with the same solution concept that is proposed for the game itself (but now applied to
the reduced game with player setN\S). The definition is recursive. Thus, for example,
the r-core is defined as follows. Fok = 1, we define the r-core fok-player societies
by individual payoff maximization. Suppose for aky> 1, the r-core is defined for any
society which has no more tharplayers. Then the r-core for@ + 1)-player societyNV
consists of those payoff vectors that give each coalifighN at least its worth. The worth
of a proper subcoalitiols C N is defined by using the r-core to predict the behavior of
the players in the remaining “reduced socieiyXS. This can be done becaus® S has at
mostk members. The worth a¥ itself is defined by joint payoff maximization.

A possible ambiguity in this definition is that the r-core féx S need not be a singleton.

In such cases we assume the player§ ipessimistically expect that r-core outcome for
N\S which is worst forS. Thus, coalitions are pessimistic subject to the constraint that
outcomes must be consistent with the solution concept. In contrast, accordingde the
theory coalitions are pessimistic without paying attention to such a constraint. That is, the
a-theory defines the worth of a coalition to be what it can guarantee rsgfdless of

the actions of outsiders. In the r-theory, the actions of the outsiders must be consistent
with the solution concept. Since this makes coalitions less pessimistic about what they can
achieve, the r-core is a subset of theore. (Since we will allow players in a coalition to

use correlated strategies the distinction betweermvttend g-cores will not be important,

and we will refer only to thex-core.)

Ray and Vohra (1997) pioneered the application of consistency to cooperative games
with externalities. They proposed a new solution concept called Equilibrium Binding
Agreements (EBA). Since our focus is on sustaining cooperation in the grand coalition, we
will mainly compare our predictions to the EBA for the grand coalition. In Ray and Vohra'’s
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theory a strategy vector for the grand coalition is blocked if there is a “leading perpetrator”
S C N that can induce another strategy vector under a finer coalition structure which would
make itself better off. The new finer coalition structure must be stable in the sense that
coalitions should not break apart due to the same type of internally credible (equilibrium)
deviations. (It is assumed that coalitions can break apart but not re-merge, hence the finest
possible coalition structure is always by definition stable.) Also, if the deviation involves
other coalitions excef breaking apart, then all newly formed coalitions (except perhaps
one) must be “secondary perpetrators” who are better off than they would have been
if the coalition had not deviated. We do not use the notions of leading and secondary
perpetrators. Instead we propose a recursive definition for the worth of a coalition which
can be used together with the classical solution concepts. Moreover, we will follow the
classical approach to cooperative games by assuming that when codlitialculates

its worth, it doesnot worry about destabilizing deviatiomgithin S. This is because, by
assumption, coalitio can sign an agreement which is fully binding and enforceable.

A non-cooperative view of coalition formation with binding agreements is provided by
Perry and Reny (1994). In their non-cooperative game, plagan propose that playegt
for example, signs a binding agreement to form the coalifion}. After signing the
agreement himself, playérhands it over to playey. By signing, player; can guarantee
that{i, j} forms (as can playet after player;j has signed). Of course, the fact that;}
can sign such a binding agreement does not mean that the playarg{in;} predict that
{i, j} will actually do so, even if the players M\{i, j} should refuse to cooperate with
playersi and j. In Section 6 we prove that, with three players, a version of Perry and
Reny’s game gives a hon-cooperative foundation for the r-core. The details of a full non-
cooperative implementation are left for another paper. Several recent articles have studied
the non-cooperative equilibria of different extensive form games of coalition formation.
Major contributions are due to Bloch (1995), Ray and Vohra (1999), and Yi (1997). In
practise one may have insufficient information about the appropriate extensive form, so the
cooperative and non-cooperative approaches may be useful complements.

In the model presented in this article, it will always be efficient for the grand coalition
to form. However, in general partition function form games it need not be efficient for
the grand coalition to form. For example, transactions costs might make large coalitions
costly to organize. In this case, the r-theory can still be used, and it may predict coalition
structures that are strict refinements of the grand coalition. The analysis of general partition
function form games is avoided in this article in order to simplify the exposition.

2. Definitions

There is a selV = {1, 2, ..., n} of players who play a normal form ganié. Let A;
denote playet’s set of pure strategies, antd A;) his set of mixed strategies. For simplicity
we assumeA;| < oo, where|A;| denotes the number of elementsdp Playeri’s payoff
in I" is mi(a), wherea = (a1, ...,an) € A= X, _y Ai. If 0; € A(A;) is a probability
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distribution overA;, theno; (a;) denotes the probability of taking actien. We extend
playeri’s payoff function to mixed strategy profiles in the usual way:

i (01, ...,0,) = Z l_[ oj(aj)mi(a).
acA jeN
Before playing the game, the players can organize themselves into coalitions. The
result is a partitiorPy = (S1, ..., Sx) of N, whereK is the number of coalitions. We
assume the possibility of unrestricted side payments within a coalition. There are no
transfers across coalitions. F8r € Py, letz;; > 0 denote the side payment playes Si
makes to playey € Sx. The net transfer received by playes S is

4= Z(tji —tj).
JESk

Playeri’s utility if action profilea € A is taken and his net transferijss ; (a) + ;. Within
the coalition transfers must balance:

> u=0. 1)
€Sy
For a given partitiorPy, let Tp, denote the set of feasible net transfer profiles. . ., 1,),
i.e., transfers that satisfy Eq. (1) for al} € Py. A partition of a subsetS C N is
denotedPs, and T'p, denotes the set of feasible net transferscs, i.e., transfers that
satisfy Eq. (1) for allS; € Ps.

A partition Py induces a normal form gamg&(Py) among the coalitions as follows.
Each coalitionS; € Py is a “composite player.” Composite play&r has a pure strategy
setAs, =X g, Ai, SO a strategy specifies an action for each coalition member. Denote
a typical element ofis, by ag,. Since there is transferable utility within a coalition, each
coalition should aim to maximize the sum of the payoffs of its members. The payoff for
composite playesy is therefore the sum of the members’ payoffs:

s (asy,...,as,) = Z wi(asy, ..., asg).
€Sk
Let o5, € A(Ag,) denote a probability distribution over the ség,. The members of
coalition Sy can use correlated strategies, i.e., strategieg s, ). Leto = (o5,, ..., 054)
and (crgk,a,gk) = (051,...,crskfl,crék,askﬂ,...,GSK). Extend the payoff function to
mixed strategies in the usual way:

J'L’Sk(o’)z Z Z Usl(asl)...GSK(aSK)JTSk(asl,...,aSK).
asleAsl asKEASK

We identify the original gamé™ with I"({1}, {2}, ..., {n}), i.e., it is the game where
each coalition is a singleton.

Let E(Py) denote the set of Nash equilibria of the gaméPy). That is,oc € E(Py)
iff o € XsePy A(Ag,), and for everyS; € Py and everyrgk € A(Asy),

TS (GSkv U—Sk) = TS (Gék, U—Sk)~

Following Ichiishi’s (1981) notion of non-cooperative play between coalitions, we will
assume that if the coalition structurefs, the outcome will be some strategye E (Py).
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3. Ther-theory

For any S C N, let 25 denote the set of all subsets 6f and let RS denote the
payoff space pertaining t6. Let V : 25 — R be acharacteristic function for the reduced
society S, i.e., a function which assigns a vall&T) to eachT C S. Let VS denote the
set of all such functions. Aresolution for society S is a correspondend@® : VS — RS.
To illustrate, we give two examples of presolutions.

Example A. The core presolution:

G5(V) = {{u,»},»es: Zui > V(T)forall T C S}. 2)
ieT

Example B. The Zhou (1994) bargaining set presolution. Herges € G5(V) if and
only if the following is true. For eaclf C §, if we can find a vectofy; }xer SO that for
everykeT

uy <y, and Z}’k =V(T)
keT

then there must exist a coalitidh C S and a vectofz; }ncy such that

U\T #, T\U#%, and UNT #%,
up <zp, forallheU\T, yh <z, forallheUNT, 3)

and

Y =V

heU

In our theory, when a coalitio € N calculates its “worth,” it will use some
presolutionGN\Y, together with feasibility constraints, to predict the outcome of the
“reduced game” made up of the players in thigU. In order to useGV\Y to solve the
reduced game, coalitioi needs to know the worth of every coalitidhC N\U, i.e., it
needs to know a characteristic functigne VN\U. We will now show how to derive such
a characteristic function. As a first step we assume a presolGtidmas been exogenously
assigned to ever§ C N.

Fix a coalition S € N, and consider the reduced game among the players, in
given that the coalition structure of the complement is given by the partRipgy. Let
C(S|S,Pwn\s) denote the set of strategies that can possibly be played in this situation.
To determine this set, we will first estimate the worth of each subcoalifigh S in
this reduced game, denot&d7 | S, Pn\s). Then, we will apply the exogenously given
presolutionGS. We do this recursively in a consistent way.

For anyi € N, and any coalition structur@y,;; for the players inv\{i}, the set
of strategies that can possibly be played in the gdnig}, Py\;i)) is the set of Nash
equilibria of this game, so

C({i} ] i}, Pnviy) = E({i}. Pwvviiy)- @
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Now make the induction hypothesis that we have defined a set of possible strategies
C(S|S,Pwnys) for all § such that 1< |S| < s — 1, and all partitionsPy\s of N\S.
Considers such thaiS| = s. Define

V(S|S,Pns) =min{rs: s =ms(o) for somes € E(S, Py\s)} (5)
and for any non-empty proper subget: S define
V(T | S, Pwns)
=min{r7: 77 = 77 (o) for somes € C(S\T | S\T, T, Pn\s)}. (6)

The right-hand side of (6) is well-defined by the induction hypothesis, becadsés
a non-empty set which has strictly fewer players tiSamnd (7, Py\s) is a partition of
N\(S\T). We will calculateC(S | S, Pn\s) by using the (exogenously given) presolution
G together with the characteristic function f§defined by:

V(T)=V(T|S,Pns), forallT CS, 7

where V(T | S, Pn\s) is given by Eq. (5) forT = §, and by Eq. (6) forT C S. So let
C(S|S,Pns) be the set of strategies such that, for some partitioRs of S and some
net transfer profilés;);cs € Tpg, (8) and (9) hold:

o € E(Ps, Pn\s), (8)
{mi(0) +1i},.5 € GS V), (9)

whereV € VS is defined by Eq. (7). Notice that in the definition 6{S | S, Pn\s) we
allow coalition S to divide itself into a non-trivial partitiorPs. (For example, in the
guantity setting Cournot oligopoly studied in Huang and Sjostrom (1998), the firms in
a coalitionS # N may prefer to break apart, because the output of the firmg\i§i is
lower whensS is divided into several firms than whehis one big firm.)

We have now defined' (S | S, Py\s) for S such that|S| = s. Continuing this way,
we can defineC (S | S, Py\s) for larger and larges. The final step occurs whefi= N.
Although the method in the final step is the same as in the preceding steps, it may be helpful
to describe this last step explicitly. First, to calcul&teVv | N) according to (5), notice that
E(N) is simply the set of strategies that maximize the joint payoffs of the playeXs in
thus

V(N|N)Emax{2m(cr): o eA(A)}. (10)
ieN
Strictly speakingV (N | N) should be writterV/ (N | N, Py\n) to conform to (5). But
Pw\n is the trivial partitioning of the empty set sineé\N = ¢, and to simplify notation
we write V(N | N) instead ofV (N | N, Py\v).
For any non-empty proper subgetc N defineV (T | N) according to (6), by
V(T | N)=min{ry: n7 =77 (o) for somes € C(N\T | N\T, T)}. (11)
Finally, let
V(T)=V(T|N), foralT CN. (12)
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Then,C(N | N) is the set of strategies € A(A) such that there exists a net transfer
profile (t1, ..., #,) € Ty such that:

{mi(@) +ti};n €GN V), (13)

whereV e VV is defined by Eq. (12).

In payoff space, the solution to the game is the set of payoff vectors that can be
expressed agr1,...,m,;) = (m1(o) + 11, ..., m,(0) + t,), for someo and (t1,..., ;)
that satisfy (13). For example, tiecore is the set of payoff vectors that can be expressed
as(m1,...,my) = (m1(0) + 11, ..., 7 (0) + t,), for somes and(zy,...,1,) that satisfy
(13), where at each step of the recursive argument we use the core presolutiah’(ise.,
always given by (2)). The-bargaining set is defined in the same way, but replacing the
core presolution by the Zhou bargaining set presolution.

Notice also that if we apply the core (say) presolution to all societies, we may talk
about the r-core for a reduced society in a natural way. More precisely, fof any,
the r-core forS given the partitioriPy s is the set of payoff vectors that can be expressed
as(mi)ies = (i (0) + 1;)ics, for someo and(z;);cs that satisfy (8) and (9) (wher@”® is
given by (2)).

In contrast to our theory, in the-theory coalitions apply maximal pessimism (Shubik,
1983, pp. 136-138). The worst that can happen to coallimthat the complemem¥\ S
forms and “maximins’S. Hence, in thex-theory the worth of§ is

V¥(S)= max min s(0s, ON\S)- (14)

os€A(As) oN\sEA(AN\S)

Now consider a payoff vectars, ..., 7,) = (71(0) + 1, ..., 71, (0) + t,), Whereo €
A(A) and(zy, ...,1,) € Ty. To take the core as an exampley, ..., ;) is in thea-core
iff Y ;cgmi = V*(S) forall S € N. But (7g, ..., m,) is in the r-core iff)_; . ¢ 7 = V(S)
forall S € N, whereV is defined by our recursive procedure. Certaivigs) > V*(S), so
if the r-core exists then it must be a subset ofdheore. The characteristic function defined
by (14) was introduced by von Neumann and Morgenstern (1944). They showéddthat
is superadditive. In contrast, our characteristic functioneed not be superadditive. For
example, superadditivity fails in the Cournot oligopoly discussed by Huang and Sjéstrom
(1998).

The r-solution suffers from two kinds of existence problems. First, it may happen that
C(N\T | N\T,T) is empty for somel" C N, in which case there is no prediction that
coalitionT can make about the behavior of its complement. TVi¢R) = V(T N) cannot
even be defined as in (11). In this case we may say that the r-solution does not exist, since
we are not able to define characteristic functions in a consistent way for all reduced soci-
eties. Second, even f(T') is well defined for eacli’ C N, it may still not be possible to
satisfy (13). For example, in the case of the r-core, we may be able to define the fuiction
but it may not be balanced. In such a case we may say that the r-solution exists but is empty.

Thus, for the r-solution to exist, it must exist and be non-empty for every reduced so-
ciety T C N, or else the compleme®\T cannot calculate its worth. This requirement
may be too strong. The following argumentwas made by D. Ray. Suppesél, 2, 3, 4},
and consider the reduced soci@ty= {2, 3, 4}. Suppose we have recursively calculated the
worth of T and all its subcoalitions, using the core presolution, and foundrtheself is
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worth six, and any of the two player sub coalitioi®s 3}, {2, 4}, and{3, 4} is worth five.

Player 2, 3 or 4 on his own is worth zero. Then, the r-core of the reduced s@diegmpty,
because in this society it would be efficient for all®ofto cooperate and divide up the six,

but there is no way to satisfy all two-player subcoalitiong'dfeach two-player subcoali-

tion would insist on at least five). Therefore, player 1 cannot make any prediction which is
consistent with the r-core about what his complenéktl} = 7 would do if he went on

his own. Hence he cannot calculate his worth, and the r-core of this game does not exist. But
suppose player 1 has a dominant strategy that gives him five no matter what the other play-
ers do. It would seem reasonable to define the worth of player 1 to be five, anective

does this, but not the r-core. Itis a topic for future research to develop solution concepts that
relax the requirement of existence of a non-empty solution set for each reduced society. (An
anonymous referee suggested that by defining a Shapley value presolution we could gen-
erate a prediction even when the r-core does not exist.) We note, however, that in the non-
cooperative approach of Perry and Reny (1994), discussed in Section 6, the requirement
that the r-core is non-empty for every reduced society corresponds to the requirement that
an equilibrium exists in every subgame, even those that are not reached along the equilib-
rium path. Thus, the requirement has a natural interpretation in the non-cooperative setting.

Remark 1. There are cases when it is not reasonable to expect a particular coalition to
form. Fortunately, this does not matter for the r-core. To illustrate, suppesd, and
suppose in our analysis of the r-core we have derived the following characteristic function:
V(N) =20, V({1,2,3) =7, V{1,2) = V({1,3) = V({2,3})) =6, and V(S) = 0
otherwise. The payoff vector = (1,1, 1, 17) can be blocked by coalitio§ = {1, 2, 3}.
However, if § forms, how would they divide up the 7? At least some paiyj} C S would

get strictly less than six, but playerand j would not agree to this because they can block

x on their own and tak& ({i, j}) = 6. In the terminology of Ray (1989)1, 2, 3} does not
credibly blockx = (1, 1, 1, 17). On the other hand, any two-player subcoalitiofhf2, 3}

can credibly blocke. Ray (1989) showed that this situation is general. That is, whenever a
coalitionS C N blocks a payoff vectar and the blocking is not credible, then there exists

a subcoalitior?” C S that credibly blocks:. Thus, restricting attention to credibly blocking
coalitions would not make any difference to the r-core.

4. An example
In this section we provide an example to illustrate the role of binding agreements.

Player 1 chooses a row, player 2 chooses a column, player 3 chooses a matrix. Note that
players 1 and 2 are symmetric.

L R
b4 m r V4 m r
U 5 5 5 -10 1, 9 2 6, -1 u 7,70 00,0 080
M 1,-10, 9 -11 -11,21 1 -9, 9 M 00,0 000 01,0
D 6 2 -1 -9 1 9 4 4 -1 D 800 10,0 66,0

)
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We first derive thex-core and the r-core, using®(S) and V (S) to denote the worth of
coalition S according to ther- and r-theories, respectively. StrateByis strictly dominant

for player 1 strategy- is strictly dominant for player 2, and player 3’s best response against
Dr is R. Thus, for the finest coalition structurgl}, {2}, {3}) we predict the outcome
(D, r, R) with payoffs(6, 6, 0).

The grand coalitionV = {1, 2, 3} maximizes its joint payoff by choosing¢L. Thus,
V¥(N) = V(N) = 15. What is the worth of coalitior{2, 3}? The greatest joint payoff
players 2 and 3 can get is ten, and by playinfy they get terregardless of player 1's
action. Thus,V*({2, 3}) = V({2, 3}) = 10. By symmetry,V¥({1, 3}) = V ({1, 3}) = 10.

For coalition{1, 2}, U¢ is a strictly dominant strategy which gives them at least 10, so
V*({1, 2}) = 10. Since player 3’s best response agatiigtis L, in fact alsoV ({1, 2}) =
10.

Next, consider the singleton coaliti¢8}. Player 3 can guarantee himself at mosb®
playingR, soV“({3}) = 0. To calculate¥ ({3}), player 3 has to predict how players 1 and 2
would behave if player 3 refuses to cooperate with them. Would 1 and 2 stay together or
break up? If coalitiorf1, 2} forms, they get 10 as argued above. On the other hand, if player
1 refuses to cooperate with player 2, the result is the finest coalition str€tyre?}, {3})
in which case player 1 gets Gimilarly, player 2 can get 6 by separating fromSince
6+ 6 > 10, the r-core prediction for the reduced socigty?2} is that players 1 and 2 split
up. The outcome will béD, r, R), soV ({3}) =0.

For the other two non-trivial reduced societi€k,3} and{2, 3}, the r-core predicts that
the coalition stays together. Hence, we calculatgl}) = V ({2}) = —9. Also, V¥ ({1}) =
ve(2h) =-9.

Since V¥ (S) = V(S) for all S, thea-core equals the r-core in this example. In either
case, the payoffs must satisfy:

w1+ o+ w3 =15 w1+ w3 > 10, 7o + 3 > 10, w1+ 2 > 10,
m = =9, w2 > =9, 32 0.

The unique payoff in the r-core is, therefo(s, 5, 5).

Notice that, since each two-player coalition caaranteeitself ten, ten is their worth
according to thex-theory. Thus, each pair of players must get at least ten invtbere.
Since we allow for less pessimistic expectations, it must be truétf{atj}) > Ve {i, j}).

In fact, in this example, a two-player coalition cannot realistically hoperfae than ten,
so its worth according to the r-theory is ten as well. There are EBA for the grand coalition
that give two-player coalitions much less than ten, however, as we now discuss.

According to Ray and Vohra (1997), every coalition has to worry about destabilizing
internal deviations, which can prevent a coalition from forming. In this example, the
set of EBA for the grand coalition consists of all payoff vectéts, 72, 73) such that
mi+mo+na3=15 w1 +m3>10 w2+ 73> 10, w1 > -9, 70 > -9, 73 > 0. Thus, there
is an EBA for the grand coalition which gives minus nine each to players 1 and 2, and thirty-
three to player 3. While a single player (either player 1 or 2) who leaves the grand coalition
expects only-9, a single player who leaves the coalitidn 2} expects 6. This is because
if coalition {1, 2} breaks up then neither player is expected to merge with player 3, so that
the result will be the finest coalition structurd}, {2}, {3}) with outcome(D, r, R). Since
coalition{1, 2} only expects 10, and-6 6 > 10, the coalition{1, 2} is not internally stable
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and is not allowed to block—9, —9, 33) according to the theory behind the EBA. Neither
can any playet € {1, 2} block (—9, —9, 33) on his own, because refusing to cooperate
with the other two players would yield him only9 (recall that player € {1, 2} fears that

if he defects from the grand coalition then the other two players will form a two-person
coalition). Thus, according to the EBA, players 1 and 2 have no blocking power, either
jointly or individually.

We agree with Ray and Vohra thiadividually players 1 and 2 are weak. However, we
argue that if binding contracts are possible, then together players 1 and 2 are quite strong.
They can and should insist on getting at letEst1, 2}) = 10, because—by assumption—
they can sign a binding contract whigoarantees ten. If (—9, —9, 33) is proposed as a
payoff vector for the grand coalition, then players 1 and 2 can do better by signing a binding
agreement which gives them five each. (Notice in passing that such blocking is credible in
the sense of Ray (1989) because each playdl, 2} prefers to sigihisagreement rather
than trying to block on his own—recall th&t({i}) = —9.)

In this example, even if a break-up of coaliti¢h, 2} results in the finest coalition
structure and strategy profil@®, r, R), then this should not prevent players 1 and 2 from
blocking a payoff vector such gs-9, —9, 33). Indeed, if players 1 and 2 can conspire to
induce(D, r, R), then their blocking power in the grand coalition is even increased, since
(D, r, R) gives them six each. A modified version of EBA would indeed allow players 1 and
2 to induce(D, r, R), by treating both as leading perpetrators (cf. (Vohra, 1997, p. 137)).
However, the modified EBA will still rule out blocking by a single leading perpetrator
consisting of one internally unstable coalition. In contrast, the r-theory allows blocking
regardless of the internal instability of the blocking coalition.

To see the distinction more clearly, consider a modified example suggested by an
anonymous referee. Let us change the payoff9farr, R) to (10.1, 0.1, —0.75). Then,

(D, r, R) is still the uniqgue Nash equilibrium for the finest coalition structure. But now
the internal instability of coalitior{1, 2} is more serious for player 2, who fears that a
break-up will leave him with (L. Now there is an EBA for the grand coalition with payoff
vector(1, 1, 13), even if we use Vohra's (1997) modified definition of EBA. Indeed, by the
logic of EBA, player 2 will not join together with player 1 to block, 1, 13), since player

2 fears being “double-crossed” and gettind.an contrast, according to the r-theory the
coalition {1, 2} will block any agreement in the grand coalition where the sum of their
payoffs is less than ten, even in the modified example, because they can sign a binding
contract which guarantees them ten. It is true that player 2 might suffer if coaiti@

breaks apart. But if player 2 joins the coaliti¢h, 2} only after having obtained player

1's signature on a contract, then there is no downside risk for player 2. Player 2 simply
has to hold on to his copy of the contract. By assumption, the binding contract rules out
any unilateral defection by player 1. It is especially in cases where a break-up would hurt
some coalition member that the possibility of binding contract is crucial. At the very least,
a binding agreement would eliminate break-ups that are not supported unanimously. In the
modified example, coalitiofil, 2} will not break up by unanimous consent, so we think it

is reasonable to assign the value of ten to this coalition.

The notion that internal instability should not impede the blocking ability of a coalition
is also implicit in Perry and Reny’s (1994) non-cooperative game. In their model, as in
ours, coalitions can sign binding contracts which prevent members from defecting further.
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Thus, it is not surprising that a version of Perry and Reny’s (1994) game can be used for
a non-cooperative implementation of the r-core (see Section 6).

Remark 2. In general, when there are many possible predictions about the behavior of a
reduced society, the r-theory assumes a degree of pessimism. Ray and Vohra (1997) assume
players are optimistic, in the sense that when a coalition deviates it can name the best
equilibrium under the best coalition structure it can induce. In the example in this section,
however, there is a unique consistent prediction for each reduced society, so optimism
versus pessimism is not an issue. An “optimistic r-core” would also prégliét 5).

Remark 3. In this example the-bargaining set consists of all payoff vectors that satisfy
w1+ w2 + w3 = 15, 1> —9, T > —9, w3 >0,

and eitherry = 2 > 5, 1o = 73 > 5 or 71 = 3 > 5. (For calculations, see (Huang and
Sjostrom, 1998).) Tha-bargaining set is the same as the r-bargaining set.

5. Bertrand competition with differentiated commodities

There are: symmetric price-setting oligopolistic firms, each with constant marginal and
average cost equal to zero. Each firm produces a unique product.'&olemand function
is

1 n
1oy =1—pi—rlpi—= .
Gi(p1, .. Pn) pi r(pz n;pj)

where p; is the price set by firmi, ¢; is the quantity demanded of firirs product, and

r > 0 is a parameter of substitutability. The market is more competitive, the greater is
The goods become perfect substitutes-as oco. Notice that for any- > 0, the grand
coalition N has a unique joint payoff maximizing strateg¥ = (1/2,1/2,...,1/2). That

is, each firmi should charge the monopoly prige = 1/2. With monopolistic pricing,

the total industry profit ig:/4. We consider the r-core of this game. Our result is that the
monopolistic outcome can be achieved by the grand coalition if and onlyi® andr
exceeds a critical valu&n). The function?(n) is increasing im because it is harder to
sustain cooperation when there are more players. Notice that the symmetry of the game
implies that transfers will not be of any value in supporting the grand coalition.

For the grand coalition to be sustained, no coalition should profit from a deviation. This
means no coalitio should be able to profit by free riding on the collusion of other firms
while § itself captures a larger market share. If goods are very close substitutes, then free
riding is unattractive because a defection®yriggers severe competition. Thus, when
is large the potential for ruinous competition should make it easier for the firms to collude.
Recall that more competitive market conditions also help firms collude in the theory of
repeated games (Shapiro, 1989).

Deneckere and Davidson (1985) studied the incentives for mergers in the differentiated
Bertrand model, assuming all other non-merging coalitions stay fixed. Notice that this
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game has “positive externalities” in the sense that a merger of two firms reduces the
competition and thus benefits outside firms. Deneckere and Davidson derived the following
formulas. Suppose in a market withfirms a merger of size: happens. This leads to

a merged entity consisting of these players, andh — m outside firms playing non-
cooperatively. The per member profit of the merged firm is

. |: 2n+r(2n—-1) ]2
i (m) =
! dn+2rBn—m—1D+r2((n—m)/n)2n+m—2)
n—m
X [1+r i| (15)
n
and each outsider earns profit equal to
0 |: 2n+r(2n—m) ]2
T (m) =
! dn+2rBn—m—1+r2((n—m)/n)2n+m—2)
x|:1+rn_lj|. (16)
n

For any given coalition structure, a merger of two coalitions will benefit all outsiders.
Deneckere and Davidson showed that the game also has a superadditive property in the
sense that for any given coalition structure, a merger of two coalitions results in a joint
after-merger profit for them which is greater than the sum of their pre-merger profits. Thus,
they showed:

Proposition 1. Let {B1, B, ..., By} be a partition of N. Let 7(B; U B;) be the profit of
B; U B; after a merger of B; and B; occurs (and nothing else happens to the coalition
structure) and let 7 (B;) denotethe pre-merger profits. Then (B; U B;) > m(B;) + m(B;).

Proposition 1 implies that it is never efficient for a coalition to break up. (In contrast, in
the Cournot model analyzed in Huang and Sjostrom (1998) it may be to the advantage of a
coalitionS C N to break apart, as it will reduce the output of the complement.) This implies
that if the r-core exists and is non-empty in reduced sodethen coalitionS must form.

There cannot exist a finer r-core partiti®ty # {S} because the definition of the r-core
implies that the sum of the payoffs for the playersSinnder the finer partitios would

have to at least equal what they could get by sticking together, but this is impossible in view
of Proposition 1. This result greatly simplifies the calculation of coalitional values in any
reduced society. Deneckere and Davidson also showed that in any given coalition structure,
a member of a large coalition earns strictly less than a member of a small coalition:

Proposition 2. Let {B1, B2, ..., Bi} beapartition of the N withny > np > - - - > ny, where
ni = |B;|. Then ; < i1 (with equality if and only if n; = n;41), where 7r; denote the per
member profit of coalition B;.

This result implies that if the r-core exists, the most difficult blocking constraint will
pertain to singleton coalitions. But notice that to verify that the r-core is non-empty, we
must verify that every reduced society has a non-empty r-core. In effect, we must verify
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that in any reduced society, given any coalition structur@y\s for the complement,

no single firm inS wants to deviate from coalitio if it thinks the complemens\{i}

will stick together (as we have argued, this is the only belief consistent with the r-core for
reduced society\{i}). Definer (n) as follows:

P =FQ2) =FB)=0, 74 =186 F(5)=455  7(6)=812

Proposition 3. The r-core exists and is non-empty in the n-firm Bertrand model with
differentiated commoditiesif and only if r > 7 (n).

We can express Proposition 3 in an alternative way: for given level of substitutability
there exists a critical numbéxr) (increasing inv, with lim,_ o 7n(r) = 9) such that the
r-core exists if and only ift < 7i(r).

The proof of Proposition 3 consists of straightforward calculations. In a two-player
society, free-riding cannot possibly pay. For= 3 we only need to make sure that a
single firm will not defect from the grand coalition (assuming the remaining two firms
stick together). This is true if and only if what the defector geﬁgZ), is no bigger than
the per-capita monopoly profit/4. Straightforward calculations show that this holds for
all r > 0. Thus, the r-core exists and is non-empty for anyO if n < 3. When 4<n < 7,
the most difficult constraint to satisfy is that a single firm should not have an incentive to
defect from the grand coalitioN. Calculations show that there is no such incentive if and
only if r > 7(n). When 8< n < 9, the most difficult free rider constraint turns out to relate
to a single firm in a reduced society with— 1 players (recall that for the r-core to exist, it
must exist and be non-empty in every reduced society). Again, calculations show that there
is no such incentive if and only if > 7 (n).

Finally, suppose > 10. Consider a reduced societyvith | S| = 8 players, and suppose
the outside: — 8 > 2 players are all split into singleton coalitions. If the r-core exists then
any firmi € S who defects fromS must expect the complemesit{i} to stick together
(Proposition 1 implies that it is the only possible belief that is consistent with the r-core).
The free riding payoff would bef(?) as given by (16). On the other hand, if the reduced
society S forms a coalition of 8 players, given all outside— 8 players are singleton
coalitions, the per capita payoff for coalitidhis 77/ (8) as given by (15). Hence, firincan
block cooperation within the reduced sociétyf n?(?) > 7{(8), which, by (16) and (15),
is equivalent to

2
(2n+r(2n - 7))2[1+r” — 1} <4n +2r(3n—9) +r2<n—_8)(2n + 6))
n n

> (Zn +r(2n— 1))2 1+rn—_8
n

2
x <4n+2r(3n —8)+r2(nT_7)(2n+5)> . 17)
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One can calculate that (17) is satisfied if and only if

(281° + 84n* + 27538:% + 94983 — 7189 — 103099’
+ (4200° + 994981 + 61271 — 1792 — 2748%%)r°
+ (16520° + 69216:° — 78681 — 28756:%)°
+ (2716:° — 100241* — 8456:%)r* + (20161° — 4032%)r> + (560:°)r2
> 0. (18)

Givenn > 10, all polynomials in the parentheses in (18) are positive. Therefore, for
anyr > 0, (18) holds, SOTI-O(7) > 7r{(8). Hence there is no outcome in the r-core for the
8-person reduced sociefy so no characteristic function can be defined. Hence 2if10
then the r-core does not exist for any

The negative result for > 10 may be surprising since wheris large the firms have
strong incentives to merge into a monopoly, and any defection from the grand coalition
triggers cut-throat competition. So one may have expected cooperation to be possible for
sufficiently larger. But while it is true that a firm can never benefit from defecting from the
grand coalition whenm is sufficiently large, the key point is that for the r-core to exist and
be non-empty it must exist and be non-empty for all coalition structures. Whei0,
then (as we just argued) the r-core is empty for an 8-player reduced sScigten that
the complementV\S is divided into singletons. This can be explained as follows. The
8-player coalitionS maximizes its joint profit by sticking together. However, even if they
stick together there will be at least three competing firms (at least two singleton coalitions
in N\S, plus the merged entit§) playing non-cooperatively, which is enough to drive
profits down close to zero wheris large. Thus, there is not much surplus to be distributed
among the members df. A firm i € S that considers a defection frofhhas to compare
the payoff it gets in two very competitive situations, one where it has defectedS{dhd
sticks together) and one where it has joinedh competition with the outside firms. In
fact, (18) shows that the surplus availableStas not big enough to prevent firinfrom
defecting. Even though free riding on the grand coalitdodoes not pay when the market
is very competitive, iloes pay to free ride on large subcoalitions when most of the profits
are anyway destroyed by competition with outsiders. For this reason, the r-core may not
exist even whem is very large.

In contrast, for any: there exists (n) < oo such that an EBA exists for the grand
coalition whenever > r(n). Indeed, an equal share of the monopoly profit is worth, 1
regardless of. If firm i defects from the grand coalition, the best it can hope for is that
the complementv\{i} stays together, but even in this best of all possible casesifrm
profit is close to zero for large enough. For even if there are only two firrfig,and the
composite firmV\{i}, profits are almost completely dissipated if the goods are very close
substitutes. Thus, no leading perpetrator can possibly gain from a defectids arge
enough, sa™ (together with zero transfer payments) is an EBA. Thus, there can exist
an EBA for the grand coalition even though the r-core does not exist (in particular, this is
true whenn > 10). On the other hand, in this application any EBA payoff for the grand
coalition belongs to ther-core, which is always non-empty (cf. (Ray and Vohra, 1997,
Remark 6.1)).
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Notice that, unlike the example in Section 4, the difference between the EBA and the
r-core has nothing to do with the internal stability of blocking coalitions, since the argument
here depends completely on blocking by singletons (which are by definition internally
stable). Instead, it depends on our insistence that the r-core exists for every possible reduced
society. Again, this insistence has a natural counterpart in the subgame perfect equilibrium
of Perry and Reny’s (1994) non-cooperative model, where a continuation equilibrium must
exist for every possible subgame.

If the r-core does exist and is non-empty in this application, then there exists an EBA for
the grand coalition. For if the r-core is not empty then clearly it contaifigogether with
a zero net transfer profile (by symmetry). By definition of the r-core, no coalfianv
can block this outcome. That is, eaglgets at leasV (S), whereV (S) is calculated under
the expectations that the complem@hts sticks together (this is the only possible belief
about the r-core outcome in reduced sociEis onceS has left, in view of Proposition 1).

But then it is clear tha#™ together with a zero net transfer profile is also an EBA. Indeed,
the best any leading perpetratbcan hope for is for the complement to stick together (its
payoff decreases when the complement breaks up), but not even this situation$nakes
better off if the r-core is non-empty. Hence, we have:

Proposition 4. In the differentiated Bertrand model, if the r-core exists and is non-empty
then o™ together with a zero net transfer profile is an equilibrium binding agreement for
the grand coalition.

This result does not say anything about the complete set of r-core payoff vectors. In
fact, when the r-core exists the most difficult blocking constraint pertains to singleton
coalitions, and both the r-core and the EBA payoffs for the grand coalition have to satisfy
this constraint. Thus, in this application, any r-core payoff is an EBA payoff for the grand
coalition, while on the other hand (as argued above) an EBA can exist even if the r-core
does not exist.

If we use the Zhou bargaining set as the presolution instead of the core, we get exactly
the same result: the cutoff threshdith) is also the threshold for the r-bargaining set to
be non-empty. This is so because the binding constraints relate to defections by singleton
coalitions for which there is no difference between the core and bargaining set.

6. Non-cooper ativeimplementation

Perry and Reny (1994) studied the non-cooperative implementation of the core for

a given characteristic functiofy. In their model, proposals to form a coalition are
made anonymously and consist of a coalitirand a set of payoffgx ;) ;cs such that
ZjESXj < V(S). Time is continuous. At any time > 0 a player can make a proposal,
accept a current proposal, be quiet, or leave. If a current propasalcs, S) is accepted

by all members of, then it becomebinding and coalitionS is said to have formed. In this
case, any playere S can choose to “leave” and consumg in which case every other
memberj € S must also “leave” and consums. If S has formed, then a new proposal
cannot be directed to a non-empty strict subses,dfut (as long as the members$have
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not “left”) a proposal can be directed tesaperset 7 2 S. If a new proposal is madaefore
the current proposal has become binding, then the current proposal is void. The payoff
to a player who never leaves is low enough that, following any history, any continuation
equilibrium will be such that all players will leave in finite time. (Playecannot leave
before accepting a proposal, but he can always propgsg}) wherex; = V ({i}), accept,
and then leave and consurié{i}).) Perry and Reny make the technical assumption that
for any timet > 0 and for any history up t@, there ise > 0 such that each playeris
quiet in the open intervalér — ¢, t) and(z, t + ¢). They consider stationary subgame
perfect equilibria (SSPE), where a player’s action can only depend on the set of players
remaining, the existing set of binding proposals, the current proposal, and which players
have accepted it. They show that only core payoff vectors can be SSPE payoff vectors. We
will consider a slightly modified version of Perry and Reny’s game which is appropriate in
the presence of externalities.

The modification we need is that a proposal to form coaliSazannot specify payoffs
directly. Instead, a proposél;);cs, S) specifies a vector of non-negatistaares («;);cs
that sum to one:

=1 (19)

ieS
If S forms and player € S decides to “leave,” then the membersSomust “sit on the side
line” until all players inN have “left.” Suppose the last player leaves at titrigwe will
havet* < oo in equilibrium since never leaving gives a very low payoff by assumption).
Then at timer*, each player is a member of a unique coalition, i.e., there is a partition
Pn ={S1,...,Sk} of N. Then the gamé " (Py) is played. For eacl§ € Py, a member
of S whose share is strictly positive choosgse A(Ag) on behalf of his coalition. If the
resulting strategy profile is, then each player's final payoff is«; Z,'es (o), where
a; > 0 is playeri’s share of the payoff of the coalition of which he Is a membez §).
Notice that any player witky; > 0 is motivated to maximize the joint payoEieS j(a).
Thus, in subgame perfect equilibrium= (os,, ..., 05, ) € E(Pn).

If a proposal((«;)ies, S) becomes binding, then eithérwill be a part of the final
coalition structure, of will by unanimous consent be absorbed into some larger coalition
T > S. The rules do not allow defections from the binding proposal by any strict
subcoalition ofS. If the proposal(«;)ics, S) is binding and player € S “leaves,” then
he cannot consume immediately because his final paydff ;s 7 (o) will depend on
the final partitionPy (that is,o € E(Py)). What he can guarantee by leaving is that
coalition S will be one element of the final partitighy, and that he will get a shatg of
the coalition’s payoff. Although playere S does not know his final payoff until he knows
which other coalitions form, he does not fear that some partnets will “double-cross”
him by defecting frons, because the rules do not allow such destabilizing deviations from
a binding proposal.

For this modified game we can reprove Theorem 1 of Perry and Reny (1994), with r-core
replacing core, essentially using their arguments. For the sake of exposition we restrict
attention to the case= 3. Notice that in any three person gam&S) is well-defined for
all S € N, because& (N\S | N\S, S) # @. This is clearly true for the grand coalition or
any two-person coalitiol, and for any singleton coalitiofi = {i} it is also true because
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the remaining two players iN\{i} either stay together or break up. Hence, we can always
defineV (S) whenn = 3.

Proposition 5. Supposen = 3. Inthe modified Perry—Reny game, only r-core payoff vectors
can be SSPE payoff vector.

Proof. Fix an SSPE of the modified Perry—-Reny game ane (x1, x2, x3) be the
corresponding payoff vector. We will show thatmust be in the r-core. If it is not, then
there isS € N such that) ", ¢ x; < V(S), whereV (S) is the worth of coalitionS € N
calculated according to the r-core theory. There are three possibilitiss &md each will
yield a contradiction.

Case 1. |S| =2, sayS = {1, 2}. Suppose player 1 deviates from the SSPE by proposing
((a1, a2), {1, 2}) such thatx1V ({1, 2}) > x1 anda2V ({1, 2}) > x2 anday + a2 = 1. Such

a proposal is possible sinag + x2 < V ({1, 2}) by hypothesis. Moreover, by assumption
there ise > 0 such that no proposal is accepted in the intef@at], and any player can
deviate by making a proposal before timelLet player 1 immediately accept his own
proposal. If player 2 also accepts, then player 1 can guarantee that the final coalition
structure is({1, 2}, {3}) in which case his payoff is at least V ({1, 2}) > x1. This is

so becausé&’ ({1, 2}) is by definition the minimum that coalitiofi, 2} gets in coalition
structure({1, 2}, {3}), anda; is player 1's share of it. So to support the SSPE, player 2
must not accept this proposal, for if he accepts it then the deviation makes player 1 better
off. By accepting, however, player 2 can guarantee that the final coalition structure is
({1, 2}, {3}) which gives him at leasi> V ({1, 2}) > x2. So, if player 2 does not accept then

he must expect that some later proposal will give him even more dh&1i{1, 2}). But

then he couldimself have deviated from the original SSPE by making that very proposal
and obtained a payoff greater thap, which is a contradiction. This argument, which
follows Perry and Reny (1994), relies on the assumption that proposals are anonymous and
strategies stationary so it does not matter who makes a particular proposal. Thus, we have
shown that ifv1 + x2 < V ({1, 2}) thenx is not an SSPE payoff vector.

Case2. S = N. The argument is similar to Case 1.

Case3. S ={i}, sayS = {1}. Thenxy < V({1}). Suppose player 1 deviates from the SSPE
by proposing and accepting the coalitiol} and then “leaving” at time very close to
zero. By doing so he irrevocably commits not to cooperate with players 2 and 3. Players 2
and 3 remain at time without any current proposal on the table. Now, the subgame that
starts at timer must either end with the formation ¢2, 3}, or by the formation of two
singletons{2} and{3}. By the same argument as in Case 1, the continuation equilibrium
must agree with the r-core for the reduced socidty?}, i.e., the outcome must be in
C({2,3}]1{2,3}, {1}). However, sinceV/ ({1}) is player 1's minimal payoff among all the
strategy vectors irC ({2, 3} | {2, 3}, {1}), the deviation by player 1 will give him at least
V({1}) > x1, which is a contradiction. Thus, we have shown thakik V ({1}) thenx is

not an SSPE payoff vector.o
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