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Summary. We present a game in whichn persons split a cake, where a distinc-
tion between conditional and unconditional offers is made. This distinction sheds
light on the contrasting results obtained in the previous literature of multilateral
bargaining. By allowing the proposer to make both conditional and unconditional
offers, we show that the game has a unique subgame perfect Nash equilibrium
outcome.

Keywords and Phrases: Bargaining, Conditional and unconditional offers.

JEL Classification Numbers: C78, C72.

1 Introduction

In this paper we consider the problem of splitting a cake amongn persons. When
n = 2, Rubinstein [14] constructs a game where players make alternating offers.
He shows that the proposer’s ability to force the responder to choose between
accepting his offer now and waiting to counter-propose one period later pins
down the subgame perfect Nash equilibrium outcome uniquely.1

Attempts to generalize Rubinstein’s result ton > 2 have been less successful.
On one hand, Shaked (reported by Sutton [16]) defines a unanimity game.2 Since
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that it is impossible to point out every place that their comments have helped improve. I am grateful
to C. Y. Cyrus Chu, Hsueh-Ling Huynh, Hui-Wen Koo, Hsien-Ming Lien and seminar participants
at several places for helpful discussions. Financial support from the Chiang Ching Kuo foundation
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1 Throughout the paper, the equilibrium concept is the subgame perfect Nash equilibrium.
2 The rules of the unanimity game in the case of 3 players are as follows. Player 1 first proposes

a way to cut the cake. Players 2 and 3 are then called to answer yes or no either sequentially (in any
order) or simultaneously. The proposal is adopted if both say yes, but is rejected if either says no.
In the latter case, the game goes to period 2 with player 2 as the proposer and so on.
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unanimous agreement is needed for a proposal to take effect, every partition of
the cake can be supported as an equilibrium outcome when players are patient
enough.3 On the other hand, Krishna and Serrano4 [12] propose a bargaining
game with the possibility of “exit”.5 With the discount factor near 1, each player
gets about 1/n in equilibrium when players have linear utilities. The sharp con-
trast between the uniqueness result of Krishna and Serrano and the multiplicity
result of Shaked is perplexing.

This paper attempts to investigate these contrasting results further. To this
effect, we make a novel distinction between conditional and unconditional offers.

Observe that an offer in Shaked’s game is aconditional offer because even
if the proposed responder agrees, it will only take effect conditional on other
responders’ acceptance. On the other hand, an offer in Krishna and Serrano is of
unconditional nature since as long as the proposed responder agrees, he can take
that amount away immediately, irrespective of the other responders’ responses.
In the pure bargaining situation, only the grand coalition can produce the value
(the cake), and thus it is natural to interpret the conditional offer as an offer in
terms of cake, for a player can take a piece of cake away only when unanimous
agreement is reached. Following this, an unconditional offer should be interpreted
as some monetary payment that the proposer can have complete control over.
This explains why it only takes the proposed responder’s acceptance to make an
unconditional offer bind.

A priori, there is no theoretical ground why offers should take a conditional
or unconditional form. Furthermore, Shaked gets multiplicity of equilibria by
restricting offers to be conditional, while Krishna and Serrano get uniqueness
of equilibrium by restricting offers to be unconditional. To sort out how robust
these results are, it is natural to ask, in an environment where both conditional
and unconditional offers can be made, what will happen in equilibrium? This
precisely motivates the paper. We shall show that if the proposer can make
either conditional or unconditional offers, uniqueness still results.

In some sense, this result provides additional support to the uniqueness result
of Krishna and Serrano because it suggests that a restriction to unconditional
offers is not really a restriction since the equilibrium outcome is not affected by

3 For the case ofn > 3, Herrero [10] has demonstrated a similar result.
4 Jun [11], Chae and Yang [4, 5] and Yang [18] have proposed games with the possibility of exit.

However, their bargaining procedures are bilateral.
5 For the case ofn = 3, the game rules in the main model of Krishna and Serrano [12] are as

follows. In period 1, player 1 proposes a way (x1, x2, x3) to cut the cake, wherex1+x2+x3 = 1. Players
2 and 3 then simultaneously answer yes or no. If both say yes, the game ends with the proposed
partition implemented. If only one player, for instance player 2, says yes, then it is assumed that
player 2 exits withx2, evenwithout 3’s consent, and the game goes to period 2, where players 1 and
3 will play Rubinstein’s game for the remaining cake 1− x2. If no one says yes, the game also goes
to period 2 with 2 replacing 1’s role as the proposer and so on. However, in Section 8, Krishna and
Serrano provide another way to interpret their game. The difference is when 2 exits, players 1 and 3
play Rubinstein’s game for theentire cake. Yet 1’s payoff is adjusted by the pay-out, i.e., his final
payoff is his share of the cake minusx2.
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the introduction of conditional offers.6 However, as we shall argue below, there
are some differences between these two approaches.

Suppose thatn = 3 and the protocol is 1, 2, 3 and so on. We postulate the
following game. In period 1 player 1 makes two offers: one to player 2, another
to player 3. A proposer can decide whether to use his outside money to buy
responders out. If, for example, player 1 wants to buy out player 2, then the
offer binds if 2 agrees. Player 3’s consent is not needed because the offer is in
terms of 1’s outside money and thus it is a private transaction between 1 and
2. We call this anunconditional offer. On the other hand, if player 1 chooses
not to use his outside money to buy 2 out, then his offer to 2 is a share of the
cake and thus 3’s consent will be needed to make the offer bind. We call this a
conditional offer (the offer is conditional on player 3’s acceptance).

After the offers by player 1 are posted, players 2 and 3 are called to answer
either simultaneously or sequentially in any order. If both offers bind, the game
ends. If neither binds, the game goes to period 2 with 2 replacing 1 as the
proposer. If only one offer binds (for example, that between 1 and 2), then
player 1 buys 2 out. When this happens, in later rounds of bargaining, 1 and
3 still bargain over theentire cake because the transaction between 1 and 2 is
monetary. In return for the money he pays player 2, player 1 gets 2’sright-to-
propose in subsequent bargaining because a player’s only valuable resource is
his right to propose in different periods prescribed by the protocol.7 Thus, from
period 2 on, 1 and 3 play avariant of Rubinstein’s bargaining game where the
former gets 2 out of 3 turns to propose in a proposing cycle.8 To motivate the idea
that player 1 makes offers in succession, consider the following scenario. There
are several parties in the Congress. Every representative may have equal chances
to make proposals about a public policy. However, since a major party has more
representatives, the party’s proposal gets mentioned more often. Consider the
situation where partyA logrolls with partyB . For an issue that partyA strongly
cares about, partyB is essentially bought out byA and thus the representatives
from B might just dutifully propose what partyA might propose. From the aspect
of modelling, it might look like partyA can propose in consecutive periods.
With this interpretation in mind9, in Section 3, we shall show that the unique
equilibrium outcome is where player 1 gets1

1+δ+δ2 , 2 δ
1+δ+δ2 and 3 δ2

1+δ+δ2 while
δ is the common discount factor.

6 Note that it is not true vice versa. That is, a restriction to conditional offers is indeed a restriction.
If only conditional offers are allowed, the multiplicity result of Shaked applies. However, this is
not robust to the introduction of unconditional offers. As long as unconditional offers are allowed,
uniqueness results.

7 To appreciate this, consider the following variant of Rubinstein’s game. Suppose there are two
players, 1 and 2. The protocol is that 1 gets to propose in the first 99 periods (out of 100 periods)
while 2 only proposes in the last period. In equilibrium, player 1 will then get 99% of the cake while
2 only 1% when the discount factor is large enough. This suggests that a player’s bargaining position
in Rubinstein’s type of games is captured by his relative turns to make proposals in the protocol.

8 To be precise, the protocol from period 2 on is changed from 2, 3, 1 and so on to 1, 3, 1 and so
on.

9 This interpretation is similar to the game rules in Baron [2].



404 C.-Y. Huang

To intuitively understand why we obtain uniqueness, notice that the driving
force behind multiplicity of equilibria in Shaked’s unanimity game is that every
responder has veto power (or in our words, the offers are conditional) anddistinct
responders are used to reject different kinds of out of equilibrium offers. If
we relax this assumption by allowing proposers to make unconditional offers,
responders’ veto power is limited and hence uniqueness restored. It thus suggests
that the multiplicity result is not robust to the introduction of unconditional offers.
The proof in Section 3 relies heavily on the use of unconditional offers and
exactly reflects this intuition.

Although we get uniqueness as Krishna and Serrano did, the two games
however are different in the following respects. First, unlike Krishna and Serrano,
when an unconditional offer binds, the exiting responder confers on the proposer
his right to make proposals at every node where the former would have had
the right to make a proposal. Second, we interpret an unconditional offer as the
proposer using his outside resource to buy out a responder. In the case where the
proposer does not have money at hand, we can alternatively assume that he can
borrow to do so, but at the interest rate of1−δ

δ per period. On the other hand,
Krishna and Serrano assume that the proposer can borrow at zero interest cost.
Third, although the idea of the proof is similar to that of Lemma 3 in Krishna and
Serrano, the equilibrium responding strategies are relatively simple because no
matter what an existing binding unconditional offer is, the continuing subgame
is exactly the same and thus the remaining responders use the same equilibrium
responding strategies. This simplifies the proof greatly. Moreover, because the
proof is simple enough, the analysis will be so general as to cover all the cases
as long as the protocol is periodic. For instance, supposen = 3 and the protocol
is 1, 2, 1, 3 and so on, the unique equilibrium outcome is where 1 gets1+δ2

1+δ+δ2+δ3 ,

2 δ
1+δ+δ2+δ3 and 3 δ3

1+δ+δ2+δ3 .
The rest of the paper is organized as follows. Section 2 describes the setup

of the game. Section 3 contains the proof in showing the uniqueness of the
equilibrium outcome.

2 The setup of the game

Imagine a situation where a setN of n players is trying to split a cake of size 1.
Following Rubinstein [14], we assume that at the beginning of the game, there
is a fixed protocol. The protocol specifies who has the right to propose at what
time. Let p(t) be the proposer in periodt = 1, 2, 3, .... For our purpose, we are
going to assume that the protocol is cyclic. Let the periodicity of the protocol
be p < ∞ and assume that every player appears at least once in the protocol
of any cycle.10 From period to period, there is a common discount factorδ that

10 Hence,p ≥ n. If there is one player who has no right to propose, he will get 0 in equilibrium
and we can simply ignore him. Allowing this only complicates the notation.
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applies.11 We are going to assume that a proposer could use his outside money
to buy out responders.12

The following notations will be used. Suppose the game has evolved to
period t . Let C (t) denote the set of players still in the game in periodt . For
every playeri in C (t), let Bi (t) be the set of players who have sold their right-
to-proposedirectly to playeri before periodt . Let Di (t) denote the set of players
whose right-to-propose is owned byi at the beginning of periodt .13

Example 1 At t = 1, since everyone is still in the game, soC (1) = N , Bi (1) = ∅
andDi (1) = {i} for all i ∈ N .

If Bi (t) /= ∅, for every j ∈ Bi (t), player i must have bought out playerj in
some periodsj < t . Let xj (sj ) denote the amount that playeri pays playerj using
his outside money in periodsj .14 In periodt , C (t), {Bi (t)}i∈C (t), {Di (t)}i∈C (t) and
{xj (sj )}j∈Bi (t) and i∈C (t) summarize all the information about pervious binding
offers.

In period t , the game is played as follows. Playeri ∈ C (t) has the right to
propose in his own “endowment” periods, which are{s : p(s) = i and s ≥ t}
and those periods he “buys”, which are{s : p(s) ∈ Di (t)\{i} and s ≥ t}. So
there must exist a player, say playeri∗, who has the right to propose in period
t becausep(t) ∈ Di∗ (t).

Playeri∗ will make one offer to each player inC (t) except himself. An offer
could take an unconditional or conditional form. Anunconditional offer made
by playeri∗ to playerj in periodt is just a share denoted byxj (t), which should
be interpreted as the price thati∗ is willing to pay j in return for getting the
latter’s right-to-propose using his outside money in periodt . A conditional offer
made byi∗ to j is also a sharexj (t), but it comes with a condition which is a
non-empty setS ⊆ C (t)\{i∗, j}.15,16 This should be read as the offerxj (t) will
bind only if every player inS , in addition to playerj , says yes.17 In other words,
j ’s offer is conditional on the acceptance of the players inS .

After the offers are made, all the responders (C (t)\{i∗}), are called to answer
either simultaneously or sequentially (in any order). An answer could be either
yes or no. After the responders have answered, we can determine which offers
bind.

11 We assume that 0< δ < 1.
12 Alternatively, we may assume that the proposer can borrow at the interest cost of1−δ

δ
per period

to buy the responders out. Allowing this does not change the result.
13 Note that it is possiblei owns j ’s right-to-propose indirectly through buying outk , who has

boughtj out directly.
14 We may as well interpretxj (sj ) as the amount that playeri borrows (at the interest cost of

(1 − δ)/δ per period) in periodsj .
15 Of course, an unconditional offer could be thought as a conditional one with the condition being

empty and hence always valid. We separate the conditional and unconditional offers to make our
point clearer.

16 We certainly require that 0≤
∑

j∈C (t)\{i∗} xj (t) ≤ 1 andxj (t) ≥ 0 for all j ∈ C (t)\{i∗}.
17 Note that in the unanimity game,S = C (t)\{i∗, j} for every offerxj (t).
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If j is offered an unconditional offer and he answers yes, then the offer
betweeni∗ and j binds in periodt . Playerj sells his right-to-propose toi∗ and
i∗ pays j the amount ofxj (t) immediately using his outside money. Playerj ’s
payoff isxj (t)δt−1 −∑

k∈Bj (t)
xk (sk )δsk −1. On the other hand, ifj answers no, the

unconditional offer is void.
If j is offered a conditional offer and he answers yes, then the offer between

i∗ and j binds only if all the players inS answer yes. In that case,j ’s payoff is
calculated the same way. If eitherj answers no or anyone inS answers no, the
conditional offer is void.

Let A be the set of the responders whose offers bind in periodt .
If A = C (t)\{i∗}, then the game ends in this period. Playeri∗’s utility is

(1 − ∑
j∈C (t)\{i∗} xj (t))δt−1 − ∑

k∈Bi∗ (t) xk (sk )δsk −1.
If A = ∅, then the game goes to periodt +1 andC (t +1) = C (t), since no offer

binds in this period. Furthermore, nothing has changed, thus forj ∈ C (t + 1),
Dj (t + 1) = Dj (t), Bj (t + 1) = Bj (t). In this case, the proposing protocol is not
changed from periodt to t +1, so the person who ownsp(t +1)’s right-to-propose
will be the next proposer.

If A /= C (t)\{i∗} or ∅, then the game also goes to periodt +1, but we have to
update the information about the binding offers. In this case,C (t + 1) = C (t)\A
because playeri has bought out all the players inA. For any responder whose
offer does not bind, sayj ∈ C (t)\(A ∪ {i∗}), we haveDj (t + 1) = Dj (t) and
Bj (t + 1) = Bj (t). For playeri∗, since he buys out the rights from the players in
A, soBi∗ (t + 1) = Bi∗ (t) ∪ A with xj (sj ) for all j ∈ Bi∗ (t) andxj (t) for all j ∈ A.
Moreover, since playeri∗ also “inherited” the rights from the players he buys
out, thenDi∗ (t + 1) = Di∗ (t) ∪ {∪j∈ADj (t)}. The proposing protocol is updated
according to the new ownership structureDj (t + 1)’s for all j ∈ C (t + 1). The
person who ownsp(t + 1)’s right-to-propose will be the next proposer.

A player who never leaves the game gets the payoff of zero minus the dis-
counted sum of money he pays others during the play of the game.

Notice that whenn = 2 and the protocol is 1, 2 and so on, since a condi-
tional offer is the same as an unconditional offer, the game certainly reduces to
Rubinstein’s game.

3 The equilibrium

We will show that as long as the proposing cycle is periodic, the equilibrium
outcome of the game is unique.

The following notations will be used in the proof.
For all i ∈ C (t), let Ai (t) = {s | t ≤ s ≤ t + p − 1 andp(s) ∈ Di (t)}. In

words,Ai (t) is the set of periods where playeri is the proposer in the first cycle
of the proposing protocol starting from periodt .

Let 
 =
∑p

s=1 δs−1. Define

x∗
i (t) =

∑
s∈Ai (t)

δs


 ∗ δt
.
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Let x∗(t) be the vector where thei -th component isx∗
i (t) for all i ∈ C (t).

Notice that the set of periods where a remaining playeri serves as the pro-
poser, denoted byAi (t), depends on two things: the proposing protocol ,{p(t)}∞

t=1,
that we start the game with and the previous binding agreementsDi (t). Thus,
x∗

i (t) certainly depends on these two things as well. We illustrate this dependence
by the following example.

Example 2 Let n = 3 and the original protocol is 1, 2, 1, 3 and so on. Suppose
player 3 has sold his right to player 1 and no further binding agreement is reached.
Let us look atx∗(5). For the first proposing cycle starting from period5 , since
player 1 has not only his own endowment turns to propose, but also the turns
he bought from player 3, thus player 1 will be the proposer of periods 5, 7 and
8, player 2 of period 6. Thus,A1(5) = {5, 7, 8} and A2(5) = {6}. Accordingly,
x∗

1 (5) = 1+δ2+δ3

1+δ+δ2+δ3 andx∗
2 (5) = δ

1+δ+δ2+δ3 . ��

Intuitively, Ai (t) and thusx∗
i (t) reflect playeri ’s proposing position in the

first proposing cycle starting from periodt . Our goal is to show thatx∗
i (t) is

player i ’s equilibrium share in the subgame starting from periodt and x∗(1) is
the unique equilibrium outcome of the game. We now state the main result.

Theorem 3 The unique equilibrium outcome of the game is x∗(1) and is reached
in period 1.

Before presenting the formal proof, we first explain the idea. It is based
on the same argument in Lemma 3 of Krishna and Serrano.18 Suppose to the
contrary that there is an equilibrium where the proposer is getting less than his
equilibrium payoff. Then, when a certain profile of unconditional offers is made
and subsequently rejected, it must be unanimously rejected because otherwise the
responders’ expectations about the continuing equilibrium will be inconsistent.
Since every responder rejects an unconditional offer, he must expect to get more
in the continuing equilibrium. This further implies that the proposer is getting less
because of discounting. Exploiting the stationary structure of the game, this leads
us to conclude that if the proposer is getting less than his supposed equilibrium
share, there is another equilibrium in which he is getting even less. Iterating this
for enough times, there must be an equilibrium where the proposer is getting
negative payoff, but that is impossible since no player’s equilibrium payoff can
ever be negative. Thus, the proposer must be getting at least his equilibrium
payoff. Since every player serves as the proposer at different periods according
to the proposing protocol, this puts a lower bound for every player’s equilibrium
payoff. The sum of the lower bounds is exactly one, and thus the equilibrium
outcome is unique.

We first have the following observation.

Observation: For anyresponder i , x∗
i (t) = x∗

i (t + 1)δ if i ∈ C (t + 1).

18 A similar argument can also be found in Serrano [15].
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The observation simply says that a responder’s discounted equilibrium shares
in different periods stay the same. This is intuitive because the proposer tries to
keep the responder indifferent between accepting now or later.

We now state the induction hypothesis.

Induction hypothesis: Suppose upon reaching periodt , at least one player has
dropped out, so there are at mostn − 1 players remaining. The unique equi-
librium outcome of the subgame from periodt is x∗(t) and it will be reached
immediately.19

Before proving uniqueness, we first establish existence of an equilibrium.

Lemma 4 x∗(1) is an equilibrium outcome of the game and it is reached imme-
diately in period 1.

Proof. It is fairly easy to check that the following strategies constitute an equi-
librium and hencex∗(1) is reached in period 1.

Proposex∗
j (t) (conditionally or unconditionally) to any other playerj in C (t).

For any responderj , say yes if and only if the share in the offer is at leastx∗
j (t).

��
The equilibrium strategies are relatively simple compared to those in Lemma

2 of Krishna and Serrano. In this paper, a responder is affected by the previously
binding agreements only to the extent that he faces a proposer with more turns
to propose. At what price the other responder was bought out has no effect on
the continuing subgame. Thus, the responder’s best response is a simple one-
dimensional threshold instead of the complicated multi-dimensional acceptance
rules used in Lemma 2 of Krishna and Serrano.

For simplicity, callp(1) player 1. We first show that a certain profile of uncon-
ditional offers must be unanimously rejected if it is not unanimously accepted.20

Lemma 5 If 1 makes n−1 unconditional offers such that every responder i /= 1 is
offered x∗

i (t)+ l
(n−1)δ0.5(t−1) for some l > 0, and they are not unanimously accepted,

then they must be unanimously rejected.

Proof. Offers of this particular form must be unanimously rejected if they are not
unanimously accepted. For if the offers were neither unanimously accepted nor
unanimously rejected, then there must be some players who accept and others
reject. Take any rejecting playeri . By the induction hypothesis, he will get
x∗

i (t + 1) in t + 1. However,x∗
i (t + 1)δ = x∗

i (t) < x∗
i (t) + l

(n−1)δ0.5(t−1) . Hence,i
is better off accepting than rejecting. A contradiction. Thus, the profile of offers
must be unanimously rejected. ��

We argue next that given a particular equilibriumσ(t) from periodt , we can
generate another equilibriumσ(t + 1) from periodt + 1.

19 The induction hypothesis should read as: every playeri ∈ C (t) gets the equilibrium sharex∗
i (t)

in period t . To calculate playeri ’s utility, one needs to subtract the discounted sum playeri pays to
buy others out before periodt and apply discounting accordingly.

20 This is also a critical step in Lemma 3 of Krishna and Serrano.
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Lemma 6 Suppose upon reaching period t , no prior offer binds and an equilib-
rium σ(t) is supposed to be played from period t onward. Suppose 1’s equilibrium
payoff in σ(t) is strictly less than (x∗

1 (t) − l
δ0.5(t−1) )δt−1 for some l > 0. Then we

can construct an equilibrium σ(t + 1), played from period t + 1 onward (with all
players still in the game), where 1’s payoff is strictly less than (x∗

1 (t +1)− l
δ0.5t )δt .

Proof. In period t , either player 1 is the proposer or he is not. We discuss the
two possible cases.

1. Player 1 is the proposer in periodt .

If 1 makesn − 1 unconditional offers such that every responderi /= 1 is
offered x∗

i (t) + l
(n−1)δ0.5(t−1) , then the offers must not be unanimously accepted.

For if they were unanimously accepted, player 1 will get

(1 −
∑

i/=1

(x∗
i (t) +

l
(n − 1)δ0.5(t−1)

))δt−1

= (x∗
1 (t) − l

δ0.5(t−1)
)δt−1,

a contradiction toσ(t) being an equilibrium.
By Lemma 5, offers of this particular form must be unanimously rejected.

Since every responder rejects anunconditional offer, he must expect to get more
in the future. Denoteσ(t + 1) the continuing equilibrium.21 Assume that player
i leaves the game at periodsi (t + 1) > t . Denote i ’s equilibrium payoff by
zi (t + 1)δsi (t+1)−1.

Since every responder gets more than his periodt unconditional offer in
σ(t + 1), hence,

zi (t + 1)δt ≥ zi (t + 1)δsi (t+1)−1 ≥ (x∗
i (t) +

l
(n − 1)δ0.5(t−1)

)δt−1, ∀i /= 1.

Dividing by δt , we get

zi (t + 1) ≥ 1
δ

(x∗
i (t) +

l
(n − 1)δ0.5(t−1)

) = x∗
i (t + 1) +

l
(n − 1)δ0.5(t+1)

, ∀i /= 1

where the equality follows by the observation.
The sum ofzi (t + 1) across all the players is weakly less than 1,22 so

z1(t + 1) ≤ 1 −
∑

i/=1
zi (t + 1) < x∗

1 (t + 1)− l
δ0.5t

21 We know that all responders get strictly more than zero inσ(t + 1), so they must leave the game
at some point. Since all responders leave at some point, so does player 1.

22 Note thatzi (t + 1) can be interpreted as the “effective share” playeri gets in the period he drops
out in σ(t + 1). This saves us the effort to keep track of any unconditional binding transfers that
playeri makes before periodsi (t +1). The sum of thezi (t +1)’s over all the players has to be weakly
less than 1 because if unanimous agreement is reached in one period, then the sum of the effective
shareszi (t + 1)’s is just one. In all other cases, the agreement has to be reached over two consecutive
periods (by the induction hypothesis, once a player drops out, the others will drop out in the next
period). Due to discounting, the sum of the effective shares is weakly less than one.
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because
∑

i∈N x∗
i (t + 1) = 1 by definition.

The earliest period 1 can leave the game is periodt + 1, and thus 1’s equilib-
rium payoff inσ(t +1) is at mostz1(t +1)δt , strictly less than (x∗

1 (t +1)− l
δ0.5t )δt .

2. Player 1 is not a proposer in periodt .

In this case, if 1 rejects his offer, there will be no binding agreement reached
in period t . To see this, suppose to the contrary that some binding agreement
reached between the proposer and a responder other than 1. By the induction
hypothesis, player 1 gets

x∗
1 (t + 1)δt = x∗

1 (t)δt−1 > (x∗
1 (t) − l

δ0.5(t−1)
)δt−1,

where the first equality follows by the observation. This is clearly a contradiction
to σ(t) being an equilibrium. Thus, no agreement is reached in this period.

Denoteσ(t + 1) the continuing equilibrium from periodt + 1. Sinceσ(t + 1)
is generated fromσ(t) by 1’s unilateral deviation, his payoff inσ(t + 1) must be
no greater than that inσ(t).

Because

(x∗
1 (t) − l

δ0.5(t−1)
)δt−1 < (x∗

1 (t + 1)− l
δ0.5t

)δt ,

1’s equilibrium payoff inσ(t + 1) is strictly less than (x∗
1 (t + 1)− l

δ0.5t )δt .
We now summarize cases 1 and 2. In both cases, given 1’s payoff inσ(t) is

strictly less than (x∗
1 (t) − l

δ0.5(t−1) )δt−1, we construct a new equilibriumσ(t + 1),
where his payoff is strictly less than (x∗

1 (t + 1)− l
δ0.5t )δt . ��

The following lemma shows that player 1 gets at leastx∗
1 (1) in any equilib-

rium.

Lemma 7 Player 1 gets at least x∗
1 (1) in any equilibrium.

Proof. Suppose to the contrary that there exists an equilibrium, denoted byσ(1),
where 1’s payoff is strictly less thanx∗

1 (1). For somek > 0 small enough, 1’s
payoff is strictly less thanx∗

1 (1) − k .
Since 1’s payoff is strictly less thanx∗

1 (1) − k in σ(1), by going through
Lemma 6 forp times to complete a proposing cycle, we shall reach period 1 +p
with σ(1 + p). In σ(1 + p), 1’s payoff is strictly less than (x∗

1 (1) − k
δ0.5p )δp .

By stationarity of the game, we can treatσ(1 +p) as an equilibrium in period
1 and go through the argument all over again but replacek with k

δ0.5p andσ(1)
with σ(1+p). Iterating the process enough times23, eventually 1’s payoff in some
equilibrium σ(1 + mp) has to be negative,24 but that is impossible. Hence, 1’s
payoff in any equilibrium is at leastx∗

1 (1). ��

Similarly, any other playeri /= 1 gets at leastx∗
i (1) in any equilibrium.

23 So that a sequence of equilibria,σ(1), σ(1 + p), σ(1 + 2p) and so on, is generated.
24 A strict upper bound for player 1’s payoff inσ(1 + mp) is x∗

1 (1) − k
δ0.5∗pm ≤ 0 whenm is big

enough. Note thatm is the number of cycles that we have gone through.
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Lemma 8 Player i gets at least x∗
i (1) in any equilibrium, ∀ i ∈ N .

Proof. For any other playeri /= 1, denotes the first period he proposes according
to the protocol. Int < s, if no binding agreement has been reached before period
t , let i reject in that period. Eventually either no one leaves the game before
period s or in some periodt < s some agreement binds between the proposer
and a responder noti . In the first case, by a similar argument,i could guarantee
himselfx∗

i (s)δs−1, which is justx∗
i (1) by the observation. In the second case, by

the induction hypothesis,i getsx∗
i (t +1)δt , which is alsox∗

i (1) by the observation.
��

Since every playeri gets at leastx∗
i (1) and the sum of them is exactly one,

the uniqueness of the equilibrium outcome is implied. Thus, Lemmas 4 through
8 together complete the proof of Theorem 3.25

Remark 1 We wish to emphasize the importance of unconditional offers in pin-
ning down the equilibrium outcome uniquely. In Lemma 4, it does not matter
whether conditional or unconditional offers are made. Thus, there exists an equi-
librium where the proposer makes only unconditional offers. Moreover, Lemma
5 relies only on the use of unconditional offers. These two observations together
suggest that provided unconditional offers are allowed, all the results go through.
Conditional offers play no role in deriving uniqueness. Thus, as far as the equilib-
rium outcome is concerned, conditional offers are irrelevant when unconditional
offers are present. It is not true vice versa. If only conditional offers can be made,
Shaked’s multiplicity result applies. However, the multiplicity result is not robust
to the introduction of unconditional offers.
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