Government Transaction, Inflation, and Unemployment

Te-Tsun Chang

August 2012
Introduction

- Berensten, Menzio and Wright (2011)
- Labor Search (Mortensen and Pisarides 1994) + Monetary Search (Kiyotaki and Wright 1993)
- US: Positive-Sloped Phillips Curve
- Karanassou, Sala, and Snower (2003), Franz (2005), and Schreiber and Wolters (2007): the Phillips curve is negatively sloped in European countries.
Government Transaction

- Friedman (1977): In the modern world, governments are themselves producers of servers sold on the market: from postal services to a wide range of other items...
- The size of Gov’t affect prices and allocation?
- Government size or Government Transaction v.s Unemployment and Inflation?
- Some evidences
Literature Review

- **Lagos and Wright 2005 (LW) + Mortensen and Pisarides 1994 (MP):** Berensten, Menzio, and Wright (2011); Lucy Q. Liu (2009)

- **LW + RBC Labor:** Rocheteau, Rupert, and Wright (2007); Dong (2010)

- **MP + New Keynesian:** Gertler, Sala, and Trigari (2008); Gertler and Trigari (2009); Trigari (2009)

- **Shi Model (Large Household):** Shi (1998); Wang and Shi (2006)
Li and Wright (1998)

- government agents behave in an exogenous way regarding which objects they accept in trade and at what price
- Government agents’ transaction policy affects the set of equilibria.
Model Structure

- Li and Wright (1998) + BMW
- agents: firms f, households h, and government agents g
- $h \in [0, 1]$, the measure of g is ψ; f is arbitrarily large
- Each period consists of three subperiods.
- People go through three rounds of trades in one period
- subperiod: Labor mkt (MP mkt), Goods mkt (KW mkt), Arrow-Debreu mkt (AD mkt)
Some Notations

- **Value Functions:**
 - MP: $U^j_e(z)$
 - KW: $V^j_e(z)$
 - AD: $W^j_e(z)$.

 where $j \in \{h, f\}$; $e \in \{0, 1\}$ and $z \in [0, \infty)$ is the real balance.

- In the MP market, $e = 1$ if an agent is matched and $e = 0$ otherwise.
Some Notations in AD

- $z = m/p$,
- m is the dollars an agent bring to the AD market
- p is the current price level
- ρ: the reciprocal of the inflation rate in AD.
Government

- M: in the form of lump-sum transfers πM in the AD market
- π: the growth rate of money (= inflation rate).
- $\hat{M} = (1 + \pi)M$: the evolution of the money stock
- w^g: wages for bureaucrats
- b: UI benefits
- T: lump-sum taxes

Gov’t:

$$\psi \lambda_{g,b} \rho d^b + \psi w^g + bu = T + \frac{\pi M}{p} + \psi \lambda_{g,s} \rho d^s,$$ \hspace{1cm} (1)

where $\lambda_{g,b}$ and $\lambda_{g,s}$ are the probabilities to complete a trade.
Household: AD

\[
W^h_e(z) = \max_{x, \hat{z}} \{ x + (1 - e)l + \beta U^h_e(\hat{z}) \}
\]

s.t. \(x + \hat{z} = ew + (1 - e)b + F - T + z, \)

FOC: \(\beta \frac{\partial U^h_e(\hat{z})}{\partial \hat{z}} = 1, \)

Envelope Condition: \(\frac{\partial W^h_e(\hat{z})}{\partial \hat{z}} = 1. \)
Household: KW

\[V_e^h(z) = \alpha_h \{ v(q) + W_e^h [\rho(z - d)] \} \]

\[+ \alpha_p^h \{ v(q^s) + W_e^h [\rho(z - d^s)] \} + (1 - \alpha_h - \alpha_p^h) W_e^h (\rho z). \]

(q, d): terms of trade between *h* and *f*.

(q^s, d^s): terms of trade between *h* and *g*

v(q): utility from trade in KW;

\alpha_h: probability of a buyer to meet firms

\alpha_p^h: probability of a buyer to meet government agents
Household: MP

\[U^h_1(z) = \delta V^h_0 + (1 - \delta) V^h_1, \]
\[U^h_0(z) = \lambda^h V^h_1 + (1 - \lambda^h) V^h_0, \]

\(\delta\): job destruction rate
\(\lambda^h\): job creation rate

If match function is \(N(u, v)\), \(\lambda^h = N(u, v)/u\), \(v\) is the vacancy
Firm: MP

MP:

\[U_1^f (z) = \delta V_0^f + (1 - \delta) V_1^f, \]
\[U_0^f (z) = \lambda_f V_1^f + (1 - \lambda_f) V_0^f. \]

\[\lambda_f = \mathcal{N}(u, v)/v \]
Firm: KW mkt

KW:

\[V_0^f = 0 \]
\[V_1^f = \alpha_f W_1^f [y - c(q), \rho d] + \alpha_p^f W_1^f [y - c(q^b), \rho d^b] \]
\[+ (1 - \alpha_f - \alpha_p^f) W_e^h (y, 0). \]

\(y \): output in a match
\(c(q) = q \): transformation cost
Firm: AD mkt

\[W^f_1(x, z) = x + z - w + \beta U^f_1. \]

\[W^f_0 = \max\{k, \beta U^f_0\}. \]
Equilibrium

- Goods mkt: Nash bargaining $\rightarrow (q, d) = (g^{-1}(\rho z), z)$

- Labor mkt: Nash bargaining $\rightarrow w = \eta[\beta(1-\delta)](b+l)+(1-\eta)[\beta(1-\delta-\lambda_h)]R \over 1-\beta(1-\delta)+\eta\beta\lambda_h$

- Steady state condition: $(1-u)\delta = N(u, v)$

- $\alpha_h = {S \over B+S+G} = {1-u \over 2-u+\psi}$, $\alpha^p_h = {G \over B+S+G} = {\psi \over 2-u+\psi}$

- $\alpha_f = {B \over B+S+G} = {1 \over 2-u+\psi}$, $\alpha^p_f = {G \over B+S+G} = {\psi \over 2-u+\psi}$
LW curve: From Household’s Problem

\[q^s = q, d^s = d: \]

\[i = \frac{1 - u + \psi}{2 - u + \psi} \left(\frac{\nu'(q)}{g'(q)} - 1 \right), \]

Define: \(i = \frac{1}{\beta \rho} - 1 \).

\(q^s \) too small:

\[i = \frac{1 - u}{2 - u + \psi} \frac{\nu'(q)}{g'(q)} - \frac{1 - u + \psi}{2 - u + \psi} \]
MP curve: From Firms’ Problem

\[q^b = q, \ d^b = d: \]

\[k = \frac{\eta \frac{N(u,v)}{v} \{ y - b - l + \frac{1+\psi}{2-u+\psi} [g(q) - q] \}}{r + \delta + (1 - \delta) \frac{N(u,v)}{u}}. \]

\[q^b \neq q: \]

Consider government agents make a take-it-or-leave-it offers to firms, \(\rho d^b = q^b: \)

\[k = \frac{\eta \frac{N(u,v)}{v} \{ y - b - l + \frac{1}{2-u+\psi} [g(q) - q] \}}{r + \delta + (1 - \delta) \frac{N(u,v)}{u}}. \]
Without government agents
With government agents

Te-Tsun Chang

Government Transaction, Inflation, and Unemployment

LW

MP
Results

- LW curve:
 As $q^s = q$, $\psi \uparrow \implies$ LW shifts to the right
 As q^s small enough, $\psi \uparrow \implies$ LW shifts to the left

- MP curve:
 if $q^b = q$, $\psi \uparrow \implies$ MP shifts to the left
 if $\rho d^b = q^b$, $\psi \uparrow \implies$ MP shifts to the right
\[\nu(q) = Aq^{1-q}/(1 - a), \quad N(u, v) = Zu^{1-\sigma}v^\sigma \]

- \(b = w/2 \)

- Hagedorn and Manovskii (2008): \((b + l)/y = 0.95 \)
Calibrations

Table: Key parameter values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>discount factor</td>
<td>0.992</td>
</tr>
<tr>
<td>l</td>
<td>value of leisure</td>
<td>0.504</td>
</tr>
<tr>
<td>A</td>
<td>KW utility weight</td>
<td>1.08</td>
</tr>
<tr>
<td>a</td>
<td>KW utility elasticity</td>
<td>0.179</td>
</tr>
<tr>
<td>δ</td>
<td>job destruction rate</td>
<td>0.05</td>
</tr>
<tr>
<td>k</td>
<td>vacancy posting cost (10^{-4})</td>
<td>8.44</td>
</tr>
<tr>
<td>Z</td>
<td>MP matching efficiency</td>
<td>0.364</td>
</tr>
<tr>
<td>σ</td>
<td>MP matching v elasticity</td>
<td>0.28</td>
</tr>
<tr>
<td>η</td>
<td>MP firm bargaining share</td>
<td>0.28</td>
</tr>
<tr>
<td>θ</td>
<td>KW firm bargaining share</td>
<td>0.275</td>
</tr>
</tbody>
</table>
Case I: $q^s = q^b = q$

Table: u

<table>
<thead>
<tr>
<th></th>
<th>$\psi = 0$</th>
<th>$\psi = 0.1$</th>
<th>$\psi = 0.2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i = 0.068$</td>
<td>0.052</td>
<td>0.048</td>
<td>0.046</td>
</tr>
<tr>
<td>$i = 0.071$</td>
<td>0.053</td>
<td>0.050</td>
<td>0.047</td>
</tr>
<tr>
<td>$i = 0.074$</td>
<td>0.055</td>
<td>0.051</td>
<td>0.048</td>
</tr>
</tbody>
</table>
Case I: \(q^s = q^b = q \)

Table: \(q \)

<table>
<thead>
<tr>
<th>(\psi)</th>
<th>(\psi = 0)</th>
<th>(\psi = 0.1)</th>
<th>(\psi = 0.2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i = 0.068)</td>
<td>0.099</td>
<td>0.110</td>
<td>0.12</td>
</tr>
<tr>
<td>(i = 0.071)</td>
<td>0.091</td>
<td>0.101</td>
<td>0.110</td>
</tr>
<tr>
<td>(i = 0.074)</td>
<td>0.082</td>
<td>0.092</td>
<td>0.101</td>
</tr>
</tbody>
</table>
Case II: $q^s \neq q, \rho d^b = q^b$

Table: u

<table>
<thead>
<tr>
<th>ψ</th>
<th>$\psi = 0$</th>
<th>$\psi = 0.1$</th>
<th>$\psi = 0.2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i = 0.068$</td>
<td>0.052</td>
<td>0.083</td>
<td>0.099</td>
</tr>
<tr>
<td>$i = 0.071$</td>
<td>0.053</td>
<td>0.084</td>
<td>0.100</td>
</tr>
<tr>
<td>$i = 0.074$</td>
<td>0.055</td>
<td>0.085</td>
<td>0.101</td>
</tr>
</tbody>
</table>
Case II: $q^s \neq q$, $\rho d^b = q^b$

<table>
<thead>
<tr>
<th></th>
<th>$\psi = 0$</th>
<th>$\psi = 0.1$</th>
<th>$\psi = 0.2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i = 0.068$</td>
<td>0.099</td>
<td>0.051</td>
<td>0.071</td>
</tr>
<tr>
<td>$i = 0.071$</td>
<td>0.091</td>
<td>0.203</td>
<td>0.006</td>
</tr>
<tr>
<td>$i = 0.074$</td>
<td>0.082</td>
<td>0.019</td>
<td>0.0057</td>
</tr>
</tbody>
</table>
Conclusion

- The presence of government agents changes the set of equilibria.
- The size of government matters for the slope of Phillips curve.