發育再生研究快報

Autotaxin-Lpar3 Signaling Regulates Kupffer's Vesicle Formation and Left-Right Asymmetry in Zebrafish

Shih-Lei Lai¹, Wan-Ling Yao¹, Ku-Chi Tsao¹, Anna J.S. Houben², Harald M. H. G. Albers², Huib Ovaa², Wouter H. Moolenaar² and Shyh-Jye Lee (李士傑)^{1,3,4,5,6*}

¹Institute of Zoology, ³Department of Life Science, ⁴Center for Systems Biology, ⁵Center for Biotechnology, ⁶Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, 1 Roosevelt Rd., Sec., 4, Taipei 10617, Taiwan, R.O.C.; ²Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam *Correspondence

Development, in press

Abstract

Left-right (L-R) pattering is essential for proper organ morphogenesis and function. Calcium fluxes in dorsal forerunner cells (DFCs) are known to regulate the formation of Kupffer's vesicle, a central organ for establishing L-R asymmetry in zebrafish. Here we identify the lipid mediator lysophosphatidic acid (LPA) as a regulator of L-R asymmetry in zebrafish embryos. LPA is produced by autotaxin (ATX), a secreted lysophospholipase D, and triggers various cellular responses through activation of specific G protein-coupled receptors (LPAR1-6). Knockdown of Atx (atx) or LPA receptor 3 (lpar3) by morpholino oligonucleotides perturbed asymmetric gene expression in lateral plate mesoderm and disrupted organ L-R asymmetries, while overexpression of *lpar3* partially rescued those defects in both *atx* and *lpar3* morphants. Similar defects were observed in embryos treated with ATX inhibitor HA130 and LPAR1-3 inhibitor Ki16425. Knockdown of either atx or lpar3 impaired calcium fluxes in DFCs during mid-epiboly stage and compromised DFC cohesive migration, KV formation and ciliogenesis. Application of LPA to DFCs rescued the calcium signal and laterality defects in atx morphants. This LPA-dependent L-R asymmetry is mediated via Wnt signaling, as shown by the accumulation of β-catenin in nuclei at the dorsal side of both atx and lpar3 morphants. Our results suggest a major role for the Atx-Lpar3 signaling axis in regulating KV formation, ciliogenesis and L-R asymmetry via a Wnt-dependent pathway.

Keywords: autotaxin, lysophosphatidic acid, calcium, Left-right asymmetry.

聯絡人:劉麗芳 發育生物學與再生醫學研究中心 Research Center for Developmental Biology and Regenerative Medicine Tel: 02-23123456 轉 71632 E-mail: <u>polocz9082@yahoo.com.tw</u> 100 台北市中山南路 8 號 兒童醫療大樓 16 樓 P16022 室
