Multiple Deposit Creation

There are 4 players in the process of money creation

- 1. The central bank
- 2. Depository institutions
- 3. Depositors
- 4. Borrowers

Assets	Liabilities				
Government Securities	Currency Issued				
Discount Loans	Deposits with CB				
Foreign Assets					

準備貨幣 (Reserve Money; High-powered Money; Monetary Base) = 流通中通貨 (Currency in Circulation) + 金融機構準備金 (Total Reserves)

(=通貨發行額(Currency Issued) + 存放央行與其他行庫(Deposits with CB) - 央行 庫存現金)

金融機構準備金(Total Reserves) = 存放央行與其他行庫(Deposits with CB) + 庫存 現金(Vault cash)

準備貨幣 (RESERVE MONEY)

日平均數

單位:新台幣百萬元

		金融機構準備	~	貨幣機構及	文中華郵政儲匯				
		金融機構牛佣	亚	扶	宇有通貨(通貨)	準備貨幣			
年月		Total Reserv	res	Curr	ency in Circ				
	計 庫存現金 1		存放央行	計	通貨發行額	庫存現金2			
	Sub-	Cash in	Deposits	Sub-	Currency	Cash in	Reserve		
	total	vaults	with CB	total	issued	vaults	money		
	(1)=(2)+(3)	(2)	(3)	(4)=(5)-(6)	(5)	(6)	(7)=(1)+(4)		
Jan. 2010	1,402,822	206,500	1,196,322	936,490	1,143,237	206,747	2,339,312		

1 係指存款貨幣機構及中華郵政公司儲匯處持有部分。

2 係指全體貨幣機構及中華郵政公司儲匯處持有部分。

Remarks:

- (1) The central bank can control MB better than it can control reserves, because C/D may change.
- (2) Discount loans are partially determined by the decision of banks. Thus, what the central bank can fully control is non-borrowed reserves (TR-DL).

Deposits Creation by the Banking System

Recall M1B = C + D

Let required reserve ratio is r=10%.

Thus, $\mathbf{TR} = \mathbf{RR} + \mathbf{ER} = \mathbf{r} \times \mathbf{D} + \mathbf{ER}$

Assumptions

(1) Banks do not hold excess reserves (ER = 0).

(2) Depositors do not hold currency (C = 0)

Suppose central bank use open market purchase to buy \$100 of Gov. bond from Bank 1,

Bank 1			Bank 1				Bank 2				
TR	+100		TR	+0			TR	+100	D	+100	
S	-100		S	-100							
			L	+100							
	Bank 2			Bank 3			Bank 3				
TR	+10 D	+100	TR	+90	D	+90	TR	+9	D	+90	
L	+90						L	+81			

Total deposits created is

 $\Delta D = 100 + 90 + 81 + ... = \Delta TR + \Delta TR \times (1-r) + \Delta TR \times (1-r)^{2} + ...$

$$= \frac{\Delta TR}{r} = \frac{\$100}{0.1} = \$1000.$$

When the process of money creation is completed

	The Bank	ting S	ystem	Central Bank					
TR	+100	D	+1000	S	+100	Deposits at CB +100			
L	+1000								
S	-100								

Recall that given the above two assumptions, total changes in the monetary aggregate is $\Delta M 1B = \Delta D = \1000 .

Since ER=0 and C=0, $TR = RR + ER = r \times D$, and MB=C+TR=TR.

Thus,
$$\Delta D = \frac{1}{r} \Delta TR$$
, and $\Delta M 1B = \Delta C + \Delta D = \frac{1}{r} \Delta TR = \frac{1}{r} \Delta MB$.
Q: If r=0, will M1B does to infinity?

Example: Let the required reserve ratio for demand deposit be 10% and that for time deposit is 0%. Suppose a depositor transfers \$100 from demand deposit to time deposit.

(1) The instant impact is that M1 decreases by \$100 and M2 remains unchanged.

(2) What happen when the process of money creation is completed?

Bank 1				Bank 1				Bank 2				
RR	-10	D	-\$100	RR	-10	D	-\$100	_	TR	+10	D	+10
ER	+10	TD	+100	ER	+0	TD	+100					
				L	+10							

Total change in time deposit is +\$100.

Total change in demand deposit is -\$100 + \$10 + \$9 + \$8.1 + ... = \$0.

To derive the general formula of money multiplier, we relax the above two assumptions.

Assume $\frac{ER}{D}$ (controlled by banks and borrowers) and $\frac{C}{D}$ (controlled by the public)

are constant in the short-run.

Since
$$\mathbf{TR} = \mathbf{RR} + \mathbf{ER} = \mathbf{r} \times \mathbf{D} + \mathbf{ER}$$
,

$$MB = C + TR = C + r \times D + ER;$$

$$MB = C + TR = \left(\frac{C}{D} + r + \frac{ER}{D}\right) \times D;$$

By the definition of M1B,

M1B = C + D =
$$\left(\frac{C}{D} + 1\right)$$
×D = $\frac{\frac{C}{D} + 1}{\frac{C}{D} + r + \frac{ER}{D}}$ ×MB

 $= m \times MB$,

where *m* is the money multiplier.

Remarks:

- (1) The money multiplier decreases in ER/D, r, and C/D.
- (2) The money multiplier reflects the maximum extent of a given amount of MB can expand. It represents an upper bound of money creation by the banking system.

Example: =10%, C/D=0.5, ER/D=0.001, D=\$1000. (1) What MB, M1B, and *m*?

$$\boldsymbol{m} = \frac{\frac{C}{D} + 1}{\frac{C}{D} + r + \frac{ER}{D}} = \frac{0.5 + 1}{0.5 + 0.1 + 0.001} = 2.4958.$$

M1B = C + D = \$500 + \$1000 = \$1500.MB = C + TR = \$500 + (0.1+0.001)\$1000 = \$601.

(2) The Fed purchases \$10 of Gov. bond in the open market, what are changes in M1B and M2 after the process of money creation is completed?

 $\Delta M1B = \mathbf{m} \times \Delta MB = 2.4958 \times (\Delta C + \Delta R) = 2.4958 \times \Delta R = 24.958.$

$$M1B = 1524.958 = C + D = D(1 + \frac{C}{D})$$
. Thus, new D = 1016.639 and C = 508.314.

Are ER/D and C/D constant over time?

(1) Take a look at ER/D of the banking system in Taiwan.

(2) During bank runs, panics, and contagion, C/D and ER/D rise substantially.

-- e.g., During 1930-33, MB increased by 20%, but M1 declined by 25% in U.S.

