Multiple Deposit Creation

There are 4 players in the process of money creation
1．The central bank
2．Depository institutions
3．Depositors
4．Borrowers

Balance Sheet of the Central Bank

Assets
Government Securities Discount Loans Foreign Assets

Liabilities

> Currency Issued

Deposits with CB

準備貨幣（Reserve Money；High－powered Money；Monetary Base）＝流通中通貨 （Currency in Circulation）+ 金融機構潐備金（Total Reserves）
（＝通貨發行額（Currency Issued）＋存放央行與其他行庫（Deposits with CB）－央行庫存現金）

金融機構準備金 $($ Total Reserves $)=$ 存放央行與其他行庫 $($ Deposits with $C B)+$ 庫存現金（Vault cash）

準備貨幣（RESERVE MONEY）

1 係指存款貨幣機構及中華郵政公司儲匯處持有部分。
2 係指全體貨幣機構及中華郵政公司儲匯處持有部分。

Remarks：
(1) The central bank can control MB better than it can control reserves, because C / D may change.
(2) Discount loans are partially determined by the decision of banks. Thus, what the central bank can fully control is non-borrowed reserves (TR-DL).

Deposits Creation by the Banking System

Recall M1B = C + D
Let required reserve ratio is $\mathrm{r}=10 \%$.
Thus, $\mathrm{TR}=\mathrm{RR}+\mathrm{ER}=\mathrm{rxD}+\mathrm{ER}$
Assumptions
(1) Banks do not hold excess reserves $(E R=0)$.
(2) Depositors do not hold currency $(\mathrm{C}=0)$

Suppose central bank use open market purchase to buy $\$ 100$ of Gov. bond from Bank 1,

Bank 1				
TR	+100			
S	-100			
Bank 2				
TR	+10	D		
L	+90			

Bank 1		
TR	+0	
S	-100	
L	+100	

Bank 2

TR	+100	D	+100

Bank 3			
TR	+90		

Bank 3			
TR	+9	D	+90
L	+81		

Total deposits created is

$$
\begin{aligned}
\Delta D & =100+90+81+\ldots=\Delta T R+\Delta T R \times(1-\mathrm{r})+\Delta T R \times(1-\mathrm{r})^{2}+\ldots \\
& =\frac{\Delta T R}{r}=\frac{\$ 100}{0.1}=\$ 1000 .
\end{aligned}
$$

When the process of money creation is completed

The Banking System

TR	+100	D	+1000
L	+1000		
S	-100		

Central Bank

S	+100	Deposits at CB +100

Recall that given the above two assumptions, total changes in the monetary aggregate is $\Delta M 1 B=\Delta D=\$ 1000$.

Since $E R=0$ and $C=0$,
$T R=R R+E R=r \times D$, and $M B=C+T R=T R$.

Thus, $\Delta D=\frac{1}{r} \Delta T R$, and $\Delta M 1 B=\Delta C+\Delta D=\frac{1}{r} \Delta T R=\frac{1}{r} \Delta M B$.
Q : If $\mathrm{r}=0$, will M1B does to infinity?

Example: Let the required reserve ratio for demand deposit be 10% and that for time deposit is 0%. Suppose a depositor transfers $\$ 100$ from demand deposit to time deposit.
(1) The instant impact is that M1 decreases by $\$ 100$ and M 2 remains unchanged.
(2) What happen when the process of money creation is completed?

Bank 1			
RR	-10	D	$-\$ 100$
ER	+10	TD	+100

Bank 1				Bank 2			
RR	-10	D	-\$100	TR	+10	D	+10
ER	+0	TD	+100				
	+10						

Total change in time deposit is $+\$ 100$.
Total change in demand deposit is $-\$ 100+\$ 10+\$ 9+\$ 8.1+\ldots=\$ 0$.

To derive the general formula of money multiplier, we relax the above two assumptions.
Assume $\frac{E R}{D}$ (controlled by banks and borrowers) and $\frac{C}{D}$ (controlled by the public) are constant in the short-run.
Since $T R=R R+E R=r \times D+E R$,
$\mathrm{MB}=\mathrm{C}+\mathrm{TR}=\mathrm{C}+\mathrm{r} \times \mathrm{D}+\mathrm{ER} ;$
$\mathrm{MB}=\mathrm{C}+\mathrm{TR}=\left(\frac{C}{D}+\mathrm{r}+\frac{E R}{D}\right) \times \mathrm{D} ;$
By the definition of M1B,

$$
\begin{aligned}
\mathrm{M} 1 \mathrm{~B} & =\mathrm{C}+\mathrm{D}=\left(\frac{C}{D}+1\right) \times \mathrm{D}=\frac{\frac{C}{D}+1}{\frac{C}{D}+r+\frac{E R}{D}} \times \mathrm{MB} \\
& =\boldsymbol{m} \times \mathrm{MB}
\end{aligned}
$$

where \boldsymbol{m} is the money multiplier.

Remarks:
(1) The money multiplier decreases in ER/D, r, and C/D.
(2) The money multiplier reflects the maximum extent of a given amount of MB can expand. It represents an upper bound of money creation by the banking system.

Example: $=10 \%, C / D=0.5, E R / D=0.001, D=\$ 1000$.
(1) What MB, M1B, and \boldsymbol{m} ?
$\boldsymbol{m}=\frac{\frac{C}{D}+1}{\frac{C}{D}+r+\frac{E R}{D}}=\frac{0.5+1}{0.5+0.1+0.001}=2.4958$.
$\mathrm{M} 1 \mathrm{~B}=\mathrm{C}+\mathrm{D}=\$ 500+\$ 1000=\$ 1500$.
$\mathrm{MB}=\mathrm{C}+\mathrm{TR}=\$ 500+(0.1+0.001) \$ 1000=\$ 601$.
(2) The Fed purchases $\$ 10$ of Gov. bond in the open market, what are changes in M1B and M2 after the process of money creation is completed?
$\Delta M 1 B=\mathrm{m} \times \Delta M B=2.4958 \times(\Delta C+\Delta R)=2.4958 \times \Delta R=24.958$.
$M 1 B=1524.958=C+D=D\left(1+\frac{C}{D}\right)$. Thus, new $\mathrm{D}=1016.639$ and $\mathrm{C}=508.314$.

Are ER/D and C/D constant over time?
(1) Take a look at ER/D of the banking system in Taiwan.
(2) During bank runs, panics, and contagion, C/D and ER/D rise substantially.
-- e.g., During 1930-33, MB increased by 20%, but M1 declined by 25% in U.S.

