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Signaling pathways of magnolol-induced adrenal steroidogensis

Yung-Chia Chen, Ming-Fong Chang, Ying Chen, Seu-Mei Wang*

Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, 1-1 Jen-Ai Road, Taipei, Taiwan 100

Received 20 April 2005; revised 24 June 2005; accepted 27 June 2005

Available online 18 July 2005

Edited by Lukas Huber
Abstract This study focused on identifying the signalling medi-
ating the effect of magnolol on corticosterone production. Mag-
nolol-induced corticosterone production was completely inhibited
by mitogen-activated protein kinase kinase (MEK)-inhibitor
PD98059, tyrosine kinase (TK)-inhibitor genistein or Janus
tyrosine kinase 2 (JAK2)-inhibitor AG490, suggesting that
extracellular signal-regulated kinase (ERK) and JAK2 are both
involved in this signaling cascade. Further, magnolol induced the
transient phosphorylation of MEK, ERK, cAMP response-ele-
ment binding protein (CREB) and the expression of 32 and
30 kDa steroidogenic acute regulatory protein (StAR) in a
time-dependent manner. Inhibition of TK or JAK2 activities
blocked magnolol-induced phosphorylation of MEK and ERK,
again supporting the upstream role of JAK2. The activation of
JAK2 or MEK apparently mediated the magnolol-induced phos-
phorylation of CREB and the upregulation of StAR. These find-
ings demonstrate a novel pathway for magnolol to induce the
expression of StAR, which regulates the rate-limiting step in
sterodiogenesis.
� 2005 Federation of European Biochemical Societies Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Recent studies indicate that signaling pathways other than

protein kinase A (PKA) and protein kinase C, including

extracellular signal related-regulated kinase (ERK) and tyrosine

kinase (TK) pathways regulate steroidogensis in adrenal Y1 and

bovine adrenal glomerulosa cells [1–3]. In rat Leydig cells, inhi-

bition of ERK activation suppresses human chorionic gonado-

tropin-induced steroidogenesis by controlling the synthesis of

steroidogenic acute regulatory protein (StAR) protein [4]. In

addition, luteinizing hormone and follicle stimulating hormone

also induce ERK1/2 phosphorylation and stimulate progester-

one production in rat ovarian granulose cells [5]. Genistein

inhibits angiotensin II (Ang II)-induced calcium influx and aldo-

sterone production in bovine glomerulosa cells and 3b-hydroxy-
steroid dehydrogenase activity in H295R cells [6,7]. Moreover,
Abbreviations: Ang II, Angiotensin II; CREB, cAMP response-
element binding protein; ERK, extracellular signal related-regulated
kinase; HSL, hormone-sensitive lipase; JAK2, Janus tyrosine kinase 2;
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activation of TKbyfibroblast growth factor, a receptor TKago-

nist, rapidly increases the phosphorylation ofmitogen-activated

protein kinase kinase (MEK) and ERK isoforms in Y1 adrenal

tumor cells [8]. Recently, prolactin was found to stimulate por-

cine adrenal cortisol production via a TK-dependent process

[9]. More specifically, Src kinase inhibitor PP2 prevents Ang

II-stimulated aldosterone production [7]. Janus tyrosine kinase

2 (JAK2), a member of the family of soluble tyrosine kinases,

is activated by auto- or trans-phosphorylation of specific tyro-

sine residues [10]. Inhibition of JAK2 activity by AG490 blocks

Ang II-induced StAR promoter activity and steroid production

[11]. In 3T3-422A cells, JAK signaling can lead to the recruit-

ment of other SH2 domain-containing proteins to JAK2, such

as the Shc adaptor protein, leading to the activation of the

Ras-ERK signaling pathway [12].

In a series of magnolol-related studies, we found that magno-

lol also induces lipolysis in lipid-laden RAW264.7 macrophages

[13] and sterol ester-loaded 3T3-L1 preadipocytes, and the sig-

naling pathway of the latter event involves ERK [14]. However,

whether the same signaling pathway accounts for magnolol-in-

duced steroidogenesis in adrenal cells has not yet been eluci-

dated. In this study, we examined the involvement of ERK in

magnolol-activated signaling pathways in adrenal cells.
2. Materials and Methods

2.1. Cell culture
Adult female Wistar rats (8–12 weeks of age) were purchased

from the facility for Research Animal of the National Taiwan
University. The maintenance and use of the animals were in accor-
dance with the ‘‘Guide for the Care and Use of Laboratory Ani-
mals’’ published by the US National Institute of Health (NIH
publication No. 85-23, revised 1985). The animals were anesthetized
with 7% chloral hydrate (6 ml/kg) by intraperitoneal injection, and
adrenocortical cells were prepared by enzymatic dispersion with type
II collagenase (Sigma) as described previously [15]. Cells were main-
tained in 1:1 v/v mixture of Ham�s F12 medium and Dulbecco�s
modified Eagle�s medium (Gibco, Rockville, MD), supplemented
with 25 mM HEPES, 5% horse serum (Gibco), 2.5% fetal bovine
serum (Gibco), and 1% penicillin and streptomycin in 24-well plates
or 35-mm culture dishes for 3 days at 37 �C in a 95% air and 5%
CO2 humidified atmosphere.
2.2. Drug treatment
Magnolol, isolated from Magnolia officialis with a purity of over

99%, was purchased from the Pharmaceutical Industry Technology
and Development Center (Taiwan). The MEK inhibitor, PD98059,
and selective JAK2 inhibitor, AG490, were purchased from Calbio-
chem (La Jolla, CA). TK inhibitor genistein was purchased from
Sigma Chemical Co. (St. Louis, MO). Proteaosome inhibitor MG
132 was obtained from Tocris Cookson Ltd. (Avonmounth,
UK). The inhibitors were added 30 min prior to the addition of
magnolol.
blished by Elsevier B.V. All rights reserved.
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Fig. 1. Time- and dose-dependent response of magnolol on adrenal
steroidogenesis. Adrenal cells were treated with 0.1% DMSO (vehicle
control) or different concentrations of magnolol (10, 20, 30 lM) for 3,
6, 12 and 24 h. The culture supernatants were assayed for corticoste-
rone. Results given are from a representative of three separate
experiments performed in triplicate.
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2.3. Staining for necrotic and apoptotic cells
Cells were treated with DMSO (vehicle control) or magnolol at dif-

ferent concentrations for 6 h, washed with phosphate-buffered saline
(PBS) and incubated with propidium iodide (50 lg/ml in serum-free
medium) for 1 h in a CO2 incubator. After a brief wash with PBS, live
cells were fixed in 10% formalin for 5 min, washed with PBS and
mounted in fluorescence mounting medium. For nuclear staining, cells
were fixed in 5% formalin and 0.5% Triton X-100 for 5 min at room
temperature, washed with PBS and stained with DAPI (4 0,6-diami-
dino-2-phenylindole, Sigma) solution (1 lg/ml DAPI in 0.9% NaCl)
for 15 min. The apoptotic cells were identified by the presence of
chromatin condensation or apoptotic body formation. All experiments
were performed in triplicate and more than one hundred cells were
examined per dish.

2.4. Corticosterone radioimmunoassay
After drug treatments, 5 ll of the culture medium was diluted

(1:20) with the assay buffer (0.05 M Tris–HCl, pH 8.0, containing
0.1 M NaCl, 0.1% NaN3, and 0.1% of bovine serum albumin) and
incubated with 500 ll of 1:10 diluted rabbit anti-corticosterone anti-
body (Sigma). After 20 min at 37 �C, 100 ll of 3H-corticosterone
(10000 cpm in assay buffer) (Amersham Bioscience, UK) was added
to the mixture and incubated for 1 h at 37 �C and then 1 h at 4 �C.
The free hormones were adsorbed on 200 ll of dextran-coated char-
coal (0.5% dextran and 1.25% charcoal) in assay buffer for 10 min
and the bound hormones separated by centrifugation at
13000 rpm for 10 min. The supernatant (about 0.7 ml) was
transferred to a counting vial containing 3 ml of counting solution
(Ecoscient H) before counting in a b-counter (LS600IC, Beckman,
Fullerton, CA). A standard curve was established using corticoste-
rone standard (Sigma).

2.5. Western blot analysis
After various treatments, cells in 35 mm dishes were washed with

PBS, collected in 50 ll lysis buffer (0.15% Triton-X 100, 2 mM
MgCl2, 25 mM HEPES, 60 mM PIPES and 1 mM EDTA, 1 mM
phenylmethylsulfonyl fluoride, 1 lg/ml aprotronin, 1 lg/ml pepstatin
A and 1 lg/ml leupeptin, pH 6.9) and sonicated for 20 cycles of
10-s pulses. Protein concentrations were determined using a protein
assay kit (BioRad Life Sciences, Hercules, CA), and samples stored
at �20 �C until further analysis. Cell lysates (50 lg of protein/lane)
were electrophoresed on a 10% sodium dodecyl sulfate polyacryl-
amide gel and the proteins were transferred to nitrocellulose paper
as described by Fritz et al. [16]. Membrane strips were blocked for
1 h at room temperature with 5% non-fat milk in Tris-buffered saline
(TBS; 150 mM NaCl, 50 mM Tris Base, pH 8.2) containing 0.1%
Tween 20, then incubated overnight at 4 �C with one of the following
antibodies including mouse anti-phosphorylated ERK (Santa Crutz
Biotechnology, Santa Crutz, CA), rabbit anti-phosphorylated
MEK1/2, rabbit anti- phosphorylated CREB (Cell Signaling Technol-
ogy, Beverly, MA), rabbit anti-StAR antibodies (a kind gift from Dr.
Strauss, J. F., III) or mouse anti-b-actin antibodies (Sigma). Immu-
noblot analyses were performed using alkaline phosphatase-conju-
gated goat anti-rabbit or anti-mouse secondary antibodies (1:7500
dilution, Promega Corp., Madison, WI) and bound antibody visual-
ized using a substrate solution (3.3 mg/ml nitro blue tetrazolium and
1.65 mg/ml 5-bromo-4-chloro-3-indolyl phosphate in 100 mM NaCl,
5 mM MgCl2, 100 mM Tris base, pH 9.5). Some membrane strips
were treated with the stripping buffer (1% sodium dodecyl sulfate
in 25 mM glycine, pH 2) for 30 min and reprobed for b-actin by
reacting with mouse monoclonal anti-b-actin, horseradish peroxi-
dase-conjugated sheep anti-mouse IgG (1:7500 dilution, Santa Crutz)
and Western Blotting Luminol Reagent (Santa Crutz). The density of
the bands on the nitrocellulose membrane was quantified by densi-
tometry using Gel pro 3.1 (Media Cybernetics, Silver Spring, MD).
The density of the band in the control sample was defined as 100%
and the densities of the band in the test sample expressed as a per-
centage of this value.

2.6. Statistical analysis
All experiments were performed at least three times, and the values

are expressed as mean ± S.D. Statistical differences between treatments
and the control were determined by Student�s t test procedure. P < 0.05
was considered a statistically significant difference.
3. Results

3.1. Involvement of ERK in magnolol-induced steroidogenesis

Magnolol (10–30 lM) significantly induced the corticoste-

rone secretion at 3 h of treatment, and this effect was main-

tained for up to 24 h (Fig. 1). Only few propidium iodide-

positive necrotic and apoptotic cells were detected in DMSO

groups, and the percentages of necrotic and apoptotic cells

in 30 lM-treated groups showed no significant difference when

compared with the DMSO groups (data not shown). Higher

concentrations of magnolol (P 40 lM) increased the percent-

ages of both necrotic and apoptotic cells. To obtain evidence

for the activation of ERK by magnolol, we assessed the phos-

phorylation levels of MEK and ERK. Treatment with magno-

lol resulted in a transient phosphorylation of MEK1/2 and

ERK1/2 in a time-dependent manner. The protein levels of

the phosphorylated MEK, ERK1 and ERK2 increased to

2.7-, 1.7- and 1.6-fold, respectively, at 5 min after magnolol

treatment (Fig. 2A).We further tested the effect of MEK inhib-

itor on magnolol-induced steroidogenesis and ERK phosphor-

ylation. Pretreatment with 30 lM of PD98059 resulted in a

dose-dependent inhibition of magnolol-induced corticosterone

production (Fig. 3A) and also significantly blocked magnolol-

induced phosphorylation of ERK 1 and ERK2 (Fig. 2B). An-

other MEK inhibitor U0126 similarly inhibited magnolol-in-

duced steroidogenesis (data not shown). These data suggest

that the MEK–ERK signaling pathway is required for magno-

lol-induced steroidogenesis.

3.2. Involvement of JAK2 in magnolol-induced steroidogenesis

and biochemical evidence for the link between JAK2 and

ERK pathway

To assess the potential role of TK in the stimulatory effect of

magnolol on steroidogenesis, the action of the TK inhibitor



Fig. 3. Effects of MEK- , TK- and JAK2-inhibitors on magnolol-
induced steroidogenesis. (A) Adrenal cells were treated with 0.1%
DMSO, 30 lM magnolol (Mag), or magnolol plus different concen-
trations of PD98059 for 6 h. (B) Cells were treated with DMSO,
genistein (30 lM) or magnolol (30 lM) plus genesitein for 6 h. (C)
Cells were treated with DMSO, magnolol (30 lM) or magnolol plus
different concentrations of AG490 for 6 h. The culture supernatants
were assayed for corticosterone. \P < 0.05; \\P < 0.01 compared to the
Mag group.

Fig. 2. Involvement of TK and JAK2 in magnolol-induced phosphor-
ylation of MEK and ERK. (A) Adrenal cells were incubated with
30 lM magnolol for different intervals. Cell homogenates were
analyzed for phosphorylated MEK1/2, phosphorylated ERK1/2 or
b-actin (loading control) by immunoblotting. (B) Adrenal cells were
treated for 30 min with different inhibitors (30 lM PD98059, 30 lM
genistein, 50 lM AG490) prior to the incubation with 0.1% DMSO or
30 lM magnolol (Mag) for 5 min. The cell homogenates were
immunoblotted for phosphorylated MEK1/2 or phosphorylated
ERK1/2. b-Actin served as loading control. Results are from a
representative experiment.
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genistein on this pathway was examined. Genistein (30 lM)

was found to significantly abolish magnolol-induced steroido-

genesis (Fig. 3B). Moreover, genistein inhibited magnolol-in-

duced MEK and ERK phosphorylation (Fig. 2B). These

data indicate that TK plays a role in magnolol-induced

MEK and ERK activation and in the subsequent stimulation

of steroidogenesis. In order to clarify the involvement of Src

kinase, we investigated the effect of the Src kinase inhibitor

PP1 on magnolol action. Magnolol transiently increased the

protein levels of phosphorylated Src kinase, however, cotreat-

ment with PP1 did not prevent magnolol-induced steroidogen-

esis (data not shown). Thus, activation of the Src kinase by

magnolol is unlikely to contribute to the increased steroid pro-

duction. We then examined the role of another possible candi-

date of nonreceptor TK, JAK2. The JAK2 inhibitor AG490

significantly inhibited magnolol-induced corticosterone pro-

duction (Fig. 3C). The presence of the link between JAK2

and ERK pathway was supported by the observation that

AG490 inhibited magnolol-induced phosphorylation of

MEK and ERK (Fig. 2B). These data provided evidence that

JAK2 is involved in the magnolol-induced steroidogensis and

acts as the upstream regulator of the MEK–ERK pathway.

3.3. Involvement of CREB and StAR in magnolol-induced

steroidogenesis

A transient increase on the phosphorylation of CREB with

time was noted after magnolol treatment (Fig. 4A). We next

examined the roles of TK, JAK2 and ERK in magnolol-in-

duced CREB phosphorylation. Pretreatment with PD98059,



Fig. 4. Effects of MEK-, TK- and JAK2-inhibitors on magnolol-
induced CREB phosphorylation. (A) Adrenal cells were treated with
DMSO or 30 lMmagnolol for different intervals, followed by analyses
of cell homogenates for phosphorylated CREB or b-actin. (B)
PD98059 (30 lM), genistein (30 lM) or AG490 (50 lM) were added
30 min prior to the addition of magnolol (30 lM, 10 min). Results are
from a representative experiment performed in triplicate with b-actin
as loading control.

Fig. 5. A time-course study of magnolol-induced expression of 32 and
30 kDa StAR proteins. (A) Adrenal cells were treated with DMSO or
30 lM magnolol for different intervals, followed by analyses of cell
homogenates for StAR protein. (B) Densitometric scans of triplicate
blots for 30 kDa StAR protein levels from three independent exper-
iments. \P < 0.05, \\P < 0.01 compared to the 0-min group. (C)
PD98059 (30 lM), genistein (30 lM) or AG490 (50 lM) were added
30 min prior to the addition of magnolol (30 lM, 60 min). Cell
homogenates were analyzed with rabbit anti-StAR antibodies or
mouse anti-b-actin antibody by immunoblotting. Results are from a
representative experiment.
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genistein or AG490 prevented the phosphorylation of CREB

induced by magnolol (Fig. 4B). Thus, magnolol increases

CREB phosphorylation via the JAK2–MEK–ERK pathway

in adrenal cells. Efforts were then made to identify the possible

downstream targets of the CREB phosphorylation. The rabbit

anti-StAR antibody used in this study detects a major 30 kDa

band and a minor 32 kDa band only in overloaded samples

from DMSO-treated cells (Fig. 5A). Magnolol increased the

protein levels of both 32 and 30 kDa StAR proteins in a

time-dependent manner (Fig. 5B). The increase of the

30 kDa StAR was detected as early as 15 min after magnolol

stimulation and was sustained for a period of at least 6 h (data

not shown). In order to examine whether proteasomes were in-

volved in the initial increase of 30 kDa StAR, the effect of a

nonclassical proteasome inhibitor MG132 was examined.

Upon pretreatment with MG132, no significant effects on the

protein levels of 32 and 30 kDa were observed, as compared

with those in the magnolol-treated group (data not shown).

To examine whether the activation of TK, JAK2 and ERK

regulate the expression of StAR proteins, the effects of specific

inhibitors were investigated. Magnolol-induced 30 kDa StAR

protein expression was slightly decreased by the pretreatment

with PD98059, genistein or AG490 after short-term treatment

(15 min) (not shown) and more pronounced after long-term

treatment (60 min) (Fig. 5C). In conclusion, these results dem-

onstrate that the magnolol-induced increase in 30 kDa StAR

protein expression is mediated by the JAK2–MEK–ERK–

CREB pathway.
4. Discussion

Recent studies have shown that nonreceptor TK, including

JAK2 and Src kinase, are important for steroidogensis

[7,11,17,18]. In this study, pretreatment with a Src kinase
inhibitor PP1 had no effect on magnolol-induced steroidogen-

esis, thus excluding the involvement of Src kinase in this event.

We further demonstrated that inhibition of TK with genistein

or selective inhibition of JAK2 with AG490 blocked magnolol-

induced corticosterone production. Moreover, AG490 pre-

treatment decreased magnolol-induced phosphorylation of

MEK and ERK and blocked magnolol-induced StAR protein

levels. Thus, JAK2 is a major upstream activator of MEK–

ERK pathway.

Several lines of evidence support the role of ERK1/2 in adre-

nal steroidogenesis [19]. In other cell types, MEK–ERK acts as

an integrator of mitogen signals originating from receptor TK

and G-protein coupled receptors. Previously, ERK1/2 activa-

tion has been implicated in both positive and negative regula-

tion of steroidogenesis, depending on the agonists used or the

cell type studied [3,5,20–23]. In our study, magnolol rapidly

stimulated the phosphorylation of MEK and ERK1/2. More-

over, PD98059 completely inhibited magnolol-stimulated ste-

roidogenesis and ERK1/2 phosphorylation, suggesting that

ERK1/2 activation is positively correlated with the magno-

lol-induced steroidogenesis.
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The downstream targets of activated ERK may include

hormone sensitive lipase (HSL), steroidogenic factor 1 (SF-

1), CREB and StAR proteins [3,4,24,25]. Several investi-

gations have shown that the phosphorylation of CREB is

critical for steroidogenesis and StAR protein expression

[26–28]. In the classical cAMP-PKA signaling pathway, acti-

vated PKA phosphorylates CREB on Ser133, which subse-

quently increases the association with the CREB binding

protein co-activator and results in histone modification and

increased transcription [29]. In this study, we observed the

transient phosphorylation of CREB by magnolol. We then

investigated the possibility for magnolol-induced activated

JAK and ERK to phosphorylate CREB. The data suggested

that JAK and ERK were responsible for magnolol-induced

CREB phosphorylation, since inhibition of TK, JAK2 or

MEK blocked CREB phosphorylation stimulated by magno-

lol, and the time course of ERK phosphorylation matched

temporally with that for CREB phosphorylation. Thus, it

is possible that magnolol-induced CREB phosphorylation

may contribute to steroid synthesis by stimulation of StAR

pre-protein synthesis via a direct binding of pCREB to the

StAR promoter as observed in Leydig cells [28]. In the neu-

ronal system, Burton�s tyrosine kinase, a member of Tec

family of TK, has been shown to phosphorylate CREB pro-

tein in immortalized hippocampal progenitor cells [30].

Although our data demonstrated that activation of JAK2–

MEK–ERK cascade increased CREB phosphorylation, the

possibility that JAK2 might directly phosphorylate CREB

should be considered.

It has been indicated that phosphorylated CREB can syner-

gistically interact with SF-1 in upregulating the expression of

StAR pre-protein in MA-10 mouse Leydig tumor cells and

Y1 adrenal tumor cells [26,31]. SF-1 is shown to be essential

to both basal and hormone-induced regulation of the StAR

gene [32,33]. Gyles et al. [3] have demonstrated that the

ERK-dependent phosphorylation of SF-1 enhances its binding

to the StAR promoter. Therefore, further studies are needed to

determine whether SF-1 is phosphorylated by ERK activation

induced by magnolol.

In response to hormonal stimulation, StAR pre-protein

(37 kDa) is rapidly synthesized in the cytosol, phosphory-

lated by PKA and imported into the mitochondria while it

actively transports cholesterol from the cytoplasmic pool

into the mitochondria [34–36]. The 37 kDa pre-protein is

subsequently cleaved by mitochondrial matrix proteases

and generates 32 and 30 kDa proteins [37,38]. Since the

37 kDa pre-protein and 32 kDa protein have short half-lives

of 5.4 ± 1.1 and 4.4 ± 0.8 min, respectively, they are detected

in small quantities in the basal state. In contrast, the 30 kDa

StAR protein has a longer half-life (4–5 h), and predomi-

nates over the other two forms [37]. Thus, the expression

of 30 kDa StAR protein directly correlates with the steroido-

genic activity in the previous study [37]. Due to the failure

of our anti-StAR antibodies to detect the 37 kDa pre-pro-

tein, we only observed the time-dependent increases of 32

and 30 kDa StAR proteins by magnolol stimulation. The

time-course of magnolol-induced steroid production was

consistent with the expression of 32 and 30 kDa StAR pro-

teins which maintained a high level up to at least 6 h after

magnolol stimulation. In rat adrenal cells, pretreatment with

MG 132 did not prevent the initial rise on the 30 kDa StAR

protein induced by magnolol. In this cell type, the transport
of the 37 kDa pre-protein may be too rapid to be degraded

by the proteasome. Tajima et al. [39] showed that pretreat-

ment with MG132 increased the contents of 37 kDa pre-pro-

tein in human granulose cells at 15 min after stimulation

with human chorionic gonadotrophin. Moreover, 32 kDa

protein could only be detected 1–2 h later, and no change

was found in 30 kDa StAR. Although the 30 kDa StAR

could be degraded from the pre-existing 37 kDa pre-protein

in a proteasome-dependent way in the cytosol [38], our

experiment favors the point that the observed increase of

the 30 kDa StAR might derive from the cleavage of newly

synthesized 37 kDa pre-proteins. This is supported by the

observations that both the levels of 32 and 30 kDa proteins

increased simultaneously in the initial phase and the failure

of MG132 to block the initial increase of 32 and 30 kDa

proteins. This hypothesis is supported by the facts that

newly synthesized S35 labelled 32 and 30 kDa StAR proteins

could be detected within 15 min after dibutyryl cAMP stim-

ulation in a pulse-chase time course study in adrenal cells

[37] and that 90–97% of S35-labelled 37 kDa pre-protein

can be degraded into S35-30 and -32 kDa proteins within

15 min after cAMP stimulation [40]. The increased StAR

pre-protein mRNA expression induced by ERK activation

is responsible for steroidogensis [3]. In Y1 mouse adrenal

cells, both PD98059 and U0126 treatment decreased for-

skolin-induced progesterone production and StAR pre-pro-

tein mRNA levels [3,41]. In primary culture of rat ovarian

granulosa cells, MEK inhibitor U0126 also blocked folli-

cle-stimulating hormone-stimulated StAR pre-protein

mRNA [23]. The present study demonstrated that pretreat-

ment of PD98059, genistein or AG490 prevented magno-

lol-induced expression of 30 kDa StAR protein. Our data

are consistent with the involvement of ERK1/2 in the regu-

lation of StAR mRNA expression. Previous studies indicate

that the 37 kDa pre-protein can only be phosphorylated by

PKA [42,43]. The question then arises as to which kinases

are responsible for the phosphorylation of 37 kDa pre-pro-

tein in the PKA-independent magnolol action.

Another contribution for activated ERK in steroidogenesis

may be mediated by manipulating HSL activity. In 3T3-L1

adipocytes, ERK activation phosphorylates HSL and in-

creases the activity of HSL, which in turn stimulates lipoly-

sis [44]. In addition, HSL has recently been proven to be

responsible for the majority of the neutral cholesterol ester

hydrolase activity in the adrenal cells [45]. Cherradi et al.

[24] indicate that activation of ERK stimulates aldosterone

production by increasing HSL activity in adrenal glomerul-

osa cells. Therefore, magnolol-induced ERK activation

may directly phosphorylate and activate the HSL, which in

turn increases steroid production, although this needs to

be examined. Our previous study has shown that the inhibi-

tion of protein synthesis by cycloheximide could only pre-

vent half of the steroid production induced by magnolol

[46]. This indicates that magnolol-induced expression of

30 kDa StAR was not completely responsible for magno-

lol-induced steroidogenesis.

In summary, we propose a novel pathway that contributes to

magnolol-induced adrenal steroidogenesis. Activation of

JAK2–MEK–ERK is required for this process. We further

provide evidence that the CREB phosphorylation and the

expression of 30 kDa StAR proteins are the events subsequent

to ERK activation.
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