無線電通訊在林業上之應用

文■許崑衍■台灣大學實驗林管理處總務組

■王亞男 ■台灣大學森林系教授/台灣大學實驗林管理處處長

灣地區山多坡陡、河川短促、地質脆 弱,每逢颱風豪雨等天然災害發生 後,山區容易造成山崩、地層滑動、土石流 等情事,往往造成交通中斷、電力、電信設 施嚴重毀損,以致無法和外界取得聯繫、傳 遞災情,並尋求必要的支援和協助。自民國 八十五年七月的賀伯颱風肆虐,前所未有的 土石流造成重大災害;八十八年九月的九二 一大地震,百年來浩劫死傷慘重;九十年七 月的桃芝颱風夾帶豪雨,土石流再次蹂躪大 地。短短幾年間接二連三的天災地變,導致 人民、生命財產嚴重的損失,而大眾通信系 統於重大災害發生後,不是本身設備受到損 壞,就是因為電力中斷而無法發揮應有之功 能。由以上幾次災後觀之,從災情傳遞以至 傷患救援及搶救工作等之聯繫,無不仰賴無 線電通訊設備來完成任務,也因此,無線電 通訊網的建立乃受到政府等相關單位之重 視。

台大實驗林管理處基於職守,負責轄內 國有林班地及森林資源之保育及維護。然現 場工作人員人單勢薄,亦無配置警察人員, 於山區內執勤時,遇有森林火災、取締盜伐 **濫墾等林政案件、急難救援或安全上之任何** 狀況,均無法在最短時間內直接與單位取得

聯繫而延誤處理時機。有鑑於此,乃於民國 76年向電信總局申設無線電話機。惟因本處 幅員遼闊,地域涵蓋南投縣鹿谷、水里、信 義等三鄉,面積廣達三萬餘公頃,且均屬崎 嶇陡峻之山地,又海拔高度落差極大(自水 里市區之220公尺至玉山頂之3,952公尺),所 使用之手機因受地形地勢阻隔之限制,而難 以有效發揮其通訊功能,致勤務之執行無法 掌控, 為利業務推行及安全上之考量, 遂於 87年再申請加設中繼站以改善通訊品質。並 於91年更新及擴充舊有設備,使轄區內形成 一通訊網,在平時作為林地管理等業務上之 聯繫,遇有狀況或發生災害時則可作緊急通 訊之用。

台灣地形變化極大,通訊不易

為什麼需要中繼站

無線電波的傳送,一般不外平「反射」。 「折射」和「繞射」。在VHF及UHF幾平是以 直線傳送,所以一旦在市區 或是隔了山的 環境阻礙之下,往往就會造成通訊不良,為 了克服這個問題,就需要有一個能夠讓訊號 轉送的物件,這個物件就是中繼站 (Repeater)。通常中繼站可分為下列數種:1. 同頻段中繼 2.異頻段中繼 3.應聲蟲。而同頻 段中繼就是最標準的中繼,也就是一般專業 上以及在這 所談的中繼。

中繼站在設置時,需注意到要服務的範 圍,看是要大區域,還是點對點,這些都牽 扯了整個中繼站設備的規劃,以及地點的選 定問題。而林業通訊大多以山區為主,由於 地形變化頗大,光選制高點卻不見得有用, 需以經驗以及實地測試之結果為依據,才能 做一個較好的規劃。

中繼站設置的目的,主要是為提供中繼 服務,所以在使用上,嚴禁少數人長時間佔 用,使用者務必遵守長話短說的原則。有些 中繼站也設有自動計時裝置,當中繼功能被 啟動、開始動作後若持續三分鐘以上便會自 動停止,這樣除了可以強迫長話的人閉嘴 外,也可以防範別有用心、蓄意干擾之份子 佔用。

通訊編組及任務

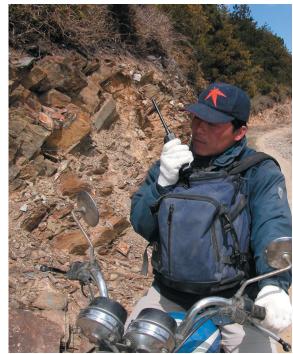
為便於林地管理人員平時之巡視工作, 一但發現林政等相關案件時能掌握時效處 理,更為因應緊急事故或重大災害發生後之

聯繫,無線電通訊網的架構乃刻不容緩之要 務,更必須將其列入經常性業務予以整合並 做好事權統一。指導員工正確使用無線電機 具,以及如何做好平時的維護工作等相關常 識的灌輸和訓練,是發揮通訊功能的前提。

(一) 指揮系統:「事前協調、事後檢討」

通訊組織建置完成後,除了事先協商取 得共識和培養默契之外,亦需舉辦經常性之 演練,可免屆時因無實地經驗而毫無頭緒、 亂了陣腳的窘境。再則,於事後必須召集相 關人員做次檢討,以為改進之依據,切忌事 件過後即束之高閣不管,而一再上演重蹈覆 轍的悲劇。

(二) 通訊人員可簡單將任務編組如下:


現場救援組 緊急醫療組 總指揮→主控台→通訊組→ 收容安置組 物資補給組 疏散引道組

- 1.總指揮:綜理及督導緊急應變之指揮任 務。
- 2.主控台:掌控整體通訊業務,必要時配一 副控協助,任務如下:
 - (1)接受相關訓練,遇有狀況隨時徵召。
 - (2)準備紙和筆,記錄任何狀況或所需之各 種支援。
 - (3)呼叫或回答時均由主控人員為之。
 - (4)通訊時敘述事件重點,把握長話短說原 則。
 - (5)隨時掌握現場各持機人員姓名。
 - (6)事件較不緊急時可約定特定時間通訊。

- (7)未經主控呼叫勿隨意回應以保持電力。
- (8)於任務現場交接換手時務必交代清楚。
- 3.通訊組:「槍」為軍人的第二生命,而身為 通訊人員亦應視無線電對講機為第二生命。 通訊網的成立是我們的首要任務,在緊急事 件發生後迅速進駐責任地點,並於空中向主 控台報到,任務如下:
 - (1)不得擅離職守。
 - (2)負責訊息傳遞。
 - (3)維持通訊暢通。
 - (4)平時定時測試。
 - (5)緊急主動守聽。
- 4.通訊要點:呼叫或回答時務必遵守「簡單扼 要」原則,要點如下:
 - (1)如多方通訊中,讓緊急通訊優先使用。
 - (2)手持式對講機若訊號不穩定,可前後或 左右移動數公尺。
 - (3)於現場可尋找制高點或空曠處以改善通 訊品質。
 - (4)受地形限制時可派員以人工轉接方式完 成。

無線電機之靈魂

電池,為使用無線電機動作的原動力, 為求外出使用方便和符合經濟、環保原則, 一般均會購置可反覆使用的充電電池,在這 當中不外平镍镉雷池和镍氫雷池。以單位體 積內的電容量來說,鎳氫就比鎳鎘電池高出 約30% ~ 40% 左右。電池的標準充電方式是 定電流,兩者工作溫度均介於-20~+60 之間。這類充電電池使用雖方便,但往往也

通訊網的成立,是我們的首要任務

成為既愛又恨的對象,常在重要關頭,明明 剛充好電,才一上陣卻告低電壓,難道這電 池都沒充飽電?當然不是,這是使用者忽略 了保養或者是不明白使用充電電池的常識。

鎳鎘電池在日常生活中可用無所不在來 形容。隨著環保意識日漸高漲,含有重金屬 「鎘」的镍镉電池,許多國家已宣佈停止生 產,代之以鎳氫電池。然因鎳鎘電池之使用 及庫存量依然可觀,加上鎳氫電池的特性與 镍镉電池有許多神似之處,所以在此仍以描 述镍镉電池為主。

镍镉電池出現記憶現象的主因是,這電 池常常被很淺的充放電。長期過度充電及很 淺的放電,會使整個電池的端電壓下降。早 期的镍镉電池充電後,如果未完全放電即行 再充電,電池中的化學成分即會記住上次的

放電點而無法完全充電及放出所有的電能,以致使電池的實際容量變小,嚴重時甚至可降到只剩原有容量的20%。然而,經過廠商一再研究改進,近幾年出產之鎳鎘或鎳氫電池已沒有明顯的記憶現象。事實上,現今鎳鍋電池的殺手,應歸罪於「鎳結晶現象」。此現象是充電過程中,電池已充飽後再持續以過大電流補充,導致電極板上產生鎳金屬結晶,此種結晶會使電池活化面積減小,而致電池容量減損。幸而大部份的結晶現象都可以在電池放電超過1V以下後,溶解回電解液中。

對充飽的鎳鎘電池繼續充電的話,會有氣體外洩的情況,鎳鎘電池一但發生氣體外洩,它的電容量就會大量萎縮。雖然鎳鎘電池不容許長時間的過度充電,但鎳氫電池對於過度充電更是敏感。鎳鎘電池會隨著充放電次數的增加,效率也會跟著下降,當到達一定程度時,會讓人覺得充飽的電池很快就沒電了,這也就是接近鎳鎘電池的壽命週期尾聲了。充電時除了需以額定電流及避免過度充電外,劣質的充電器更應避免。新式的充電器均附有充飽電後自動斷電的裝置,如無此項功能則可參考下列公式,做為充電時間之依據。

電池的充電時間

 $T = (C \times 1.5) / I$

T 充電時間(hr)

で電池電容量 (mAh)

充電電流 (mA)

通訊系統之運用

(一) 啓動時機

於中央氣象局發布豪大雨特報、陸上颱 風警報及轄內有五級以上地震、森林火災 (警)及重大意外事故或災難發生後,各受災 轄區即應主動呼叫指揮中心,以確定無線電 通訊無礙。

- 1.轄區內一日累積雨量達130公釐以上,或有 土石流發生之虞時。
- 2.陸上颱風警報發布後即須派員值機,並於每 二小時整點回報現況。
- 3.發生地震震度達5級以上時,除檢視通訊設備有否受損外,並立即巡視轄區林班地及建物等設施,將災情以無線電回報應變指揮中心。
- 4.轄區內森林火災(警)發生後。
- 5.轄區內大眾通信系統因意外事故中斷時。
- 6.其他重大突發事件或災難發生時。

(二) 解除時機

以上無線電通訊系統一經啟動後,解除 時機統一由指揮中心或受權代理之主管人員 發布。

結語

所謂「工欲善其事,必先利其器」。要達成良好的通訊必需要有完善的通訊設備,有完善的通訊設備,則仰賴平時的保養和維護工作,保持足夠之備用電力,務必處於隨取即用之狀態。每日定時測試通訊狀況並記錄之,發現問題立刻反應處理,如此才能發揮應有之功用。由媒體得知,屢因救護、救

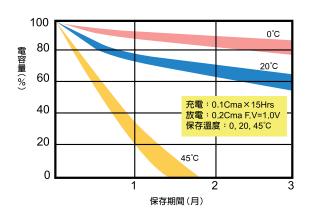
難、救災機制的片面疏忽而喪失搶救先機。 常可見通訊設備購置後卻無積極的保養和維 護措施,每至需用時不是故障就是電力不 足,對此不負責任的行為,各單位應擬訂一 規範並嚴加執行。「養兵千日、用在一朝」, 只要能在緊要關頭即時發揮保命、救人的功 能,則平時付出的代價均是值得的。 🕰

附表

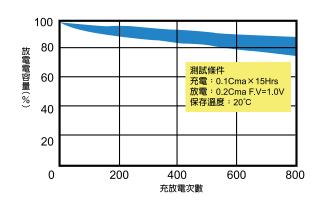
镍镉雷池充放雷時的化學反應式

陰極 Cd + 2OH- ← Cd(OH)2 + 2e-

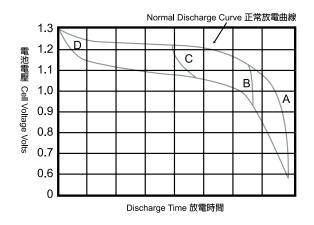
陽極 2NiOOH + 2H2O + e- ← 2Ni(OH)2 + 2OH-

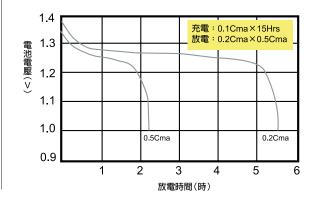

全反應 2NiOOH + Cd + 2H₂O ← 2Ni (OH)₂ + Cd(OH)₂

陰極 Cd + 2OH- → Cd(OH)2+ 2e-


陽極 2NiOOH + 2H₂O + e- → 2Ni(OH)₂+ 2OH-

全反應 2NiOOH + Cd + 2H₂O → 2Ni(OH)₂+ Cd(OH)₂


镍鎘電池充滿電後的自然放電曲線


鎳鎘電池的充放電次數與電容量的關係曲線圖

镍镉電池的老化, 與鎳鎘電池因記憶效應所引起的電壓下降是不同的

镍鎘電池的電壓與放電曲線圖

