中文摘要

本研究係選擇位於台灣北部桃園縣桃園市通往高速公路主要幹 道國際路二段之行道樹水黃皮(*Cytisus pinnatus*)及文中路之行道樹黑 板樹(*Alstonia scholaris*)為試驗材料,每月選擇兩天,在晴天且自八時 至下午四時於戶外進行淨光合作用速率、氣孔導度、蒸散速率及其他 環境因子之試驗,將所得之各項數據分析以探討二種樹種對二氧化碳 固定效益,以提供日後規畫行道樹參考之用。

試驗結果:

於 12 個測定日測得水黃皮日淨光合作用速率為 75 μ mol m⁻²s⁻¹, 累積全株二氧化碳固定量為 17.96 kgCO₂Year⁻¹, 黑板樹日淨光合作用 速率為 107 μ mol m⁻²s⁻¹,累積全株二氧化碳固定量為 56.76 kgCO₂Year⁻¹。

【關鍵字】水黃皮、黑板樹、二氧化碳、淨光合作用速率、氣孔導度、 蒸散速率

Abstrac

In this study, *Cytisus pinnatus* on Kuo-Ji Road, a mainline from Tao Yuan (a city in northern Taiwan) to Chung Shan freeway, and *Alstonia scholaris* on Wen-Chung road were selected.

The Carbon Dioxide fixation efficiency, which will be a reference for sidewalk trees planning afterward, was analyzed by measuring net photosynthetic rate, transpiration rate, stomatal conductance rate and other environmental factor outdoor from 8 am to 4 pm, two sunny days a month.

(results **)** The results of investigation of **Cytisus pinnatus** were: the average net photosynthetic rate was 75 μ molm⁻²s⁻¹. For estimating the Carbon Dioxide fixation of whole tree was 17.96 kg CO₂Year⁻¹.

The results of investigation of **Alstonia scholaris**: the average net photosynthetic rate was101 μ molm⁻²s⁻¹. For estimating the Carbon Dioxide fixation of whole tree was56.76 kg CO₂Year⁻¹.

[key words] Cytisus pinnatus, Alstonia scholaris, Carbon Dioxide, net photosynthetic rate, stomatal conductance rate, transpiration rate 一、前 言:

由於人類活動大量燃燒石油、煤炭等石化燃料而釋放大量 二氧化碳,根據報導在 1988 年大氣中二氧化碳濃度已超過 350ppm,嚴重造成地球之溫室效應,全球溫室氣体大量排放, 引發「全球溫暖化」(Global Worming),其中以二氧化碳排放 為形成,且對全球的生態與經濟造成破壞性的影響。故人類已 深深感受其嚴重威脅,目前世界各國已採取如「碳稅」、「排放 權交易」、「碳交易」等措施。

森林生態系覆蓋著 35%的陸地面積,佔陸地淨生產力的 70%,而且在陸地生態系中佔有優勢的地位 (Kramer,1981,Melillo *et al.*,1993),而森林是以林木為主要組 成,林木是一種生命体,其會藉光合作用吸收固定二氧化碳, 一般樹木為生產1噸之植物質(纖維素、碳水化合物等),需吸 收1.6噸二氧化碳,而會釋出1.2噸氧(王,2001),故探討如何藉 由各種林木對二氧化碳固定效益值得加以研究。

3

雖目前國內已有若干學者針對本島森林冠層在不同地點、 不同樹種研究各種林木對二氧化碳的固定量及相關環境因子的 分析,然森林冠層在森林生態系能量流動與物質循環扮演著重 要角色(郭,2000),但在都市行道樹除能降低空氣污染,且對 碳吸存亦有不可忽略之重要性。

現今台灣在經濟快速發展繁榮下,所造成的惡劣環境,在 都市中我們應如何利用人為的自然 - 行道樹「營造綠色環境」, 行道樹之選擇雖著重於美化環境、減輕噪音,但亦須考慮林木 對二氧化碳之吸收與固定效率,因樹木雖進行光合作用吸收與 固定二氧化碳;但同時,亦會進行呼吸作用分解其所合成的碳 水化合物以獲得生長所需之能量,而行道樹種類繁多,如何正 確選擇樹種,並藉由樹木所能發揮的機能,間接改善生活品質, 務必考慮多元化。本次試驗選定黑板樹、水黃皮為試驗植株, 以上二種樹種為近年來台灣常見之行道樹。據台北市政府統 計,黑板樹屬常綠喬木為台北市行道樹數量前十名,其花白色、 樹勢強健、耐風、生育狀況極佳,為優良之行道樹;水黃皮部 份其樹型優美、花淡紫色、枝葉濃密,為台灣土生土長的樹木, 花序密集繽紛,亦由台中縣政府選定為最受青睞之城鄉樹種之 本研究即針對桃園市市內重要道路行道樹進行戶外光合作 用相關因子的測定,以推估水黃皮及黑板樹之二氧化碳固定量

—。

二、前人研究

(一)不同樹種對光合作用速率之研究

森林(林木)是一種生命体,其會藉光合作用吸收固定 CO₂而釋出 O₂,一般來說正常情形下,整個生態系會維持平 衡,但不然,現今的環境,工業污染造成溫室效應,為了知 道森林(林木)對光合作用及固碳效益,以下就近年來國內 外專家學者對此研究加以回顧。

(1)光合作用速率與環境因子

環境因子與光合作用速率之相關性甚大,環境因子包括 光、二氧化碳濃度、溫度、水,在研究環境因子與光合作用 的相關性,(洪,2002)曾以樟樹為例,得知光合作用速率與環境 因子的變異有極顯著相關性,尤以光度、葉溫為最。除此之 外,(Koch *et al.*,1994,Ishida *et al.*,1996)皆曾指出 光合作用速 率並不是固定不變的,同一測定日不同葉子的光合作用速率 會因微環境的差異而有所不同,另(廖,2002)以樟樹、台灣櫸為 試驗樹種,亦證實光合作用速率與光量有極顯著相關。

(2)光合作用速率與葉片氣孔導度

葉片氣孔為光合作用中二氧化碳向內擴散及水份向外蒸 散的出入口,而二氧化碳為光合作用主要基質,二氧化碳對 氣孔導度的關係密切, 在高溫的情況下常發生氣孔導度及光 合作用率下降的「中午抑制」現象(Ishida *et al.*,1999), 而(林 等,1997)及(David Whitehead,2001)皆曾證明光合作用速率與 氣孔導度之相關性顯著。

(3)光合作用速率與當日碳收獲

就植物的生理週期而言,CO₂在光合作用之下,被植物体 吸收並轉換成能量,而釋放 O₂,使碳素儲存於植物体內部, 故森林及木材是碳素的儲存者,林木能吸收大氣中的 CO₂, 可見光合作用速率與當日碳收獲相關且密切(王,2000)曾以樟 樹作試驗,得知:樟樹總平均每葉葉面積有 15.34 cm²,全株 葉面積為 157.2 m²,一日之二氧化碳固定量為 28.33 mol m²d⁻¹。(郭,2000)以白榕、九節木、大葉樹蘭作試驗。另亦證 明:光合作用速率與當日碳收獲有極顯著相關,另(Zotzand Winter,1993)最先報導熱帶森林植物一天碳收獲量與當天的光 合作用速率有著正相關。

綜合以上國內外學者的研究報告顯示:林木光合作用速率與 環境因子之間有極顯著的相關性,光合作用速率與氣孔導度、碳 收穫量的相關性亦顯著。 (二)影響光合作用因素:

植物的光合作用和其他生命活動一樣,經常受到環境因 子影響而不斷的發生變化,所謂環境因子包括光、光合作用 細胞附近之二氧化碳濃度、溫度和水等,在此分別探討環境 因子對光合作用的影響。

(1)光:

(Pearacy 1987, Zotz and Winter 1993)皆指出,光量是森林 冠層淨光合作用最主要的限制因子,光對葉片光合作用的影 響通常以光合作用速率為的指標(柯,2000),而太陽輻射之組成 有光度、光質、光週期三種會影響植物的生長及發育(Salisbury and Ross,1992),但對光合作用影響最大仍屬光強度。

一般來說,測定光對光合作用之關係時,光度增加時光合 作用速率會成正比地增加,但光度持續增強到某一限度時, 光合作用速率就不再隨光度增強而增強,此即謂光飽和點。 陰性植物(C₃型)較陽性植物(C₄型)具有低光補償點和較低的最 大光合作用速率。若溫度及二氧化碳條件適合,則光合速率 隨光強度增加而增多,於達最適光強度後則降低,過強之光 會降低光合作用之速率,而光度過低將造成氣孔閉合,二氧 化碳吸收受阻,影響光合速率。 另外所謂光抑制作用,為夏日中午溫度過高造成氣孔導度 及光合作用率下降的現象,強光對光合作用速率光反應系統 的傷害也是光合作用速率降低的另一原因(Carpenter 1997,Ishida *et al.*,1999)。

(2)二氧化碳:

二氧化碳是光合作用的原料,環境中二氧化碳濃度的高低,直接影響光合作用速率,大多數的植物會受到低二氧化碳的限制,提高二氧化碳濃度能使植物生長加快、產量提高 (Cealemans *et al.*,1995),故目前業界多提高溫室內二氧化碳之 濃度以提高產量已廣泛的使用。

另 C₄ 植物的二氧化碳補償點比 C₃ 型植物低,故 C₄ 型植物 能利用低濃度的二氧化碳,當外界乾旱時,氣孔關閉,仍能利 用細胞間隙中含量低的二氧化碳繼續生長,但 C₃ 植物則不同 (3)溫度:

光合作用的適合溫度,依植物種類的不同,一般植物在 10
至 35 範圍內可正常進行,而最適宜的溫度為 25 至 30
,溫度過高時呼吸作用比光合作用上升快,淨光合作用之
速率下降,一般超過 35 ,植物的光合作用開始下降,40
至 45 時光合作用完全停止(柯,2000)。

而葉溫超過 34 時,氣孔導度及光合作用速率皆受到抑制(Ishida *et al.*,1996)。

(Whitehead et al., 2001)研究模擬紐西蘭原生林每年碳吸存 情形,發現在所有環境因子中溫度為主要影響因素之一。

(4)水份

在許多乾旱地區,水份逆境(Water stress)是影響植物光合 能力的主要因素,植物於缺水時能將氣孔關閉,以減少蒸散 作用,因此許多細胞演出堅硬的細胞壁,即使氣孔雖然關閉、 細胞膨壓喪失,其凋萎情形也不明顯。但細胞膨壓改變使氣 孔閉合,則光合作用速率減退,但尚不足以購成限制因子 (易,1983),所以,水的可利用性仍是調整植物生產力主要的環 境因素(Cornic and Ghashaie, 1991)。 三、試驗材料及方法

(一)試驗地概況、試驗植株

(1)試驗地概況:

試驗地位於桃園縣桃園市之交通要道聯結處—文中路及 大興西路二段,臨近之交通運輸系統除了台鐵縱貫線、中山 高、北二高、二高內環線(圖二),,桃園地區為因應未來社經 活動型態與因工業區帶動運輸需求成長速度大增,並配合亞 太空運轉運中心政策,政府積極籌畫各種大眾運輸系統,交 通繁忙,間接帶來的是空氣污染等,故行道樹淨化空氣及美 化環境實扮演重要角色。

(2)試驗地氣候、位置簡介:

試驗地桃園縣位居北台灣的地理要衝,且是僅次於台北都 會區之重要都會,轄內分佈多數工業區(中壢、觀音工業區) 及未來之桃園科學園區,主要地形以台地為主。氣候溫和, 整年降雨量集中於七至九月,亦為台灣之颱風季節,年雨量 約為 1,082 mm(圖三),平均相對濕度約為 78 %,當地溫度最 高出現在 2002 年 8 月,當日累積降雨量為 34.8 mm,最低溫 度出現在 2003 年 1 月,當月累積降雨量有 89.4 mm。

圖一:試驗樹種位置圖

圖二: (2002年4月 2003年3月)試驗期間當地之月均溫

及累積降雨量示圖(中央氣象局,2003)

本試驗參試材料為桃園市重要道路行道樹水黃皮、黑板樹 各乙株,樹旁並未有任何大型建築物,故較無因遮蔭之干擾 測量不準確。

? 水黃皮: 樹齡約為 10 年, 樹高於實驗之初測得樹高 3.92

m,枝下高1.7 m,胸徑17.54 cm,基徑29.08

cm, 樹冠幅度平均直徑寬約 1.9 m。(圖四)

? 黑板樹: 樹齡約為 10 年, 樹高於實驗之初測得樹高 2.9

m,枝下高1.8m,胸徑12.12cm,基徑25.02cm,

樹冠幅度平均直徑寬約 1.8 m。(圖五)

圖三:試驗樹種現況—黑板樹

圖四:試驗樹種現況—水黃皮

(三)方法:

本實驗測定時,為選擇晴天或無雨時進行,由上午八時至 下午四時,每月選擇二日,分別測定不同樹種,測定時將葉 片夾入 CI-301ps 把手 chamber 中測定,分上冠層、下冠層, 每一冠層測定三個葉片,再利用儀器所測得之數據,來計算 出淨光合作用速率、蒸散作用速率、氣孔導度、葉溫、大氣 溫度、相對濕度及二氧化碳濃度變化。

(1)到達樹冠的設施:

為準確測得樹冠上、下冠層之葉片生理活動資料,因行道 樹高度約 3m,故利用一般家用鋁梯即可測得上、下冠層之葉 片生理活動資料。

(2)使用儀器名稱:

光 合 作 用 測 定 儀 CI-301 由 CID,Inc,Vancouver,Washington 生產之攜帶型光合作用分析 儀, CI-301 測定儀是由紅外線 CO₂ 氣体分析系統 (CI-301)chamber 的把手(CI-301CA)及一個可換式的 chamber 所組成,其為一個獨立的 CO₂ 分析儀,其中的可替換式 chamber 可處理不同型態及大小葉片,儀器系統功能如下:1. 吸收系統,2. 雙孔道系統,3. 特定量測系統,4. 調整系統, 資料擷取系統。有關淨光合作用速率、蒸散作用率、葉片
 傳導率,資料擷取及其他相關生理參數之單位如表一。

表一、CI-301ps 攜帶式光合作用測定系統資料擷取光合作用與相關生

Index	Sample index number	Unit
Area	Leaf Area	cm ²
T.Air	Air Temperature	
T.leaf	Leaf Temperature	
PAR	Photosynthetic A Rad	μ mol/ m ² /s ¹
Rh	Relative Humidity	%
CO _{2in}	CO ₂ Concertration of inlet	ppm
CO _{2out}	CO ₂ Concertration of outlet	ppm
Р	Net Photosynthesis Rate	μ mol/ m ² /s ¹
Е	Transpiration Rate	$m \mod m^2/s^1$
C	Stomatal Conductance Rate	$m mol/m^2/s^1$
CO _{2int}	Internal CO ₂ Concentration	ppm

理參數:

(3)試驗樹種生理活動之測定及資料分析:

試驗日期由 2002 年 4 月至 2003 年 3 月止,每月以CI-301ps 光合作用儀分別測量水黃皮、黑板樹上冠層、下冠層各三片 的生理活動及其光合作用相關資料,根據,(Koch *et* al.,1994,Ishida *et al.*,1996)在熱帶森林冠層的研究顯示各樹種 間的瞬間淨光合作用率並不是固定不變的,同一測定日不同 葉片之瞬間淨光合作用率會因微環境的差異而有所不同,本 次試驗採平均值的方式來估算,以確保測值的準確性。

試驗期間共計收集水黃皮、黑板樹各十二天的生理活動相 關資料,分別為每日 8 時至下午 4 時,測得資料包括樹冠上 冠層、下冠層光合作用速率、蒸散作用速率、氣孔導度、葉 溫、大氣溫度、相對濕度及二氧化碳濃度變化,再進行上冠 層、下冠層光合作用速率與光度間之比較,並使用 SAS 8.0 版 軟体所提供的 proc ttest 檢定二種樹種不同冠層之差異性,並 進行淨光合作用速率日均值與葉溫日均值之迴歸分析,依據 葉面積估算二氧化碳的固定量。

19

(4)葉面積估算及葉部年生產力推估

? 試驗以 (葉面積測量儀) Laser Area Meter CI-203 測量,並以 冬季落葉為量測對象,此二種樹種皆屬常綠喬木,落葉量不 如一般落葉樹多,故儘可能將收集到的葉片區分成大、中、 小型,各類型取約 50 片,以儀器直接掃描,讀取資料後再求 取平均葉面積。有關全株葉面積之推估,是以估測方式先估 測著生枝條主幹、支幹之葉片數再行推估全株葉面積及各型 葉片所佔的比率。

? 葉部年生產力之推估,係以二種樹種的平均瞬間淨光合作 用率,配合所測得的葉面積,依 CO₂的換算方式計算。
葉部年生產力計算:

SPn ÷N=P

 $P \times 60 \times 60 \times 3 \div 1000 = P_{day}$

 P_{dav} ÷1000 ×44 ×A ÷1000= P_{rdav}

 $P_{rday} \approx 65 = P_r$

Pn:n月份光合作用速率(μ mol m⁻²s⁻¹)

 P_{dav} : 一日淨光合作用總量 (m mol m⁻² day⁻¹)

P_{rday}:全株總碳收穫量(kg CO₂ stem⁻¹ day⁻¹)

P_r:全年全株總碳收穫量(kg CO₂ stem⁻¹ day⁻¹)

四、結果:

試驗日期自 2002 年 4 月至 2003 年 3 月共一年期間, 全年完整收集水黃皮及黑板樹葉部生理活動資料共各 12 次, 測定日期 分別為 2002 年 4 月 27、28 日, 5 月 19、26 日, 6 月 22、23 日, 7 月 14、28 日, 8 月 18、25 日, 9 月 1、7 日, 10 月 20、27 日, 11 月 17、24 日, 12 月 1、8 日, 2003 年 1 月 4、5 日, 2 月 8、9 日, 3 月 15、22 日共 24 日。

(一)水黃皮上層葉

(1) 淨光合作用速率:

全年淨光合作速率平均值為 3.04 μ mol m⁻²s⁻¹, 全年試驗日 中最大值出現於 2002 年 10 月 20 日 4.51 μ mol m⁻²s⁻¹, 最小值 出現於 2003 年 1 月 4 日 1.45 μ mol m⁻²s⁻¹, 上層葉淨光合作用 速率介於 1.45 μ mol m⁻²s⁻¹至 4.51 μ mol m⁻²s⁻¹(表二)。

(2) 氣孔導度:

全年氣孔導度平均值為 91.89 mmol m⁻²s⁻¹, 全年試驗日中 最大值出現於 2002 年 8 月 18 日 142.2 mmol m⁻²s⁻¹, 最小值出 現於 2002 年 10 月 20 日 52.75 mmol m⁻²s⁻¹(表二)。 (3) 淨光合作用速率與光度、溫度之關係:

在光合作用特性方面水黃皮上層葉日變化之淨光合作速 率與光度日變化趨勢大致相同,尤以 2002 年 5 月 19 日、6 月 22 日,7 月 14 日較為明顯,其淨光合作用速率隨光度上升趨 勢而升高,而特別是在中午時段特別明顯,當時季節正逢 5、 6、7 月夏季,可能為高溫所致(圖五)。

試驗期間 2002 年 6 月 22 日,氣溫高達 31.6 ,淨光合作 用速率與光度的日變化趨勢相當明顯,尤以在上午十二時出 現最大值,淨光合作用速率也達最大值,反之於試驗期間另 一發現 2002 年 1 月 4 日,當日之瞬間淨光合作用速率於早上 九時出現最大值,當日溫度低 14 可能因冬季溫度較低,唯 有在太陽升起溫度較高時,淨光合作用速率隨之升高。

(1)淨光合作用速率:

全年淨光合作速率平均值為 4.77 μmol m⁻²s⁻¹, 全年試驗日 中最大值出現於 2002 年 8 月 25 日 10.96 μmol m⁻²s⁻¹, 最小值 出現於 2002 年 1 月 5 日 1.04 μmol m⁻²s⁻¹, 全年上層葉淨光合 作用速率介於 1.04 μmol m⁻²s⁻¹至 10.96 μmol m⁻²s⁻¹ (表三)。 (2)氣孔導度:

全年氣孔導度平均值為 50.32 mmol m⁻²s⁻¹, 全年試驗日中 最大值出現於 2002 年 12 月 8 日 63.90 mmol m⁻²s⁻¹, 最小值出 現於 2002 年 9 月 7 日 38.20 mmol m⁻²s⁻¹ (表三)。

(3)淨光合作用速率與光度、溫度:

在光合作用特性方面黑板樹上層葉日變化之淨光合作速 率與光度日變化趨勢,以2002年6月23日中午12時及9月 7日下午1時,較為明顯(圖七),其淨光合作用速率隨光度升 高而升高,而特別是在中午時段特別明顯,當時亦為夏季, 可能為高溫所致。

(三)水黃皮下層葉:

(1)淨光合作用速率:

全年淨光合作速率平均值為 2.17 μmol m⁻²s⁻¹, 全年試驗日 中最大值出現於 2002 年 5 月 19 日 3.5 μmol m⁻²s⁻¹, 最小值出 現於 2002 年 6 月 22 日 1.09 μmol m⁻²s⁻¹, 全年下層葉淨光合作 用速率介於 1.09 μmol m⁻²s⁻¹ 至 3.5 μmol m⁻²s⁻¹ (表二)。 (2)氣孔導度:

全年氣孔導度平均值為 87.61 mmol m⁻²s⁻¹, 全年試驗日中 最大值出現於 2002 年 4 月 27 日 112.5 mmol m⁻²s⁻¹, 最小值出 現於 2003 年 1 月 4 日 71.85 mmol m⁻²s⁻¹ (表二)。

(四)黑板樹下層葉

(1)淨光合作用速率:

全年淨光合作速率平均值為 2.28 μ mol m⁻²s⁻¹, 全年試驗日 中最大值出現於 2002 年 9 月 7 日 5.02 μ mol m⁻²s⁻¹, 最小值出 現於 2002 年 11 月 24 日 0.87 μ mol m⁻²s⁻¹, 下層葉淨光合作用 速率介於 0.87 μ mol m⁻²s⁻¹ 至 5.02 μ mol m⁻²s⁻¹(表三)。

(2)氣孔導度:

全年氣孔導度平均值為 46.59 mmol m⁻²s⁻¹, 全年試驗日中 最大值出現於 2003 年 2 月 9 日 61.22 mmol m⁻²s⁻¹, 最小值出 現於 2002 年 7 月 28 日 34.6 mmol m⁻²s⁻¹(表三)。

日期	冠層	淨光合作 用速率 (µmol m ⁻² s ⁻¹)	蒸散作用 速率 (mmol m ⁻² s ⁻¹)	氣孔導度 (mmol m ⁻² s ⁻¹)	葉溫 ()	光度 (µmol m ⁻² s ⁻ 1)	二氧化 碳濃度 (µLL ⁻¹)	相對 濕度 %
2002 年	上層葉	3.2	1.24	102.4	28.5	560	302	57
4月27日	下層葉	2.25	0.98	112.5*	28.2	323	298	56
2002 年	上層葉	4.26	1.32	104.2	29.4	672	313	60
5月19日	下層葉	3.5*	0.84	84.5	28.2	378	306	57
2002 年	上層葉	3.53	1.27	106.8	31.6	704	299	53
6月22日	下層葉	1.09 *	1.01	75.3	31.3	594	297	51
2002 年	上層葉	2.55	1.01	100.1	30.4	701	302	59
7月14日	下層葉	3.4	0.72	80.5	30.1	425	301	61
2002 年	上層葉	3.68	1.32	* 142.2	34.6	694	316	50
8月18日	下層葉	1.65	0.91	78.55	33.2	382	317	48
2002 年	上層葉	3.3	0.67	64	30.05	662	308	63
9月1日	下層葉	1.62	0.5	93.2	30.02	319	309	644
2002 年	上層葉	* 4.51	0.62	* 52.75	29.4	523	313	47
10月20日	下層葉	2.56	0.32	73.25	28.2	249	318	48
2002 年	上層葉	4.12	0.82	59.4	23.4	428	409	49
11月17日	下層葉	2.02	0.75	102.7	22.4	298	417	48
2002 年	上層葉	1.86	0.79	85.4	18.8	440	398	48
12月1日	下層葉	1.79	0.72	94.62	17.2	280	412	412
2003 年	上層葉	* 1.45	0.65	96.5	13.2	353	423	50
1月4日	下層葉	1.69	0.47	71.85 *	13	294	416	42
2003 年	上層葉	2.01	0.7	90.7	17.48	392	399	48
2月8日	下層葉	1.87	0.63	90.23	15.86	188	401	50
2003 年	上層葉	2.01	0.77	98.26	20.26	532	303	50
3月15日	下層葉	2.56	0.75	94.12	20.12	440	294	51
今 年	上層葉	3.04	0.93	91.89	2559	555.08	340.42	53
	下層葉	2.17	0.72	87.61	24.82	347.5	340.50	51

表二水黃皮樹冠上、下層 12 個測定日測之日平均值

* 最高 * 最低

圖五、水黃皮樹冠上冠層 2002 年 4 - 9 月淨光合作用與光度日變化

圖六、水黃皮樹冠上冠層 2002 年 10 - 3 月淨光合作用與光度日變化

日期	冠層	淨光合 作用速 率(µmol m ⁻² s ⁻¹)	蒸散作 用速率 (mmol m ⁻² s ⁻¹)	氣孔導 度 (mmol m ⁻² s ⁻¹)	葉溫 ()	光度 (µmol m ⁻² s ⁻¹)	二氧化 碳濃度 (µLL ⁻¹)	相對濕 度%
2002 年	上層葉	2.28	0.77	38.32	22.66	432	342	50
4月28日	下層葉	1.12	0.74	40	21.41	128	338	58
2002年	上層葉	2.89	0.73	43.23	27.26	450	354	54
5月26日	下層葉	2.29	0.68	41.25	26.84	142	348	58
2002 年	上層葉	5.02	0.85	42.6	31.1	502	322	56
6月23日	下層葉	3.5	0.69	43.7	30.95	162	315	55
2002 年	上層葉	8.95	0.95	47.8	31.1	732	306	57
7月28日	下層葉	3.94	0.61	34.6*	29.3	242	292	63
2002 年	上層葉	*10.96	0.84	46.8	32.28	750	309	60
8月25日	下層葉	3.06	0.92	36.2	31	238	294	65
2002 年	上層葉	6.04	0.55	*38.2	32.5	732	323	61
9月7日	下層葉	5.02*	0.23	38.3	31.9	272	306	63
2002 年	上層葉	3.85	0.78	48.95	26.05	628	313	48
10月27日	下層葉	2.04	0.63	51.15	22.66	142	312	48
2002 年	上層葉	7.76	0.65	54.2	25.7	328	419	51
11月24日	下層葉	0.87*	0.45	52.8	22.95	102	403	50
2002 年	上層葉	4.97	0.68	*63.9	21.1	209	411	52
12月8日	下層葉	1.12	0.64	59.65	17.08	101	406	51
2003 年	上層葉	*1.04	0.58	58.71	16.5	171	409	51
1月5日	下層葉	0.9	0.62	57.06	15.55	119	400	51
2003 年	上層葉	2.28	0.69	60.25	14.02	157	402	42
2月9日	下層葉	2.06	0.72	61.22*	13.74	120	399	44
2003 年	上層葉	1.21	0.7	60.91	21.82	306	372	48
3月22日	下層葉	1.42	0.83	48.26	20.21	225	370	50
今年	上層葉	4.77	0.73	50.32	25.17	449.75	356.83	52
±+	下層葉	2.28	0.65	46.59	23.63	116.08	348.53	55

表三 黑板樹樹冠上、下層 12 個測定日測之日平均值

* 最高 * 最低

圖七、黑板樹冠上冠層 2002 年 4 - 9 月淨光合作用與光度日變化

圖八、黑板樹冠上冠層 2002 年 10 - 3 月淨光合作用與光度日變化

(五)水黃皮、黑板樹各測定日不同冠層葉片的差異:

分別將試驗樹種,於試驗期間(2002年4月至2003年 3月)各日實地測得之上、下冠層淨光合作用速率、光度、 蒸散作用速率、氣孔導度、二氧化碳濃度的日平均值,並使 用 SAS.8.0 所提供的 proc ttest 檢定方法,來分析各試驗日 中兩者之間是否存在顯著性差異,為進一步了解瞬間淨光合 作用速率與葉溫的相關性,故利用迴歸分析來探討。

? 水黃皮上、下冠層差異分析

於 12 個試驗日中,在樹冠上、下層淨光合作用速率、 光度、蒸散作用速率、氣孔導度、二氧化碳濃度的差異性 如下;以淨光合作用速率、光度、二氧化碳濃度於試驗日 中,皆呈極顯著差異日共為6日、11日、9日,另氣孔導 度部份樹冠上、下冠層並無發現差異性,蒸散作用速率方 面唯有 2002 年 5 月 19 日、8 月 18 日、10 月 20 日、1 月 4 日有極顯著差異(表四、五)

31

? 黑板樹上、下冠層差異分析

於 12 個試驗日中,在樹冠上、下層淨光合作用速率、 光度、蒸散作用速率、氣孔導度、二氧化碳濃度的差異性 如下:黑板樹部份以淨光合作用速率、光度皆呈極顯著差 異共為7日、10日,蒸散作用速率僅2002年9月7當日 呈現極顯著差異(表六、七)。

? 水黃皮日均溫與淨光合作用速率日均值之定量迴歸分析 於 12 個試驗日,針對日均溫及淨光合作用速率日均 值進行迴歸分析,以了解二者之間是否有相關性(圖九), 經二次方程式迴歸分析後,R2 高達 0.821,結果發現日均 溫及淨光合作用速率日均值的相關性顯著。 表四 水黃皮淨光合作用速率、光度、蒸散作用速率、二氧化碳濃度

在不同冠層的差異(P值:成對樣本 T 檢定, = 0.05)

小數點後4位(四捨五入)

日期	上層葉 - 下層葉	日期	上層葉 - 下層葉
2002/4/27		2002/9/1	
淨光合作用速率	** 0.0008	淨光合作用速率	** 0.0014
光度	** <0.0001	光度	** <0.0001
氣孔導度	0.8449	氣孔導度	0.9493
蒸散作用速率	*0.0487	蒸散作用速率	*0.0167
二氧化碳濃度	** 0.0032	二氧化碳濃度	** <0.0001
2002/5/19		2002/10/20	
淨光合作用速率	0.2677	淨光合作用速率	**<0.0001
光度	** <0.0001	光度	** <0.0001
氣孔導度	0.6802	氣孔導度	0.7939
蒸散作用速率	** 0.0002	蒸散作用速率	** 0.0003
二氧化碳濃度	** <0.0001	二氧化碳濃度	0.5564
2002/6/22		2002/11/17	
淨光合作用速率	** <0.0001	淨光合作用速率	** <0.0001
光度	** 0.0007	光度	** <0.0001
氣孔導度	0.8964	氣孔導度	0.551
蒸散作用速率	0.3148	蒸散作用速率	*0.0269
二氧化碳濃度	** <0.0001	二氧化碳濃度	** <0.0001
2002/7/14		2002/12/1	
淨光合作用速率	0.07352	淨光合作用速率	0.6399
光度	** <0.0001	光度	** <0.0001
氣孔導度	0.9508	氣孔導度	0.5452
蒸散作用速率	*0.0422	蒸散作用速率	0.1041
二氧化碳濃度	** 0.0018	二氧化碳濃度	** <0.0001
2002/8/18		2003/1/4	
淨光合作用速率	** <0.0001	淨光合作用速率	0.3484
光度	** <0.0001	光度	*0.0326
氣孔導度	0.9526	氣孔導度	0.7261
蒸散作用速率	** 0.0040	蒸散作用速率	** 0.0001
二氧化碳濃度	** 0.0001	二氧化碳濃度	** 0.0001

2003/2/8		2003/3/15	
淨光合作用速率	0.6091	淨光合作用速率	*0.1446
光度	** 0.0001	光度	** 0.0001
氣孔導度	0.9246	氣孔導度	0.6879
蒸散作用速率	*0.0149	蒸散作用速率	0.5624
二氧化碳濃度	0.8297	二氧化碳濃度	0.0976

註:** 極顯著、* 顯著

表五 水黃皮 2002 年 4 月 2003 年 3 月測定日之淨光合作用速率

光度、氣孔導度、蒸散作用速率、二氧化碳濃度在不同冠層

	上層葉 - 下層葉差異顯著次數 ** 極顯著(日) * 顯著(日)			
淨光合作用速率	6	1		
光度	1 1	1		
氣孔導度	0	5		
蒸散作用速率	4	0		
二氧化碳濃度	9	0		

葉片之差異顯著次數統計表

單位:淨光合作用(µmol m⁻²s⁻¹)、光度 (µmol m⁻²s⁻¹)、氣孔導度(mmol

m⁻²s⁻¹)、蒸散作用速率(mmol m⁻²s⁻¹)、二氧化碳濃度(μLL⁻¹))

表六 黑板樹各測定日淨光合作用速率、光度、氣孔導度、蒸散作用

速率、二氧化碳濃度在不同冠層的差異(P值:成對樣本 T

檢定, = 0.05)

小數點後4位(四捨五入)

日期	上層葉 -	日期	上層葉 -
	下層葉		下層葉
2002/4/28		2002/9/7	
淨光合作用速率	** < 0.0001	淨光合作用速率	0.0809
光度	** < 0.0001	光度	** <0.0001
氣孔導度	0.8493	氣孔導度	0.4370
蒸散作用速率	0.6385	蒸散作用速率	** 0.4370
二氧化碳濃度	0.8532	二氧化碳濃度	0.9815
2002/5/26		2002/10/27	
淨光合作用速率	** 0.0018	淨光合作用速率	** 0.0001
光度	** < 0.0001	光度	** 0.0001
氣孔導度	0.8150	氣孔導度	0.9632
蒸散作用速率	0.4988	蒸散作用速率	0.1834
二氧化碳濃度	0.7796	二氧化碳濃度	0.5977
2002/6/23		2002/11/24	
淨光合作用速率	* 0.0244	淨光合作用速率	** < 0.0001
光度	** < 0.0001	光度	0.2106
氣孔導度	0.6736	氣孔導度	0.8509
蒸散作用速率	0. 2992	蒸散作用速率	0.7071
二氧化碳濃度	0.8855	二氧化碳濃度	0.7342
2002/7/28		2002/12/8	
淨光合作用速率	** <0.0001	淨光合作用速率	** < 0.0001
光度	** <0.0001	光度	0.2106
氣孔導度	0.5012	氣孔導度	0.8509
蒸散作用速率	* 0.0223	蒸散作用速率	0.7017
二氧化碳濃度	0.0955	二氧化碳濃度	0.7342

2002/8/25		2003/1/5	
淨光合作用速率	** <0.0001	淨光合作用速率	0.2005
光度	** <0.0001	光度	0.9785
氣孔導度	0.4600	氣孔導度	0.6932
蒸散作用速率	0.6895	蒸散作用速率	0. 6220
二氧化碳濃度	* 0.0351	二氧化碳濃度	0.4921
2003/2/9		2003/3/22	
2003/2/9 淨光合作用速率	0.6565	2003/3/22 淨光合作用速率	0.2901
2003/2/9 淨光合作用速率 光度	0.6565 **0.0020	2003/3/22 淨光合作用速率 光度	0.2901 **0.0001
2003/2/9 淨光合作用速率 光度 氣孔導度	0.6565 **0.0020 0.2820	2003/3/22 淨光合作用速率 光度 氣孔導度	0.2901 **0.0001 0.9153
2003/2/9 淨光合作用速率 光度 氣孔導度 蒸散作用速率	0.6565 **0.0020 0.2820 0.8694	2003/3/22 淨光合作用速率 光度 氣孔導度 蒸散作用速率	0.2901 **0.0001 0.9153 0.1410

註:** 極顯著、* 顯著

表七 黑板樹 2002 年 4 月 2003 年 3 月測定日之淨光合作用速率

光度、氣孔導度、蒸散作用速率、二氧化碳濃度在不同冠層 葉片之差異顯著次數統計表

	上層葉 - 下層葉差異顯著次數			
	<mark>* *</mark> 極顯著(日)	<mark>*</mark> 顯著(日)		
淨光合作用速率	7	1		
光度	1 0	0		
氣孔導度	0	0		
蒸散作用速率	1	0		
二氧化碳濃度	0	2		

單位:淨光合作用(μ mol m⁻²s⁻¹)、光度 (μ mol m⁻²s⁻¹)、氣孔導度(mmol

 $m^{-2}s^{-1}$)、蒸散作用速率(mmol $m^{-2}s^{-1}$)、二氧化碳濃度(μLL^{-1})

圖九、水黃皮試驗期間接(2002 年 4 月 - 2003 年 3 月)各試驗日,葉溫 日均值與淨光合作用速率日均值定量迴歸分析圖

(六)單片葉面積估算及全株葉部固碳量推估

(1)單片葉面積及全株葉面積估算

本次估算試驗樹種全株的葉面積是以冬季落葉期間分 別收集大、中、小型葉片約 50 片,經由 Lasera Meter CI-203 (葉面積測量儀)以掃描方式測量,再求取各型葉片平均葉 面積,經實地測量黑板樹葉片大型葉片平均葉面積 54.83 cm²,最大葉面積為 56.23 cm²,最小葉面積為 53.42 cm²,中 型葉片平均葉面積 25.54 cm²,最大葉面積為 27.06 cm²,最 小葉面積為 24.02 cm²,小型葉片平均葉面積 8.46 cm²,最大 葉面積為 9.02 cm²,最小葉面積為 7.89 cm²(表八)。

另水黃皮部份,經實地測量水黃皮葉片大型葉片平均葉 面積 80.40 cm²,最大葉面積為 83.31 cm²,最小葉面積為 77.49 cm²,中型葉片平均葉面積 59.13 cm²,最大葉面積為 65.62 cm²,最小葉面積為 52.64 cm²,小型葉片平均葉面積 22.72 cm²,最大葉面積為 24.28 cm²最小葉面積為 21.26 cm²(表 九)。

表八、黑板樹大、中、小型葉平均葉面積

L oof Sizo	Leaf area(cm ²)				
Lear Size	mininum	mean	maximun		
large	53.42	54.83	56.23		
medium	24.02	25.54	27.06		
small	7.89	8.46	9.02		

表九、水黃皮大、中、小型葉平均葉面積

Loof Sizo	Leaf area(cm ²)				
Lear Size	mininum	mean	maximun		
large	77.49	80.4	83.31		
medium	52.64	59.13	65.62		
small	21.26	22.72	24.28		

(2) 全株葉面積估算

將測得之單片葉面積並以推估方式估測著生枝幹再推 測各型葉片所佔的比率去計算全株葉面積,黑板樹經估算枝 幹約46支,每支支幹上葉片約248片,共計約11,408片, 其中大型葉片佔20%、中型葉片佔60%、小型葉片佔20%, 故推估全株葉面積為34.93 m²(表十)水黃皮估算枝幹約38 支,每支支幹上葉片約66片,共計2,508片,其中大型葉片 佔27%、中型葉片佔58%、小型葉片佔15%,故推估全株葉 面積為14.89 m²(表十一)。

表十、全株黑板樹葉面積估算

Leaf size	佔全株葉面積比率	葉面積(m ²)
large	20%	13.70
medium	60%	19.15
small	20%	2.12
合計	100%	34.97

表十一、全株水黃皮葉面積估算

Leaf size	佔全株葉面積比率	葉面積(m ²)
large	27%	5.44
medium	58%	8.60
small	15%	0.85
合計	100%	14.89

(3)試驗樹種單位面積碳收獲量及全株二氧化碳固定量的估算

- ? 測量結果水黃皮 12 個測定日,淨光合作用速率年平均值 為 2.61 µ mol m⁻²s⁻¹,日淨光合作用速率年平均值為 75.05 µ mol m⁻²s⁻¹,換算單位面積全株碳收獲量年平均值 0.049 kgCO₂ Year ⁻¹,全年以 2002 年 5 月 19 日平均淨光合作用速 率與單位面積碳收獲量最高,2003 年 1 月 4 日最低(表十 二)。
- ? 測量結果黑板樹 12 個測定日,淨光合作用速率年平均值 為 3.53µ mol m⁻²s⁻¹,日淨光合作用速率年平均值為 101.07µ mol m⁻²s⁻¹,換算單位面積全株碳收獲量年平均值 0.157 kg CO₂ Year⁻¹,全年以 2002 年 8 月 25 日平均淨光合作 用速率與單位面積碳收獲量最高,2003 年 1 月 5 日最低(表 十三)。

表十二 水黃皮平均淨光合作用速率、一日淨光合作用總量及單位面

積碳固定量

日期	淨光合作用速率 μ mol m ⁻² s ⁻¹	日淨光合作用速率 mmol m ⁻² s ⁻¹	單位面積碳固定量 kgCO ₂ Year ⁻¹	排序
4月27日	2.73	78.62	0.052	
5月19日	3.88	111.74	0.073	最高
6月22日	2.31	66.52	0.043	
7月14日	2.98	85.82	0.056	
8月18日	2.67	76.90	0.050	
9月1日	2.46	70.85	0.046	
10月20日	3.54	101.95	0.067	
11月17日	3.07	88.42	0.058	
12月1日	1.83	52.70	0.035	
1月4日	1.57	45.21	0.030	最低
2月8日	1.94	55.87	0.037	
3月15日	2.29	65.95	0.043	
平均	2.61	75.05	0.049	

表十三 黑板樹平均淨光合作用速率、一日淨光合作用總量及單位面

積碳固定量

日期	淨光合作用速率 μ mol m ⁻² s ⁻¹	日淨光合作用速率 mol m ⁻² s ⁻¹	單位面積碳固定量 kgCO ₂ Year ⁻¹	排序
4月28日	1.7	48.96	0.075	
5月26日	2.59	74.59	0.114	
6月23日	4.26	122.69	0.188	
7月28日	6.45	185.76	0.286	
8月25日	7.01	201.89	0.311	最高
9月7日	5.53	159.26	0.245	
10月27日	2.95	84.96	0.131	
11月24日	4.32	124.42	0.191	
12月8日	3.05	87.84	0.14	
1月5日	0.97	27.94	0.043	最低
2月9日	2.17	62.50	0.096	
3月22日	1.32	38.01	0.058	
平均	3.53	101.07	0.157	

Leaf size	佔全株葉面積比率	葉面積(m ²)	二氧化碳固定量
			(kgCO ₂ Year ⁻¹)
large	27%	5.44	6.57
medium	58%	8.60	10.37
small	15%	0.85	1.02
合計	100%	14.89	17.96

表十四、全株水黃皮一年二氧化碳固定量之估算

 CO_2 換算:1 μ mol CO_2 m⁻²s⁻¹=0.044mg CO_2 m⁻²s⁻¹

表十五、全株黑板樹一年二氧化碳固定量之估算

Leaf size	佔全株葉面積比率	葉面積(m ²)	二氧化碳固定量 (kgCO ₂ Year ⁻¹)
large	20%	13.70	22.23
medium	60%	19.15	31.10
small	20%	2.12	3.43
合計	100%	34.97	56.76

 CO_2 換算: 1 μ mol CO_2 m⁻²s⁻¹=0.044mg CO_2 m⁻²s⁻¹

六、討論:

(一) 淨光合作用速率與蒸散作用速率、氣孔導度

(1) 水黃皮、黑板樹上層葉

水黃皮樹冠上層葉在 12 個測定日中,其淨光合作用速率日平 均值為 3.04 μ mol m⁻²s⁻¹,蒸散作用速率日平均值 0.93 mmol m⁻²s⁻¹、氣孔導度日平均值為 91.89 mmol m⁻²s⁻¹,淨光合作用速 率日平均值與王亞男(2000)研究之台大校園 15 年生樟樹陰葉 日平均淨光合作用速率(3.03 μ mol m⁻²s⁻¹)相近,蒸散作用速率 日平均值與黃文俊(1999)所測得福山常綠闊葉樹(0.5-0.8 mmol m⁻²s⁻¹)較相近,氣孔導度的平均值皆比其他地區及樹種高,可 能因試驗地點海拔的不同、受光度 微環境的因素影響而不同。

黑板樹樹冠上層葉在 12 個測定日中,其淨光合作用速率日平 均值為 4.77 µ mol m⁻²s⁻¹,蒸散作用速率日平均值 0.73 mmol m⁻²s⁻¹、氣孔導度日平均值為 50.32 mmol m⁻²s⁻¹,淨光合作用速 率日平均值與王亞男(2000)研究之南投和社樟樹陰葉日平均淨 光合作用速率(4.83 µ mol m⁻²s⁻¹)相近,蒸散作用速率日平均值 與黃文俊(1999)所測得福山常綠闊葉樹(0.5-0.8 mmol m⁻²s⁻¹)相 近,氣孔導度的平均值皆比其他地區及樹種高。

46

(2) 水黃皮、黑板樹下層葉

水黃皮樹冠下層葉在 12 個測定日中,其淨光合作用速率日平 均值為 2.17 μ mol m⁻²s⁻¹,蒸散作用速率日平均值 0.72 mmol m⁻²s⁻¹、氣孔導度日平均值為 87.61 mmol m⁻²s⁻¹,淨光合作用速 率日平均值與郭耀綸(2000)南仁山白榕樹冠中葉層(2.09 μ mol m⁻²s⁻¹)相近,氣孔導度的平均值皆比其他地區及樹種高,可能 因位居交通要道,環境中二氧化碳較高所致。

黑板樹樹冠下層葉在 12 個測定日中,其淨光合作用速率日平 均值為 2.28 μ mol m⁻²s⁻¹,蒸散作用速率日平均值 0.65 mmol m⁻²s⁻¹、氣孔導度日平均值為 46.59 mmol m⁻²s⁻¹,淨光合作用速 率日平均值與郭耀綸(2000)南仁山白榕樹冠中葉層(2.09 μ mol m⁻²s⁻¹)相近,其餘蒸散作用速率平均質與氣孔導度的平均值皆 比其他地區及樹種高。 (二) 光合作用有效輻射(Photosynthesis Active Radiation, PAR)與淨 光合作用速率

(1) 水黃皮上、下層葉

水黃皮下冠層葉因有上冠層葉之遮阻,下層葉之日平均受光 率為樹冠上層葉之 62%,一日平均光合作用速率為 2.17 μ mol m⁻²s⁻¹,為上層葉淨光合作用速率 3.04 μ mol m⁻²s⁻¹的 71%。

(2) 黑板樹上、下層葉

水黃皮下冠層葉因有上冠層葉之遮阻,下層葉之日平均受光 率為樹冠上層葉之 26%,一日平均光合作用速率為 2.28 μ mol m⁻²s⁻¹,為上層葉淨光合作用速率 4.77 μ mol m⁻²s⁻¹ 的 47%。

比較二種樹種上、下冠層受光率,因黑板樹樹葉較水黃皮茂密,故上、下層淨光合作用速率差異性較大。

48

(三) 不同冠層葉片生理因子及環境因子的相關性

研究指出同一林木的葉子隨葉片在樹冠不同層次高 度,其瞬間淨光合作用皆不同(Ishida et al., 1999a),但冠層 的光合作用主要受光度影響,除了光度會因微環境的差異有 所不同(Koch et al., 1994), 本次試驗, 將二種樹種共 24次 資料分析結果(表四、表六)中,水黃皮上、下冠層中淨光 合作用速率、光度、二氧化碳濃度呈極顯著差異,並由水黃 皮樹冠上、下層 12 個測定日之平均值明顯看出,上、下冠 層中淨光合作用速率、光度明顯高於下冠層,其二氧化碳濃 度無明顯變化(表二),黑板樹上、下冠層中淨光合作用速率、 光度呈極顯著差異;黑板樹冠上、下層 12 個測定日之平均 值亦看出,上冠層中淨光合作用速率、光度明顯高於下冠 層,這與光量是森林冠層主要限制因子 (Pearcy 1987, Zotz and Winter 1993) 結果相符,又下冠層葉片明顯受上冠層枝 葉對下冠層枝葉遮阻,故受光率明顯降低,故下冠層葉光合 作用速率、光度與上層葉有明顯差異,因此遮陰葉的光合作 用率經常與光量呈直線關係 (Depury and Farquhar, 1997)。

大氣中二氧化碳濃度部份,以水黃皮為例,上、下冠層 呈極顯著差異,因試驗地位居交通要道,車輛往來擁塞大量

49

排放廢氣,所測得之二氧化碳濃度較一般測得之數據高些,

但未發現它與光合作用速率之相關性(表五)。 (四)淨光合作用速率與光度、氣孔導度、葉溫的相關性

本試驗樹種水黃皮、黑板樹其淨光合作用速率隨 PAR 日 變化趨勢大致相符,以 2002 年 6 月 23 日最明顯,當日為試 驗期間溫度較高的一天,淨光合作用中午 12 時達到最高, 隨之由葉溫之降低而下降,研究報告指出在中午發生氣孔導 度及光合作用速率下降「中午抑制」現象,多在葉溫超過 35

(Aylett 1985, Roy and Salager 1992), 當日葉溫雖高,淨 光合作用速率與光度日趨勢大致相符,但此次試驗溫度未超 過35,所以未發生也並未發現中午抑制的現象。

在 12 個測定日二種樹種,PAR 強度均未過高而使光合 作用發生抑制,根據郭耀綸(2002)研究指出,當光量 1600 µ mol m⁻²s⁻¹時,在溫度較低的測定日,白榕的光合作用率在強 光下仍能保持不降,但在溫度高的測定日,光合作用率在高 於 1600 µ mol m⁻²s⁻¹的強光下即明顯降低,但本次試驗中並 未發現此種現象。

為了解淨光合作用速率與葉溫的相關性,以水黃皮之各 試驗日日均溫與瞬間淨光合作用日均值進行迴歸分析,經分 析其相關性達 0.821,與光合作用速率與葉溫有極顯著正相 關(郭,2002)與相吻合,試驗中並發現水黃皮 200 年 8 月 18 日葉溫 34.6 時淨光合作用速率 3.68 μ mol m⁻²s⁻¹,2003 年1月4日葉溫 13.2 ,淨光合作用速率 1.45 μ mol m⁻²s⁻¹, 明顯表示,葉溫與淨光合作用速率相關性顯著,尤以夏季高 溫幾乎為所有的環境因子影響淨光合作用的主要因子。 (五)葉部碳收穫量及全株 CO₂ 固定量的推估

水黃皮、黑板樹葉部碳收獲推估部份,經分析水黃皮全 株葉面積 14.89 m²、黑板樹全株葉面積 34.97 m²,因水黃 皮整株葉面積低於黑板樹,固所測得之水黃皮 CO₂固定量亦 相對低,水黃皮平均一日碳收獲量 49.62 mmol CO₂ m⁻²s⁻¹, 黑板樹為 155.56 mmol CO₂m⁻²s⁻¹,其水黃皮葉面積和碳收獲 量以 2002 年 5 月 19 日最高,2003 年 1 月 5 日最低;黑板樹 以 2002 年 8 月 25 日最高,2003 年 1 月 5 日最低,可由二種 樹種單位面積碳收獲量發現季節係影響碳收獲量的主因,除 了春季、秋季無顯著變化外,夏季、冬季因氣溫因素影響其 單位面積之收獲量,其中以夏天最高,冬天最少,這與(郭, 2000)所提出之冬季低溫條件下,溫度會是碳收獲量的限制 因子。 本次試驗中黑板樹 12 個測定日所測得之淨光合作用速 率日均值較水黃皮高,水黃皮全株一年 CO₂ 固定量 17.96 kgCO₂ Year⁻¹、黑板樹全株一年 CO₂ 固定量 56.76 kgCO₂ Year⁻¹,所以若以全株 CO₂ 固定量,黑板樹遠大於水黃皮, 更加上水黃皮冬季落葉量大,故水黃皮淨化空氣的功能不及 黑板樹,所以於推估 CO₂固定量時,黑板樹的固定效果較佳。

另比較前人研究之樟樹一年可固定的二氧化碳量為 234.05 kg(洪,2002),本次試驗水黃皮、黑板樹其一年可固 定之二氧化碳量為 49.62 kg、155.56 kg ,二者其固碳量不及 樟樹,除了樹種的不同及環境因素的差異外,試驗樹種生理 年齡、葉齡亦有影響。 七、結論:

本次試驗中水黃皮、黑板樹皆為 10 年生,水黃皮樹高約 3.9 公尺、胸徑 17.54 公分、黑板樹高約 2.92 公尺、胸徑 12.02 公分, 水黃皮樹冠上、下冠層各生理、環境因子中,以淨光合作用速率、 光度、二氧化碳濃度有極顯著差異;黑板樹樹冠上、下冠層各生 理、環境因子中,以淨光合作用速率、光度有極顯著差異,而淨 光合作用速率的差異主要來自環境因子的變異。

依季節比較二種樹種淨光合作用與葉溫的關係,明顯發現夏 季氣溫高,淨光合作用速率高;冬季氣溫低,淨光合作用速率低, 故冬季低溫是影響淨光合作用的主因,並表示夏季高溫為影響淨 光合作用之主因,以葉面積、全株 CO₂ 固定量來看黑板樹全株 葉面積大於水黃皮,黑板樹淨化空氣的功能遠大於水黃皮,行道 樹樹種選擇可優先選擇黑板樹。

以不同冠層位置而言,上冠層與下冠層因環境因子(葉溫、 光度)的不同有所不同,經試驗得知下冠層受上冠層枝葉遮阻, 故受光率降低,由此可知遮蔭葉的淨光合作用與光量關係密切。

綜合二種樹種各日之淨光合作用速率與 PAR 的關係,兩者 之間,淨光合作用速率與 PAR 上升趨勢相符,但無發現中午抑 制現象;如何篩選合適的行道樹樹種以期能對淨化都會區空氣效

53

益,實有待依不同固碳效果加以研究、探討的必需性,如果能在 都市中建構多一些緣地,將可造成與森林間相同的環境,以利大 氣中二氧化碳的減量,改善地球環境。

- 八、參考文獻:
 - 王亞男 2000 柳杉、樟樹對溫室氣体效益之研究 八十九年度 國科會/環保署科技合作研究計畫期末報告 pp.41
 - 2. 王松永 2001 木質材料對二氧化碳固存的環境效應 台灣林業 研究專訊 38c-p1
 - 3. 柯勇 2000 植物生理學 藝軒出版社 pp209-309
 - 4. 林信輝、劉坤樹 1997 福山試驗林十種闊葉樹種之光合成率、
 蒸散率及葉片導度與氣象因子之關係 中華林學季刊
 30(3):269-278
 - 林俊成、李國忠、林裕仁 1999 柳杉人工林碳儲存效果與適應
 成本研究 台大實驗林研究報告 13(1):51-60
 - 6. 易希道 1983 植物生理學國編譯館 pp:220-270
 - 7. 洪儷文 2002 樟樹不同冠層位置之光合作用淨生產力

國立台灣大學森林系研究所碩士論文 p43

8. 黃文俊 1999 台灣東北部六種闊葉樹種冠層二氧化碳固定功能

之研究 國立台灣大學森林系研究所碩士論文 49pp

9. 郭耀綸 2000 南仁山熱帶低地雨林白榕冠層及林下植物的光合作用 台灣林業科學 15(3):351-363

- 10. 郭幸榮 1999 林木生理生態學 國立台灣大學森林學系 pp100-125
- 11.劉業經、呂福原、歐辰雄 1994 台灣樹木誌 國立中興大學農

學院出版委員會 p.108

12.廖述惠 2002 樟樹與台灣櫸於林下栽植二氧化碳固定效益之

研究 國立台灣大學森林系研究所碩士論文 p48-51

- 13.Aylett GP.1985. Irradiance interception. Leaf conductance and photosynthesis in Jamaican upper montance rain forest trees. Photosynthetica 19:323-37
- 14.Berry, J.A., and Downton, J. S. 1982. Environmental regulation of photpsynthesis. In Photosynthesis, Development, Carbon Metabolism and Plant Productivity, Vol, II, Govindjee, ed. Academic Press, New York. pp.263-343
- 15.Carpenter R.1997. Influence of high light intensity on photosynthesis:photoinhibition and energy dissipation. In: Pressarakl M, editor. Handbook of photosynthesis. New York:Marcel Dekker. P443-50
- 16.Cornic G and J. Ghashaie 1991 Effect of temperature on net CO2 assimilation and photosystem II quantum yield of electron transfer of French Bean (*Phaseolus vulgaris L.*) leaves during drought stress. Planta 185:255-260.
- 17.De Pury DGG.1985.Irradiance interception ,leaf conductance and photosynthesis in Jamaican upper montane rain forest trees. Photosynthetica 19:323-37.
- 18.Daunicht, H.J.1974.Acta Hort.39:167
- 19.Ishida A, Toma T, Matsumoto Y, Yap SK, Maruyama Y.1996. Diurnal change in leaf gas exchange characteristics in the uppermost canopy of a rain forest tree, Dryobalanops aromatica Gaerth.F.Tree Physiol 16:779-85

- 20.Ishida A, Toma T, Matsumoto.1999. Leaf gas exchange and chlorophyll fluorescence in relation to leaf angle, azimuth, and canopy position in the tropical pioneer tree, Macaranga conifera. Tree Physiol 19:117-24
- 21.Koch GW, Amthor JS,Goulden ML.1994. Diurnal patterns of leaf photosynth1esis, conductance and water potential at the top of a lowland rain forest canopy in Cameroon:measurements form the Radeau des Cimes.Tree Physuol 14:347-60
- 22.Kramer P. J. 1981 Carbon dioxide concentration, photosynthesis, and dry matter production. Bioscience 31:29-33.
- 23.Pearcy RW. 1987. Photosynthetic gas exchange responses of Australian tropical forest trees in canopy, gas and understory micro-envi-ronments. Funct Euler Ecol 1:169-78
- 24.Roy J, Salager L. 1992. Midday depression of net CO2 exchange of leaves of an emergent rain forest in French Guiana. J Trop Ecol 8:499-504.
- 25.Sakusbury,F.B. and C.W. ross 1992 Plant Physiology 4th edition The Wadsworth Publishing Company,Inc.pp:207-244
- 26.Sakusbury,F.B and C.W Ross 1992 Plant physiology 4th edition The Wadsworth Publishing Company,Inc.pp:207-244
- 27.Whitehead, D. J.R. Leathwick and A.S. Walcroft 2001 Modeling annual carbon uptake for the indigenous forest of New Zealand

Forest Science 47 1 : 9-19

28.Zotz G, Winter K.1993. Short-term photosynthesis measurement spredict leaf carbon balance in tropical rain-forest canopy plants. Planta 191:409-12

參考網址:

http://www.tari.gov.tw/news/

http://parklight.tcg.gov.tw/