Microarray Data Analysis (IV)

Multiple Testing

Hypotheses

Define null hypothesis (H₀) and alternative hypothesis (H₁)

Example:

Are the expression levels of a gene the same in two treatments?

 H_0 : the gene has same expression level. H_1 : the gene has different expression levels.

Steps of Hypothesis Testing

- 1. Determine the null and alternative hypothesis, using mathematical expressions if applicable.
- 2. Select a significance level (α).
- 3. Take a random sample from the population of interest.
- 4. Calculate a test statistic from the sample that provides information about the null hypothesis.
- 5. Decision
 - If the value of the statistic is consistent with the null hypothesis then do not reject H0.
 - If the value of the statistic is not consistent with the null hypothesis, then reject H0 and accept the alternative hypothesis.

		Test Conclusion		
		H ₀	H ₁	
Reality	H ₀	true negative	false positive (Type I error α)	
	H ₁	false negative (Type II error β)	true positive	

H₀: the gene has same expression level.H₁: the gene has different expression levels.

	Condition A				Condition B			
	rep1	rep2	rep3	rep4	rep1	rep2	rep3	rep4
g ₁	X ₁₁	X ₁₂	X ₁₃	X ₁₄	<i>Y</i> ₁₁	<i>Y</i> 12	<i>Y</i> 13	<i>Y</i> 14
g ₂	X ₂₁	X ₂₂	X ₂₃	X ₂₄	<i>Y</i> 21	<i>Y</i> 22	<i>Y</i> 23	<i>Y</i> 24
	•••	•••	•••	•••				
g _i	X _{i1}	X _{i2}	X _{i3}	X _{i4}	<i>Y</i> _{<i>i</i>1}	<i>Y</i> _{<i>i</i>2}	<i>Y</i> _{i3}	Y _{i4}
	•••	•••	•••	•••				
g _n	<i>X_{n1}</i>	X _{n2}	X _{n3}	<i>X</i> _{<i>n</i>4}	Y _{n1}	<i>Y</i> _{n2}	Y _{n3}	<i>Y</i> _{n4}

Which genes are differentially expressed?

 $H_0^{(1)}$: gene *1* has same expression level in both conditions $H_0^{(2)}$: gene *2* has same expression level in both conditions

 $H_0^{(i)}$: gene *i* has same expression level in both conditions $H_0^{(n)}$: gene *n* has same expression level in both conditions n = 6.000

Testing 6,000 gene-wise null hypotheses simultaneously!

Multiple Testing

- At a give significance level α ,
 - For one test:
 - Prob(making Type I error) = α

Prob(Not making Type I error) = 1- α

– For *n* independent tests:

Prob(Not making Type I error)

= Prob(Not making Type I error for any test)

 $= (1 - \alpha)^n$

Prob(making Type I error for at least one test) = $1 - (1 - \alpha)^n$

problematic

 α =0.01, n =100

Prob(making Type I error for at least one test) = 0.634 >> 0.01

Suppose out of the 6,000 genes, 100 are truly differentially expressed (i.e. they are true positives).

• $\alpha = 0.01$, there are 6000 x 0.01 = 60 genes that are false positives, therefore, for the 160 reported genes that are differentially expressed in the two conditions, 37.5% are false positives.

• α = 0.05, 6000 x 0.05 = 300 false positive (75%).

The power of hypothesis testing is weakened/lost because too many tests are performed simultaneously.

→ impose more stringent α values for individual tests so that the family-wise error rate (FWER) is about α

FWER (Family-wise Error Rate)

- Probability of making at least one Type I error when all null hypotheses are true. Let α represent this familywise (Type I) error rate.
 - $-\alpha$ is usually 0.01 or 0.05.
 - Each individual test uses more stringent Type I error rate.
- FWER methods:
 - Bonferroni correction (one-step)
 - Sidak correction
 - Holm's step-down version of Bonferroni correction
 - Other methods not covered (minP, maxT, etc)

Bonferroni correction (one-step)

> Individual tests use Type I error: α/n

□ Sidak correction

> Individual tests use Type I error: $1 - \sqrt[n]{1 - \alpha}$

If α =0.01, n=6000, α/n =1.667 x 10^{-6.} This means:

If we are testing the *n* hypotheses (*i*=1,2,...n)

 $H_0^{(i)}$: gene *i* has same expression level in both conditions.

The probability that we make Type I error for any test is 1.667 x 10⁻⁶ and the expected number of false positive for all tests is 0.01. So it is extremely unlikely that a gene determined to be differentially expressed actually has the same expression level in the two conditions.

□ Holm's Step-down

- ➢ Use different Type I error rates for individual tests
- ➢ Less conservative, more powerful
- Use ordered *P*-values (hence genes are also ordered)

Step 1: Let $p_{(1)}$, $p_{(2)}$, ..., $p_{(n)}$ denote the *n p*-values ordered from smallest to largest.

Step 2: Find the largest integer k so that $p_{(i)} \le \alpha/(n-i+1)$ for all i = 1, ..., k.

- If no such k exists, set c = 0 (declare nothing significant).
- Otherwise set $c = p_{(k)}$ (reject the nulls corresponding to the smallest k p-values).

Still, the expected number of false positive for all tests is α .

	Hypothesis	<i>P</i> -value (ordered incrementally)	Type I Error
g ₁	H ₀ ⁽¹⁾	p_1	α/n
9 ₂	$H_0^{(2)}$	p_2	α/(<i>n</i> -1)
		•••	
9 _i	H ₀ ⁽ⁱ⁾	p _i	α/(<i>n-i</i> +1)
		•••	
g _n	H ₀ ⁽ⁿ⁾	p_n	α

An Example

• Suppose we conduct 5 tests and obtain the following *p*-values for tests 1 through 5.

Test 1 2 3 4 5 p-value 0.042 0.001 0.031 0.014 0.007

- Which tests' null hypotheses will you reject if you wish to control the FWER at level 0.05?
- Use both the Bonferroni method, Sidak method and the Holm method to answer this question.

Solution Test 1 2 3 4 5 p-value 0.042 0.001 0.031 0.014 0.007

- The cutoff for significance is c = 0.05/5=0.01 using the Bonferroni method. Thus we would reject the null hypothesis for tests 2 and 5.
- The cutoff for significance is c = 0.0102 using the Sidak method. We would reject the null hypothesis for tests 2 and 5 as well.

 $0.001 \le 0.05/(5-1+1)=0.01$ $0.007 \le 0.05/(5-2+1)=0.0125$ $0.014 \le 0.05/(5-3+1)=0.0167$ 0.031 > 0.05/(5-4+1)=0.025 $0.042 \le 0.05/(5-5+1)=0.05$

• These calculations indicate that Holm's method would reject null hypotheses for tests 2, 5, and 4.

Summary of FWER

• Focuses on the occurrence, not the number, of false positive.

 α = Probability of making *at least* one Type I error when all null hypotheses are true

• It does NOT consider the effect of the alternative hypothesis.

If out of 100 genes identified to be differentially expressed, 50 are true positives, it is perfectly fine for experimentalists.

 \Rightarrow FWER is being replaced by False Discovery Rate (FDR) methods in very large datasets.

A Conceptual Description of FDR

- Suppose a scientist conducts 100 independent microarray experiments.
- For each experiment, the scientist produces a list of genes declared to be differentially expressed by testing a null hypothesis for each gene.
- For each list consider the ratio of the number of false positive results to the total number of genes on the list (set this ratio to 0 if the list contains no genes).
- The FDR is approximated by the average of the ratios described above.

False Discovery Rate (FDR)

	Not rejected hypothesis	Rejected hypothesis	Total
true hypothesis	U	V (false positive)	U+V
false hypothesis	Т	S (true positive)	T+S
Total	U+T	R	n

 $\mathbf{Q} = \mathbf{V}/\mathbf{R}$ is the ratio of genes falsely classified as differentially expressed. Define: $E(\mathbf{Q}) = False$ Discovery Rate

$$Q = 0$$
 (if V=R= 0)
 $Q = V/R$ (if R> 0)

FDR: expected proportion of false positive among the rejected hypotheses.

False Discovery Rate (FDR)

- FDR methods:
 - Benjamini-Hochberg step-up method
 - Benjamini-Yekutieli step-up method
 - Permutation methods (not covered)

□ Benjamini-Hochberg (BH) step-up method

Specify false discovery rate *r* (0<*r*<1, *e.g. r*=0.25)

➢Assume the *n* tests are *independent* or there are positive regression dependence between tests.

Computes *Q*-value : $q_i = ir/n$

Let $p_{(1)}$, $p_{(2)}$, ..., $p_{(n)}$ denote the *n p*-values ordered from smallest to largest. Find the largest integer *k* so that

$$p_{(k)} \leq q_k = kr/n.$$

- If no such k exists, set c = 0 (declare nothing significant).
- Otherwise set $c = p_{(k)}$ (reject the nulls corresponding to the smallest *k p*-values).

	Hypothesis	<i>P</i> -value (ordered incrementally)	Q-value
g ₁	H ₀ ⁽¹⁾	p_1	$q_1 = r/n$
g ₂	H ₀ ⁽²⁾	p_2	$q_2 = 2r/n$
	•••	•••	
g _i	H ₀ ⁽ⁱ⁾	p _i	q _i = ir∕n
	•••	•••	
9 _n	H ₀ ⁽ⁿ⁾	<i>p</i> _n	$q_n = r$

Our Example Revisited

• Suppose we conduct 5 tests and obtain the following *p*-values for tests 1 through 5.

Test 1 2 3 4 5 p-value 0.042 0.001 0.031 0.014 0.007

- Which tests' null hypotheses will you reject if you wish to control the FDR at level 0.05?
- Use the Benjamini and Hochberg (1995) method to answer this question.

Solution Test 1 2 3 4 5 p-value 0.042 0.001 0.031 0.014 0.007 0.001 1*0.05/5=0.01 0.001 0.031 0.014 0.007

 $0.001 \le 10.05/5 = 0.01$ $0.007 \le 2*0.05/5 = 0.02$ $0.014 \le 3*0.05/5 = 0.03$ $0.031 \le 4*0.05/5 = 0.04$ $0.042 \le 5*0.05/5 = 0.05$

The B&H method reject the null hypotheses for all 5 tests.

New Example (p_3 changed slightly)

• Suppose we conduct 5 tests and obtain the following *p*-values for tests 1 through 5.

Test 1 2 3 4 5 p-value 0.042 0.001 0.041 0.014 0.007

- Which tests' null hypotheses will you reject if you wish to control the FDR at level 0.05?
- Use the Benjamini and Hochberg (1995) method to answer this question.

Solution 1 2 3 4

5

p-value 0.042 0.001 0.041 0.014 0.007

 $0.001 \le 1*0.05/5=0.01$ $0.007 \le 2*0.05/5=0.02$ $0.014 \le 3*0.05/5=0.03$ 0.041 > 4*0.05/5=0.04 $0.042 \le 5*0.05/5=0.05$

Test

The B&H method would still reject the null hypotheses for all 5 tests even though 0.041>0.04.

Benjamini-Yekutieli (BY) step-up method

➢Relax the assumption that the *n* tests are independent: arbitrary dependence between genes

> Replace $q_i = ir/n$ by $q_i = ir/(n\Sigma(1/j))$ j=1,2...n

>More conservative -- ($\Sigma(1/j)$) is a big number for large n)

The First Example

To control the FDR at level 0.05

Test	1	2	3	4	5
<i>p</i> -value	0.042	0.001	0.031	0.014	0.007
$0.001 \le 0.004$ $0.007 \le 0.009$ 0.014 > 0.013 0.031 > 0.018 0.042 > 0.022					

The B&Y method reject the null hypotheses for 2 and 5 tests.

Summary

>Multiple testing is now common in Genomics

➢FWER is a framework to control of Type I error but it can be very conservative when there are very large number of tests.

➢FDR gives more practical results for multiple testing such as microarray analysis and genome-wide genotyping data

R: multtest

- The multtest package contains a collection of functions for multiple hypothesis testing:
 - mt.teststat: compute test statistics for each row of a data frame.
 - mt.rawp2adjp: compute adjusted p-values
 from a vector of raw p-values
 - mt.reject: return the identity and number of rejected hypotheses

Related Papers

- S. Dudoit, J. P. Shaffer, and J. C. Boldrick. Multiple hypothesis testing in microarray http://www.bepress.com/ucbbiostat/paper110.
- J. P. Shaffer. Multiple hypothesis testing. Annu. Rev. Psychol., 46:561–584, 1995