
Microarray Data Analysis (IV)

Multiple Testing



Hypotheses

• Define null hypothesis (H0) and alternative 
hypothesis (H1)

Example:
Are the expression levels of a gene the same 
in two treatments?

H0: the gene has same expression level.
H1: the gene has different expression levels.



Steps of Hypothesis Testing
1. Determine the null and alternative hypothesis, using mathematical 

expressions if applicable.

2. Select a significance level (α).

3. Take a random sample from the population of interest.

4. Calculate a test statistic from the sample that provides information 
about the null hypothesis.

5. Decision
– If the value of the statistic is consistent with the null hypothesis then do 

not reject H0.
– If the value of the statistic is not consistent with the null hypothesis, then 

reject H0 and accept the alternative hypothesis.
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H0: the gene has same expression level.

H1: the gene has different expression levels.
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Which genes are differentially expressed?

H0
(1) : gene 1 has same expression level in both conditions

H0
(2) : gene 2 has same expression level in both conditions

…..

H0
(i) : gene i has same expression level in both conditions

…..
H0

(n) : gene n has same expression level in both conditions

n = 6,000

Testing 6,000 gene-wise null hypotheses simultaneously!



Multiple Testing

• At a give significance level α, 
– For one test:

Prob(making Type I error) = α
Prob(Not making Type I error) = 1- α

– For n independent tests:
Prob(Not making Type I error) 

= Prob(Not making Type I error for any test)
= (1- α )n

Prob(making Type I error for at least one test) = 1- (1- α )n

problematic



α=0.01, n =100

Prob(making Type I error for at least one test)  = 0.634 >> 0.01



Suppose out of the 6,000 genes, 100 are truly differentially 
expressed (i.e. they are true positives).

• α = 0.01, there are 6000 x 0.01 = 60 genes that are 
false positives, therefore, for the 160 reported genes that 
are differentially expressed in the two conditions, 37.5% 
are false positives.

• α = 0.05, 6000 x 0.05 = 300 false positive (75%).

The power of hypothesis testing is weakened/lost because
too many tests are performed simultaneously. 

impose more stringent α values for individual tests so
that the family-wise error rate (FWER) is about α



FWER (Family-wise Error Rate)
• Probability of making at least one Type I error when all 

null hypotheses are true. Let α represent this family-
wise (Type I) error rate. 
– α is usually 0.01 or 0.05.  
– Each individual test uses more stringent Type I error rate.

• FWER methods:
– Bonferroni correction (one-step)
– Sidak correction 
– Holm’s step-down version of Bonferroni correction
– Other methods not covered (minP, maxT, etc) 



Bonferroni correction (one-step)

Individual tests use Type I error:  α/n

Sidak correction

Individual tests use Type I error:  

If α=0.01, n=6000, α/n=1.667 x 10-6. This means:

If we are testing the n hypotheses (i=1,2,…n)

H0
(i) : gene i has same expression level in both conditions.

The probability that we make Type I error for any test is 1.667 x 10-6

and the expected number of false positive for all tests is 0.01. So it is 
extremely unlikely that a gene determined to be differentially 
expressed actually has the same expression level in the two 
conditions.

n α−− 11



Holm’s Step-down

Use different Type I error rates for individual tests

Less conservative, more powerful

Use ordered P-values (hence genes are also ordered)

Step 1: Let p(1), p(2), ... , p(n) denote the n p-values ordered from smallest 
to largest.

Step 2: Find the largest integer k so that p(i) ≤ α/(n-i+1) for all i =1,...,k.
– If no such k exists, set c = 0 (declare nothing significant).

– Otherwise set c = p(k) (reject the nulls corresponding to the smallest k p-
values).

Still, the expected number of false positive for all tests is α.



αpnH0
(n)gn

…………

α/(n-i+1)piH0
(i)gi

..………
α/(n-1)p2H0

(2)g2

α/np1H0
(1)g1

Type I ErrorP-value
(ordered 

incrementally)

Hypothesis



An Example

• Suppose we conduct 5 tests and obtain the 
following p-values for tests 1 through 5.

Test      1     2     3     4     5  

p-value  0.042 0.001 0.031 0.014 0.007

• Which tests’ null hypotheses will you reject if you 
wish to control the FWER at level 0.05?

• Use both the Bonferroni method, Sidak method 
and the Holm method to answer this question.



Solution
Test      1     2     3     4     5  

p-value  0.042 0.001 0.031 0.014 0.007

• The cutoff for significance is c = 0.05/5=0.01 using the Bonferroni 
method.  Thus we would reject the null hypothesis for tests 2 and 5.

• The cutoff for significance is c = 0.0102 using the Sidak method. We 
would reject the null hypothesis for tests 2 and 5 as well.

0.001≤0.05/(5-1+1)=0.01
0.007≤0.05/(5-2+1)=0.0125
0.014≤0.05/(5-3+1)=0.0167
0.031>0.05/(5-4+1)=0.025
0.042≤0.05/(5-5+1)=0.05

• These calculations indicate
that Holm’s method would
reject null hypotheses for
tests 2, 5, and 4.



Summary of FWER
• Focuses on the occurrence, not the number, of false 

positive.
α = Probability of making at least one Type I error when all null 
hypotheses are true

• It does NOT consider the effect of the alternative 
hypothesis.

If out of 100 genes identified to be differentially expressed, 50 are true 
positives, it is perfectly fine for experimentalists.

⇒ FWER is being replaced by False Discovery Rate 
(FDR) methods in very large datasets.



A Conceptual Description of FDR
• Suppose a scientist conducts 100 independent 

microarray experiments.

• For each experiment, the scientist produces a list of 
genes declared to be differentially expressed by testing a 
null hypothesis for each gene.

• For each list consider the ratio of the number of false 
positive results to the total number of genes on the list
(set this ratio to 0 if the list contains no genes).

• The FDR is approximated by the average of the ratios
described above.
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Q = V/R is the ratio of genes falsely classified as differentially expressed.

Define: E(Q) = False Discovery Rate 

Q = 0 (if  V=R= 0)

Q = V/R   (if R> 0)

FDR:  expected proportion of false positive among the rejected hypotheses.

False Discovery Rate (FDR)



False Discovery Rate (FDR)

• FDR methods: 
– Benjamini-Hochberg step-up method
– Benjamini-Yekutieli step-up method
– Permutation methods (not covered)



Benjamini-Hochberg (BH) step-up method

Specify false discovery rate r (0<r<1, e.g. r=0.25)

Assume the n tests are independent or there are positive 
regression dependence between tests.

Computes Q-value : qi= ir/n

Let p(1), p(2), ... , p(n) denote the n p-values ordered from 
smallest to largest. Find the largest integer k so that 

p(k) ≤ qk = kr/n.
– If no such k exists, set c = 0 (declare nothing significant).

– Otherwise set c = p(k) (reject the nulls corresponding to the 
smallest k p-values).
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Our Example Revisited

• Suppose we conduct 5 tests and obtain the 
following p-values for tests 1 through 5.

Test      1     2     3     4     5  

p-value  0.042 0.001 0.031 0.014 0.007

• Which tests’ null hypotheses will you reject if you 
wish to control the FDR at level 0.05?

• Use the Benjamini and Hochberg (1995) method 
to answer this question.



Solution
Test      1     2     3     4     5  

p-value  0.042 0.001 0.031 0.014 0.007

0.001≤1*0.05/5=0.01
0.007≤2*0.05/5=0.02
0.014≤3*0.05/5=0.03
0.031≤4*0.05/5=0.04
0.042≤5*0.05/5=0.05

The B&H method reject the null hypotheses for all 5 tests.



New Example (p3 changed slightly)

• Suppose we conduct 5 tests and obtain the 
following p-values for tests 1 through 5.

Test      1     2     3     4     5  

p-value  0.042 0.001 0.041 0.014 0.007

• Which tests’ null hypotheses will you reject if you 
wish to control the FDR at level 0.05?

• Use the Benjamini and Hochberg (1995) method 
to answer this question.



Solution
Test      1     2     3     4     5  

p-value  0.042 0.001 0.041 0.014 0.007

0.001≤1*0.05/5=0.01
0.007≤2*0.05/5=0.02
0.014≤3*0.05/5=0.03
0.041>4*0.05/5=0.04
0.042≤5*0.05/5=0.05

The B&H method would still reject the null hypotheses for 
all 5 tests even though 0.041>0.04.



Benjamini-Yekutieli (BY) step-up method

Relax the assumption that the n tests are independent: 
arbitrary dependence between genes

Replace qi= ir/n by 

qi= ir/(nΣ(1/j)) j=1,2…n

More conservative -- (Σ(1/j) is a big number for large n)



The First Example
To control the FDR at level 0.05

Test      1     2     3     4     5  

p-value  0.042 0.001 0.031 0.014 0.007

0.001 ≤ 0.004
0.007 ≤ 0.009
0.014 > 0.013
0.031 > 0.018
0.042 > 0.022

The B&Y method reject the null hypotheses for 2 and 5 tests.



Summary

Multiple testing is now common in Genomics

FWER is a framework to control of Type I error but it can 
be very conservative when there are very large number of 
tests. 

FDR gives more practical results for multiple testing such 
as microarray analysis and genome-wide genotyping data



R: multtest

• The multtest package contains a collection 
of functions for multiple hypothesis testing:

– mt.teststat: compute test statistics for each 
row of a data frame.

– mt.rawp2adjp: compute adjusted p-values 
from a vector of raw p-values

– mt.reject: return the identity and number of 
rejected hypotheses
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