
Clustering Algorithm

• Clustering Algorithm
– k-means: k clusters; each cluster is represented by 

the center of the cluster

– PAM : k clusters; each cluster is represented by one 
of the objects in the cluster 

– Hierarchical clustering: returns a complete tree with 
individual patterns as leaves and the convergence 
points of all branches as the root. 

– SOM



SOM: Motivation
• Misleading dendrograms:

• The SOM clustering is designed to create a plot in which 
similar patterns are plotted next to each other.

K-means Hierarchical



Self-Organizing Feature Maps (SOM)

• SOM: A mapmap consists of many simple elements (nodes
or neurons); it is constructed by training.
– SOMs are believed to resemble processing that can occur in the 

brain
– Useful for visualizing high-dimensional data in 2- or 3-D space
– The number of groups = number of nodes



SOM: Example
1. Six nodes (N1, N2,…, N6) of 3 ×

2 grids on 2D are first selected.

2. At each iteration, a data point 
(gene) P is randomly selected. 
NP is the node that maps 
nearest to P. Then the 
mapping of nodes is updated 
by moving points (all nodes)
towards P. Np is moved the 
most. 

3. Data point P is recycled and 
the procedures continue for 
20,000-50,000 iterations.



Self-Organizing Feature Maps (SOM)

• This process can be visualized by imagining all SOM 
units being connected to each other by rubber bands.

A 2D SOFM trained on 3-dimensional data.



Example - Tamayo et al.(1999)
6 x 5 SOM. 
The 828 genes that passed the variation 
filter were grouped into 30 clusters. 

Each cluster is represented by the 
centroid (average pattern) for genes in 
the cluster. 

Expression levels are shown on y-axis 
and time points on x-axis. Error bars 
indicate the SD of average expression. 
n indicates the number of genes within 
each cluster. 



• Literature:
– Eisen, Spellman, Browndagger, and Botstein (1998) 

Cluster analysis and display of genome-wide 
expression patterns. PNAS, 95, 14863-14868 

– Algorithmic Approaches to Clustering Gene 
Expression Data 
http://citeseer.nj.nec.com/shamir01algorithmic.html

– Tibshirani, Hastie, Narasimhan and Chu (2002)
http://www.pnas.org/cgi/reprint/99/10/6567

– Rousseeuw, P.J. (1987) Silhouettes: A graphical aid 
to the interpretation and validation of cluster analysis. 
J. Comput. Appl. Math., 20, 53–65



R: Clustering Algorithm
• Partitioning methods (PM): 

– k-means: kmeans(stats)
– PAM: pam(cluster)

• Hierarchical clustering (HC):
– hclust(stats), agnes(cluster), diana(cluster)

• SOM
– som(som)

• Visualization: 
– Silhouette plot: silhouette(cluster)
– Reordering heatmap for HC: heatmap(stats), heatmap.2(gplots)
– (R-2.7.0) heatmaps for PM and SOM: heatmapsM(maigesPack)



Example: Apop.xls
http://homepage.ntu.edu.tw/~lyliu/IntroBioinfo/Apop.xls
save the file as comma delimitated (.csv).

> Apop = as.matrix(read.csv(“Apop.csv”,row.names=1))
> Apop = t(as.matrix(read.csv(“Apop.csv”,row.names=1)))



Partitioning Methods
kmeans:
> out.km = kmeans(Apop,3) 

PAM:
> library(cluster)
> out.pam3 = pam(Apop,3) 



> si.pam3 = silhouette(out.pam3)
> plot(si.pam3)



Average Silhouette

• For each gene j, compute its silhouette (Sj):

aj =  average distance between gene j and other 
elements in the same group

bj = maxk bjk

bjk = average distance between gene j and the 
elements in the kth group (k ≠ j)

• Average silhouette = 
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Silhouette Plot
Each observation is represented by a horizontal bar



Average Silhouette

• Number of clusters, k:
For different k, compute the average 
silhouette; the largest average silhouette 
gives the optimal number of clusters.



Silhouette Plots for Different k

par(mfrow=c(2,2))
for(i in 2:5) {

plot(silhouette(pam(Apop,i)), 
main = paste("k = ",i), do.n.k=FALSE,   
cex.names=0.5)

}

將視窗分成2 x 2 = 4個小區





postscript("silhouette_Apop.ps")
par(mfrow=c(2,2))
for(i in 2:5) {

plot(silhouette(pam(Apop,i)), 
main = paste("k = ",i), do.n.k=FALSE,   
cex.names=0.5)

}
dev.off()

存成postscript(.ps)檔
(需安裝GSview與Ghostscript)

Ghostscript: http://pages.cs.wisc.edu/~ghost/doc/AFPL/get853.htm
GSview: ftp://mirror.cs.wisc.edu/pub/mirrors/ghost/ghostgum/gsv48w32.exe

Save the plot (LaTeX user):



win.metafile("silhouette_Apop.emf")
par(mfrow=c(2,2))
for(i in 2:5) {

plot(silhouette(pam(Apop,i)), 
main = paste("k = ",i), do.n.k=FALSE,   
cex.names=0.5)

}
dev.off()

存成metafile(.emf)檔

Save the plot (MS Office Word user):



library(maigesPack)
heatmapsM(Apop,groups=out.km$cluster)
heatmapsM(Apop,groups=out.pam3$clustering)

R-2.7.0 (試用版) only



Hierarchical Clustering
• Bottom-up (agglomerative):

> hclust(d, method)
• d: distance matrix
• method: "single", "complete"', '"average", "centroid"

> agnes(x, metric, method)
• x: data matrix or distance matrix
• metric: "euclidean“, "manhattan"
• method: "single", "complete"', '"average", "centroid“

• Top-down (divisive):
> diana(x, metric)

• x: data matrix or distance matrix
• metric: "euclidean“, "manhattan"
• method: "single", "complete"', '"average", "centroid“



Bottom-up: hclust (stats)

Default hang = -1



Bottom-up: hclust (stats)



Bottom-up: hclust (stats)

Default color Brewer color (RdBu)



Bottom-up: agnes (cluster)



Bottom-up: agnes (cluster)



Top-down: diana (cluster)



SOM
som(data,xdim,ydim)

> library(som)
> som(Apop,2,3)



> example(som)

Note: The data 
contains 6601 genes, 
measured at 18 time 
points.



Detecting differentially expressed 
genes in microarray data



Introduction

• In many cases, the purpose of microarray 
experiment is to compare the gene expression 
levels in two or several predetermined classes.
– The comparison is often performed under gene-by-

gene basis.

– However, the genes are rarely independent.

– For the convenient interpretability, differentially 
expression analysis usually ignore the dependencies 
between genes. 



Fold Change

• Fold change is the important and intuitive 
approach to find differentially regulated genes:

Fold change (FC) =  

log2(FC) = log2(Expression of experimental sample) 
– log2(Expression of reference sample) 

Sample Reference of Expression
Sample alExperiment of Expression



Fold Change

• Histogram of log2(fold-change):

20.5 = 1.4 
fold change

Selects genes in the tails of the histogram by setting thresholds at the 
desired minimum fold change. For example, FC > 20.5 → log2(FC) > 0.5



Fold Change
• Fold change method can also be visualized on scatter 

plots and MA-plots.



Fold Change

• It may be the only possibility in cases 
where no, or very few replicates, are 
available. 

• The fold change is chosen arbitrarily and 
cannot access the level of significance. 

⇒ statistical tests!



• One-Way Analysis of 
Variance (ANOVA)

• two-sample
t-test

• z-test
• t-test

• Wilcoxon rank-
sum test, 
(Mann-Whitney 
U test). 

• Wilcoxon
signed-rank test

Non-Parametric
Hypothesis 
Testing

Assumptions and Test for Normality
• QQplot

• Shapiro-Wilk Normality Test

Parametric
Hypothesis 
Testing

Complex data
More than two Groups

Unpaired data
Independent samples

Paired data
Dependent samples

Microarray Data

Decide which genes are significantly regulated in a microarray experiment. 

Standard Statistical Tests

• Kruskal-Wallis test



Terminology in Hypothesis Testing

• The null hypothesis:
– H0: µ = 1.15. (the average price of a gallon of 

gas is $1.15)

• The alternative hypothesis:
– H1: µ > 1.15.  (gas prices were actually higher)
– H1: µ < 1.15. 
– H1: µ ≠ 1.15. 



Terminology in Hypothesis Testing

• The significance level (α) is related to the 
degree of certainty you require in order to reject 
the null hypothesis in favor of the alternative. 
– Decide in advance 

– Reject the null hypothesis if the probability of observing a more 
extreme result than your sampled one (p-value) is less than the 
significance level.

– The probability of incorrectly rejecting the null hypothesis when it 
is actually true (Type I error) is 100(1- α)%. 

– If you need more protection from this error, then choose a lower
value of α.



Terminology in Hypothesis Testing

• P-value:
– Definition: P(observing at least this level of 

differential gene expression by random 
chance)

– The smaller the p-value, the less likely it is 
that the observed data have occurred by 
chance, and the more significant the result.



Terminology in Hypothesis Testing

• Confidence intervals: a range of values 
that have a chosen probability of 
containing the true hypothesized quantity.
– Suppose, in our example, 1.15 is inside a 95% 

confidence interval for the mean, µ. That is equivalent 
to being unable to reject the null hypothesis at a 
significance level of 0.05. 

– Conversely if the 100(1-α)% confidence interval does 
not contain 1.15, then you reject the null hypothesis at 
the alpha level of significance. 



Steps of Hypothesis Testing
1. Determine the null and alternative hypothesis, using mathematical 

expressions if applicable.

2. Select a significance level (α).

3. Take a random sample from the population of interest.

4. Calculate a test statistic from the sample that provides information 
about the null hypothesis.

5. Decision
– If the value of the statistic is consistent with the null hypothesis then do 

not reject H0.
– If the value of the statistic is not consistent with the null hypothesis, then 

reject H0 and accept the alternative hypothesis.



Hypothesis Testing in Microarray Study

• In all of the Microarray datasets, we are interested in 
identifying differentially expressed genes.

• The method would then be applied to every gene (one 
gene at a time) on the microarray in order to identify 
those genes that are differentially expressed.

• If the null hypothesis were true, then the variability in the 
data does not represent the biological effect under study, 
but instead results from difference between individuals or 
measurement error.

• We then select differentially expressed genes not on the 
basis of their fold ratio, but on the basis of their p-value.



Hypothesis Testing in Microarray Study

• Hypothesis test for two groups:
– Two sample means: t-test (paired or 

independent)

• Hypothesis test for more than two groups:
– One-Way Analysis of Variance (ANOVA)



Paired Data
• Paired data: there are two measurements from each 

object. We are interested in the difference between the 
two measurements 

Example: Samples are taken from 20 breast cancer 
patients, before and after a 16 week course of 
doxorubicin chemotherapy, and analyzed using 
microarray. There are 9216 genes.

⇒ Has a gene been up-regulated or down-regulated in 
breast cancer following doxoruicin chemotherapy? 



Paired Data

• For each object, calculate the difference 
between the two measurements :

Di = Xi1 – Xi2

• The Di’s can be viewed as a new set of 
independent sample and can be tested whether 
the population mean of Di’s is equal to 0!

H0: μD = 0 Ha: μD ≠ 0



Paired Data

Note that

Under H0: μD = 0,

Reject H0 if |t0| < tα/2,n-1  or if p-value < α
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Paired Data

Example (cont.): Gene ACAT2

Note: we can rank the genes based on their 
p-values.
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R: Paired Data

• Test by R:
t.test(x, y, paired = TRUE, 

alternative = c("two.sided", "less", "greater"))



Unpair Data
• Unpaired data: two measurements are taken from two 

objects independently.

Example: Samples are taken from 37 patients suffering 
from B-cell acute lymphoblastic leukemia (BCR/ABL) 
and 42 normal samples (NEG) and analyzed using 
Affymetrix arrays. There are 12625 genes. 

⇒ We wish to identify the genes that are up- or down-
regulated in BCR/ABL relative to NEG. (i.e., to see if a 
gene is differentially expressed between the two groups.)



Unpair Data

(1) if σ1
2 = σ2

2 = σ2, 

Statistic:

where

(2) ifσ1
2 ≠σ2

2  ⇒ Welch’s Approximation!

Statistics: 
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Unpaired Data

• To test whether σ1
2 = σ2

2 :
Compute F0 = s1

2/s2
2; 

we claim that σ1
2 ≠ σ2

2 if 

1,1,2/101,1,2/0 2121 −−−−− <> nnnn FFFF αα    or   



R: Unpaired Data

• Test for equal variance: 
var.test(x, y)

• if σ12 = σ22 :

t.test(x, y, var.equal = TRUE, 
alternative = c("two.sided", "less", "greater"))

• if σ12 ≠ σ22 :

t.test(x, y, var.equal = FALSE, 
alternative = c("two.sided", "less", "greater"))



Note: we can rank the genes based on their p-values.



Assumption of t-test
• Normality assumption:

– For paried t-test, it is the distribution of the subtracted data that 
must be normal.

– For unpaired t-test, the distribution of both data sets must be 
normal.

• To test normality:
– Visualization: normal probability plot
– Hypothesis test: Shapiro-Wilk Normality Test 

• If the assumption is not held ⇒ nonparametric methods!



BCR/ABL NEG

p-value = 0.2441 p-value = 0.2548



Non-parametric Statistics
• Two good reasons to use non-parametric statistic.

– Microarray data is noisy:
• There are many sources of variability in a microarray experiment

and outliers are frequent.
• The distribution of intensities of many genes may not be normal.
• Non-parametric methods are robust to outliers and noisy data.

– Microarray data analysis is high throughput:
• When analyzing the many thousands of genes on a microarray, we 

would need to check the normality of every gene in order to ensure 
that t-test is appropriate.

• Those genes with outliers or which were not normally distributed
would then need a different analysis.

• It makes more sense to apply a test that is distribution free and thus 
can be applied to all genes in a single pass.



Wilcoxon Signed-Rank Test (paired data)

• Hypothesis: median(D) = 0 .

• Statistic:

T = min(T+, T-)

T+= sum of the ranks for the “positive” values 

T-= sum of the ranks for the “negative” values 
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R: Wilcoxon Signed-Rank Test 

• Test by R:
wilcox.test(x, y, paired = TRUE, 

alternative = c("two.sided", "less", "greater"))



Wilcoxon Rank-Sum Test 
(unpaired data)

• Compute the rank sums: 
– Rank the observations in the combined sample from the smallest 

(1) to the largest (n1+n2)
– T1 = the rank sum for samples 1
– T2 = the rank sum for samples 2

• Statistic:

– one-tailed test statistic: U = U1

– two-tailed test statistic: U = min(U1, U2)
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R: Wilcoxon Rank-Sum Test 

• Test by R:
wilcox.test(x, y,  

alternative = c("two.sided", "less", "greater"))



One-Way Analysis of Variance 
(ANOVA)

• The cases you need ANOVA:
– when you need to compare more than two groups

(e.g., drug 1, drug 2, and placebo)

– when you need to compare groups created by more 
than one independent variable while controlling for 
the separate influence of each of them (e.g., Gender, 
type of Drug, and size of Dose). 

• In fact, for two group comparisons, ANOVA will 
give results identical to a t-test.



One-Way Analysis of Variance 
(ANOVA)

• Example: ALL dataset 

– We want to identify genes that are 
differentially expressed in one or more of 
these four groups.

4253710Size

NEGE2A/PBX1BCR/ABLALL1/AF4Type



ANOVA



R: ANOVA



Assumption of ANOVA
• Two assumptions for the residuals (observed value –

fitted value):
– Normality assumption:

• Visualization: normal probability plot
• Hypothesis test: Shapiro-Wilk Normality Test 

– Equal variance:
• Visualization: plot of residuals versus fitted values (means)
• Hypothesis test: Bartlett’s Test

• If the assumption is not held ⇒ nonparametric methods!



Check Assumptions
plot(out,which=c(1:2))



Check Assumptions



Nonparametric ANOVA

Kruskal-Wallis Test:
> kruskal.test(y ~ factor(trt))



Comments
• The main hazard in using standard statistical tests 

occurs when there are too few replicates to obtain an 
accurate estimate of experimental variances. In such 
cases, modeling methods that use pooled variance 
estimates may be helpful.

• Standard interpretations t and F tests assume that the 
data are sampled from normal populations with equal 
variances. Expression data may fail to satisfy either or 
both of these constraints. 



Permutation Tests

• Permutation tests carried out by 
repeatedly scrambling the samples’ class 
labels and computing statistic for all genes 
in the scrambled data.

• Find the likelihood of the observed statistic 
based on the distribution of statistics from 
the permuted samples.



Permutation Tests



Permutation Tests
• Step 1: Permute the sample columns. Recalculate the 

statistic for the permuted sample.

• Step 2: Repeat Step 1 for all possible permutations. 
– # of permutations: B = n!/(n1! n2!)

• Step 3: Use the all permuted statistics to get the 
distribution

• Step 4: Step 4: Get the p-value:
– P-value = (# of permuted statistics the same as or more extrememore extreme

than observed one) / B.



Permutation Tests

• Example:
Class II

hgfe
51027

Class I
dcba
1015712

t-Statistics

2.1004

1015212
dcfa

51077
hgbe

0.8431

72105
bfdh

7101512
egca

-2.1004

⋮ # of possible combinations = 70 



R: Permutation Tests

• “multtest” package:
– mt.sample.teststat: to compute permuted statistics

– mt.sample.rawp: to compute the p-values

Note: “test” includes
t, t.equalvar, pairt, wilcoxon, f



Comment

• Generally best capture the unknown 
structure of the data.

• It is ideal when the number of arrays is 
sufficient to offer the desired degree of 
confidence.

• May be computationally expensive.



Bootstrap

• The bootstrap method attempts to determine the 
probability distribution from the data itself.
Step 1: One computes a statistic from the current list.

Step 2: Create an artificial list by randomly drawing 
elements from the current list. Some elements will be 
picked more than once. 

Step 3: Compute a new statistic.

Step 4: Repeat 100-1000 times and look at the 
distribution of these objects.



Bootstrap

• Example (Hjorth, 1994): 
Eleven life lengths of an engine part were measured as

Step 1: Estimate the population median by the 
sample median

1600760091400410012900
21500193002800012400363005700

12900ˆ
)6( == xθ



Bootstrap

Steps 2 & 3: Bootstrap simulations:



Bootstrap
• After 200 simulations:

average: 14843
standard deviation: 5737
bias = 14843 – 12900 = 1943
A bias adjusted estimate of the population median: 12900 – 1942 = 

10957

• This method can be applied to compute p-values:
– P-value = (# of permuted statistics the same as or more extrememore extreme

than observed one) / (Total # of simulations).



R: Bootstrap
> library(boot)
> englife = c(5700, 36300, 12400, 28000, 19300,
+ 21500, 12900, 4100, 91400, 7600, 1600)
> boot.out = boot(englife,function(x,id){median(x[id])},1000)



How many bootstraps?

• No clear answer to this. 

• Rule of thumb : try it 100 times, then 1000 
times, and see if your answers have 
changed by much.

• Totally have NN possible subsamples. 



Summary

• Non statistical method: fold change
• Standard statistical methods: 

– parametric
– nonparametric

• Computation-intensive methods: 
permutation; bootstrap.
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