Clustering Algorithm

e Clustering Algorithm

k clusters; each cluster Is represented by
the center of the cluster

k clusters; each cluster is represented by one
of the objects in the cluster

returns a complete tree with
Individual patterns as leaves and the convergence
points of all branches as the root.



SOM: Motivation

* Misleading dendrograms:

K-means Hierarchical
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« The IS designed to create a plot in which
similar patterns are plotted next to each other.



Self-Organizing Feature Maps (SOM)

SOM: A map consists of many simple elements (nodes
or neurons); It is constructed by
— SOMs are believed to resemble processing that can occur in the

— Useful for visualizing high-dimensional data in
— The number of groups = number of nodes




SOM: Example

1. Six nodes (N, N,,..., Ng) of 3 x
2 grids on 2D are first selected.

2. At each iteration, a data point
(gene) P is randomly selected.
Np is the node that maps
nearest to P. Then the
mapping of nodes is updated
by moving points (all nodes)
towards P. N, is moved the
most.

3. Data point P is recycled and
the procedures continue for
20,000-50,000 iterations.



elf-Organizing Feature Maps (SOM)

e This process can be visualized by imagining all SOM
units being connected to each other by rubber bands.

A 2D SOFM trained on 3-dimensional data.



Example - Tamayo et al.(1999)

6 X5 SOM.

The 828 genes that passed the variation
filter were grouped into 30 clusters.

Each cluster is represented by the
centroid (average pattern) for genes in
the cluster.

Expression levels are shown on y-axis
and time points on x-axis. Error bars
indicate the SD of average expression.
n indicates the number of genes within
each cluster.




e Literature:

— Eisen, Spellman, Browndagger, and Botstein (1998)
Cluster analysis and display of genome-wide
expression patterns. PNAS, 95, 14863-14868

— Algorithmic Approaches to Clustering Gene
Expression Data
http://citeseer.nj.nec.com/shamirOlalgorithmic.html

— Tibshirani, Hastie, Narasimhan and Chu (2002)
http://www.pnas.org/cgi/reprint/99/10/6567

— Rousseeuw, P.J. (1987) Silhouettes: A graphical aid
to the interpretation and validation of cluster analysis.

J. Comput. Appl. Math., 20, 53—-65



R: Clustering Algorithm

Partitioning methods (PM):

— k-means: kmeans(stats)

— PAM: pam(cluster)

Hierarchical clustering (HC):

— hclust(stats), agnes(cluster), diana(cluster)

SOM

— som(som)

Visualization:

— Silhouette plot: silhouette(cluster)

— Reordering heatmap for HC: heatmap(stats), heatmap.2(gplots)
— (R-2.7.0) heatmaps for PM and SOM: heatmapsM(maigesPack)



Example: Apop.xls

http://homepage.ntu.edu.tw/~lyliu/IntroBioinfo/Apop.xIs
save the file as comma delimitated (.csv).

> Apop = as.matrix(read.csv(“Apop.csv”,row.names=1))
> Apop = {(as.matrix(read.csv(“*Apop.csv’,row.names=1))



Partitioning Methods

kmeans:
> out.km = kmeans(Apop,3)

Available components:
[1] "ocluster™ Moenterzs™ "withinss"™ "zize®

PAM:

> |ibrary(cluster)

> out.pam3 = pam(Apop,3)
Available components:

[1] "mwedoids"™ Pid.med"™ "olustering®™ "objective™ Misolation®
[6] "oclusinfo'™ "=zilinfo'™ "diss" Poall® "data®™



> si.pam3 = silhouette(out.pam3)
> plot(si.pam3)

Silhouette plot of pam(x = Apop, k = 3)
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Average Silhouette

 For each gene |, compute its (S):

' max(a,,b,)

a; = average distance between gene ] and other
elements in the same group

bj = max, b,

b, = average distance between gene ] and the
elements in the kth group (k # J)

_ 13
_HJZ:;‘Sj



Silhouette Plot

Each observation is represented by a horizontal bar

Silhouette plot of pam(x = ruspini, k = 4)
n=7% 4 clusters G
Jonylaveeg 5
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Average Silhouette

e Number of clusters, k:

For different k, compute the average
silhouette; the largest average silhouette
gives the optimal number of clusters.



Silhouette Plots for Different k
par(mfrow=c(2,2))

/
for(i in 2:5) {

plot(silhouette(pam(Apop,i)),
main = paste("k =",i), do.n.k=FALSE,
cex.names=0.5)
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Save the plot (LaTeX user):

postscript("silnouette_Apop.ps”) « 73 = postscript(.ps)

par(mfrow=c(2,2))
for(i in 2:5) {
plot(silhouette(pam(Apop,i)),
main = paste("k = ",i), do.n.k=FALSE,
cex.names=0.5)

(7 % #£GSview¥ Ghostscript)

}
dev.off()

Ghostscript: http://pages.cs.wisc.edu/~ghost/doc/AFPL/get853.htm
GSview: ftp://mirror.cs.wisc.edu/pub/mirrors/ghost/ghostgum/gsv48w32.exe



Save the plot (MS Office Word user):

i+ 2 metafile(.emf) 4

win.metafile("silhouette_ Apop.emf") «
par(mfrow=c(2,2))
for(i in 2:5) {
plot(silhouette(pam(Apop,i)),
main = paste("k = ",i), do.n.k=FALSE,
cex.names=0.5)

}
dev.off()



R-2.7.0 (G&* %) only
library(maigesPack)

heatmapsM(Apop,groups=out.km$cluster)
heatmapsM(Apop,groups=out.pam3$clustering)
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Hierarchical Clustering

« Bottom-up (agglomerative):

> hclust(d, method)
 d: distance matrix

average", "centroid"
> agnes(x, metric, method)
» X: data matrix or distance matrix

 metric: "euclidean”, "manhattan"
""" average", "centroid*

e Top-down (divisive):
> diana(x, metric)
e X: data matrix or distance matrix
e metric: "euclidean®, "manhattan"

* method: "single", "complete™, "average", "centroid*



Bottom-up: hclust (stats)

Default hang = -1
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Bottom-up: hclust (stats)

Default color

Brewer color (RdBu)
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Bottom-up: agnes (cluster)

i R Graphics: Device 2 (ACTIVE)
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Banner of agnes(x = Apop)
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agnes (cluster)

Bottom-up

R R Graphics: Device 2 (ACTIVE)
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Top-down: diana (cluster)

R E Graphics: Device 2 (ACTIYE)
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SOM

FR R Graphics: Device 2 (ACTIVE) M=%
som(data,xdim,ydim)
> library(som) .
> som(Apop,2,3) e
5 1' :




> example(som)

Note: The data

contains 6601 genes,

measured at 18 time
points.
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Detecting differentially expressed
genes In microarray data



Introduction

* |n many cases, the purpose of microarray
experiment Is to the gene expression
levels in two or several predetermined classes.

— The comparison is often performed under gene-by-
gene basis.

— However, the genes are rarely independent.

— For the convenient interpretability, differentially
expression analysis usually ignore the dependencies
between genes.



Fold Change

 Fold change is the important and intuitive
approach to find differentially regulated genes:

Expression of Experimental Sample

Fold change (FC) =

Expression of Reference Sample

log,(FC) = log,(Expression of experimental sample)
— log,(Expression of reference sample)



Fold Change

» Histogram of log,(fold-change):

200

s
,_1[_!

1

100
-

50

0

Selects genes in the tails of the histogram by setting thresholds at the
desired minimum fold change. For example, FC > 29> — Jog,(FC) > 0.5



experiment

Fold Change

* Fold change method can also be visualized on scatter
plots and MA-plots.

Fold change on a scatter plot Fold change on a ratio-intensity plot
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Fold Change

It may be the only possibility in cases
where , are
available.

 The fold change is chosen arbitrarily and
cannot access the

— statistical tests!



Standard Statistical Tests

Decide which genes are significantly regulated in a microarray experiment.

Microarray Data

Paired data

Dependent samples

Unpaired data

Independent samples

Complex data
More than two Groups

Parametric
Hypothesis
Testing

e Z-test
* {-test

- two-sample
t-test

* One-Way Analysis of
Variance (ANOVA)

Assumptions and Test for Normality

* QQplot

« Shapiro-Wilk Normality Test

Non-Parametric
Hypothesis
Testing

» Wilcoxon
signed-rank test

e Wilcoxon rank-
sum test,
(Mann-Whitney

U test).

» Kruskal-Wallis test




Terminology In Hypothesis Testing

—Hy: u = 1.15. (the average price of a gallon of
gas is $1.15)

—H;: ©>1.15. (gas prices were actually higher)
—H;: u<1.15.
—H;:p # 1.15.




Terminology In Hypothesis Testing

 The IS related to the
degree of certainty you require in order to reject
the null hypothesis in favor of the alternative.

— Decide in advance

— Reject the null hypothesis if the probability of observing a more
extreme result than your sampled one (p-value) is less than the
significance level.

— The probability of incorrectly rejecting the null hypothesis when it
Is actually true (Type | error) is 100(1- « )%.

— If you need more protection from this error, then choose a lower
value of « .



Terminology In Hypothesis Testing

— Definition: P(observing at least this level of
differential gene expression by random
chance)

— The smaller the p-value, the less likely it is
that the observed data have occurred by
chance, and the more significant the resuilt.



Terminology In Hypothesis Testing

a range of values
that have a chosen probability of

containing the true hypothesized guantity.

— Suppose, in our example, 1.15 is inside a 95%
confidence interval for the mean, Q. That is equivalent
to being unable to reject the null hypothesis at a
significance level of 0.05.

— Conversely if the 100(1- a )% confidence interval does
not contain 1.15, then you reject the null hypothesis at
the alpha level of significance.



Steps of Hypothesis Testing

1. Determine the null and alternative hypothesis, using mathematical
expressions if applicable.

2. Select a significance level (a).
3. Take a random sample from the population of interest.

4. Calculate a test statistic from the sample that provides information
about the null hypothesis.

5. Decision

— If the value of the statistic is consistent with the null hypothesis then do
not reject HO.

— If the value of the statistic is not consistent with the null hypothesis, then
reject HO and accept the alternative hypothesis.



Hypothesis Testing In Microarray Study

 In all of the Microarray datasets, we are interested in
identifying differentially expressed genes.

 The method would then be applied to every gene (one
gene at a time) on the microarray in order to identify
those genes that are differentially expressed.

 If the null hypothesis were true, then the variability in the
data does not represent the biological effect under study,
but instead results from difference between individuals or

measurement error.

* We then select differentially expressed genes not on the
basis of their fold ratio, but on the



Hypothesis Testing In Microarray Study

— Two
Inde

Hypot
— One

Hypothesis test for two groups:

sample means: t-test (paired or
pendent)

nesis test for more than two groups:

-Way Analysis of Variance (ANOVA)



Paired Data

there are two measurements from each
object. We are interested in the difference between the
two measurements

Example: Samples are taken from 20 breast cancer
patients, and after a 16 week course of
doxorubicin chemotherapy, and analyzed using
microarray. There are 9216 genes.

= Has a gene been up-regulated or down-regulated in
breast cancer following doxoruicin chemotherapy?



Paired Data

 For each object, calculate the difference
between the two measurements :

D; = Xiy — X;;

e The D/'s can be viewed as a new set of
and can be tested whether

the population mean of D;’s is equal to O!

Hy: up=0 Hg pup#0



Paired Data

D —
Note that ~t(n-1)
JSZ/n
D-0 D
UnderH,: =0, t= = ~t(n-1)

St/n  4/SZ/n

Reject H If |ty| <t, .1 Or If p-value < ¢



Paired Data

Example (cont.): Gene
D =0.346955 S = 0.2315987

t, = b _ 32242, p-—value=0.004465

\S2/n

RejectH,!

Note: we can rank the genes based on their
p-values.



R: Paired Data

Test by R:

t.test(x, y, paired = ,
alternative = c("two.sided", "less", "greater"))

> dd = read.delim("perou.tak™)
* ACATZ = as.numeric (dd[which (ddiGene == "ACATZ"™),-1])
> L.test (ACATZ2[1:20] ,ACATZ[21:40] , paired=T)

Paired t-test

data: ACATZ[1:20] and ACATZ[Z21:40]
L = =3.2242, df = 13, p-wvalue = 0.004465
alternative hypothesizs: true difference 1in means 12 not equal to O
95 percent confidence interval:
-0.5721855 -0.1217245
Sample estimates:
mean of the differences
-0.346955



Unpair Data

two measurements are taken from two
objects independently.

Example: Samples are taken from 37 patients suffering
from B-cell acute lymphoblastic leukemia (BCR/ABL)
and 42 normal samples (NEG) and analyzed using
Affymetrix arrays. There are 12625 genes.

= We wish to identify the genes that are up- or down-
reqgulated in BCR/ABL relative to NEG. (i.e., to see if a
gene is differentially expressed between the two groups.)



Unpair Data

(1)if 0,2= 0,2= g2,

X, - X
Statistic: L < ~t(n,+n, —2)
JSE@in, +1/n,)
2 2
where Sg _ (nl _1)81 +(n2 _1)82
n+n,—2

(2) ifo 2 #+ 0,2 = Welch’s Approximation!

2
(812 ' Szzj
Statistics: X, = Xo ~t(v), v= LSl

> > V="22 2
\/Sllnl+82/n2 Slln1+82/n2

n-1 n,-1



Unpaired Data

 To test whether ¢ ,°= 7,2
Compute F, = s,%/S,;
we claim that g 2 # 0,2 if

F,>F

al2,n-1n,-1

or K <F_

al2,n-1n,-1



R: Unpaired Data

e Test for equal variance:
var.test(x, y)

e |f012:022:

t.test(x, y, var.equal = :
alternative = c("two.sided", "less", "greater"))

® |f0'127£ 022:

t.test(x, y, var.equal = :
alternative = c("two.sided", "less", "greater"))



> war.testiexprs(eset) [1,]~cl)

F Lest Lo compare Lwo variances

data: exprsieset) [1, ] by ol
F = 0.5856, num df = 36, denom df = 41, p-wvalue = 0.1052
alternative hypothesis: true ratio of swvariances is not equal to 1
95 percent confidence interval:
0.3100400 1.1z209737
Sample estimates:
ratio of wvariances
0.5855576

> L.test(exprsieset) [1,] ~cl,var.eqg=T)
Two Jample L-tLest

data: exprsieset)[1l, ] by cl
t = 0.7365, df = 7?7, p-wvalue = 0.4637
alternative hypothesis: true difference in means is not equal to 0O
95 percent confidence interval:
-0.07320496 0,15914465
Sample estimates:
mean in group BCES ABL mean in group NEG
T.535354 T.495354

Note: we can rank the genes based on their p-values.



Assumption of t-test

 Normality assumption:

— For paried t-test, it is the distribution of the subtracted data that
must be normal.

— For unpaired t-test, the distribution of both data sets must be
normal.

e To test normality:
— Visualization: normal probability plot
— Hypothesis test: Shapiro-Wilk Normality Test

 If the assumption is not held = nonparametric methods!



BCR/ABL

NEG

R R Graphics: Device 2 (ACTIYE)
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p-value = 0.2441
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Non-parametric Statistics

 Two good reasons to use non-parametric statistic.
— Microarray data is noisy:

* There are many sources of variability in a microarray experiment
and outliers are frequent.

» The distribution of intensities of many genes may not be normal.
* Non-parametric methods are robust to outliers and noisy data.
— Microarray data analysis is high throughput:

 When analyzing the many thousands of genes on a microarray, we
would need to check the normality of every gene in order to ensure
that t-test is appropriate.

* Those genes with outliers or which were not normally distributed
would then need a different analysis.

* |t makes more sense to apply a test that is distribution free and thus
can be applied to all genes in a single pass.



Wilcoxon Signed-Rank Test (paired data)
median(D) =0 .

~ T-[n(n+1)/4]
~JIn(n+1)(2n+1)]/ 24

T=min(T", T)

Z

~N(0,1) under H,

T*= sum of the ranks for the “positive” values

T-= sum of the ranks for the “negative” values



R: Wilcoxon Signed-Rank Test

 Test by R:

wilcox.test(x, y, paired = ,

alternative = c("two.sided", "less", "greater"))

> Wwilcox,.test (ACATS[1:20] ,ACATZ[21:40] , paired=T)
WMilcoxon signed rank test
data: ACATZ[1:20] and ALCATZ[Z1:40]

Vo= 33, p-wvalue = 0.005551
alternative hypothezis: true location shift i1z not equal to O



Wilcoxon Rank-Sum Test
(unpaired data)

o Compute the rank sums:

— Rank the observations in the combined sample from the smallest
(1) to the largest (n1+n2)

— T, =the rank sum for samples 1
— T, =the rank sum for samples 2

- Statistic: y, =pp, LD

— one-tailed test statistic: U = U,
— two-tailed test statistic: U = min(U,, U,)
U-(nn,/2)

7 =
Jnn, (n, +n, +1)/12

~N(0,1) under H,




R: Wilcoxon Rank-Sum Test

 Test by R:

wilcox.test(x, v,

alternative = c("two.sided", "less", "greater"))
= # rank-sum test
> WilcoxX.test(exprsieset) [1,]~cl)

Wilcoxon rank sum testc
data: exprsieset)[1l, ] by cl

W= 856, p-wvalue = 0.44:=7
alternative hypothesis: true location shift iz not equal to O



One-Way Analysis of Variance
(ANOVA)

 The cases you need ANOVA:

— when you need to compare more than two groups
(e.g., drug 1, drug 2, and placebo)

— when you need to compare groups created by more
than one independent variable while controlling for
the separate influence of each of them (e.g., Gender,
type of Drug, and size of Dose).

 |n fact, for two group comparisons, ANOVA will
give results identical to a t-test.



One-Way Analysis of Variance
(ANOVA)

e Example: ALL dataset

Type | ALL1/AF4 | BCR/ABL | E2A/PBX1 NEG

Size 10 37 5 42

— We want to identify genes that are
differentially expressed in one or more of
these four groups.



ANOVA

Treatment O“e_Wa}r ANOVA
=1 =2 i=p _ .
g F2 S )
_]-—'lj 1‘22 1-'”3 = J‘:" e :F‘]‘
: : F=1,-em
. - , Overall r 2
i, In oy, Mear fa” ~ i\' (U, J )
e T 7. e ia Vv R .
s V. ) S : Hi— H + O
Ho: = po=-= py
Reject Hy if Fy > Figp10-p)
The ANOVA Table for Comparing Means
Source SS (Sum of Squares) DF  MS (Mean Square ) I Prob > F
- i P 2 SST MST
| reatment SST=% % (v.—v) B MST =—— el p-value
=1 =i p-1 P Fo=gpe F
}r} ”f r
Frror SSE=S Y (v —7;) np MSE=22E
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R: ANOVA

> ¥ = droplexprslezset[1,]])]
> out = lmi{y~factoricl))

> anovalout)

Analysis of Variance Tabhle

Fesponse: v

Df Swum Sg Mean 59 F wwalue PrixF)
factor (cl) 3 0.2048 0.06833 1.0664 0O.3675
Fesidual=sz 290 5.7e04 0.0640



Assumption of ANOVA

 Two assumptions for the (observed value —
fitted value):
— Normality assumption:

» Visualization: normal probability plot
» Hypothesis test: Shapiro-Wilk Normality Test

— Equal variance:
 Visualization: plot of residuals versus fitted values (means)
* Hypothesis test: Bartlett’'s Test

 If the assumption is not held = nonparametric methods!



Fesiduals
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Check Assumptions

plot(out,which=c(1:2))
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Check Assumptions

> shapiro.teat (outiresiduals)
mhapiro-TMilk normality test

data: outiresiduals
W= 0.9959, p—wvalue = 0.07368

= hartlett.test (outiresiduals~cl)
Bartlett test of homogeneity of wvariances

data: outiresiduals by ol
Bartlett's E-squared = 53.2158353, df

3, p-wvalue = 0.359:2



Nonparametric ANOVA

Kruskal-Wallis Test:
> kruskal.test(y ~ factor(trt))

> kruskal.test(y ~ factor(cl))
Eruskal-TMalli=s rank =sum test

data: v by factoricl)
Eruskal-WMalliz chi-sgquared = 3.7234, df = 3, p—wvalue = 0.2929



Comments

 The main hazard in using standard statistical tests
occurs when there are to obtain an
accurate estimate of experimental variances. In such
cases, modeling methods that use pooled variance
estimates may be helpful.

o Standard interpretations t and F tests assume that the
data are sampled from with
. Expression data may fail to satisfy either or
both of these constraints.



Permutation Tests

 Permutation tests carried out by
repeatedly scrambling the samples’ class
labels and computing statistic for all genes
In the scrambled data.

e Find the of the observed statistic
based on the distribution of statistics from
the permuted samples.



Permutation Tests

true class labels: test statistic

NN 22

(random) permutations of class labels:

1.5
-0.4
2.3

0.2
-1.2

null distribution of
test statistic

0.7 \

2.2



Permutation Tests

Permute the sample columns. Recalculate the
statistic for the permuted sample.

Repeat Step 1 for all possible permutations.
— # of permutations: B = n!/(nl! n2!)

Use the all permuted statistics to get the
distribution

Step 4: Get the p-value:

— P-value = (# of permuted statistics the same as or more extreme
than observed one) / B.



Permutation Tests

 Example:

Class | Class Il t-Statistics

2.1004

0.8431

-2.1004

# of possible combinations = 70



R: Permutation Tests

. " package:
— mt.sample.teststat: to compute permuted statistics

> args (mt.sample.teststat)
function (V, classlabel, test = "t", fixed.seed.sampling = "¢",
BE = 10000, na = .mwt.nalUM, nonpara = "n')

— mt.sample.rawp: to compute the p-values

> args (mt.sample.rawp)
function [V, classlakbel, test = "t", zide = "ghs", fixxed.zseed.zsampling = "y"
E = 10000, na = .mwt.nalUM, nonpara = "n™)

Note: “test” includes
t, t.equalvar, pairt, wilcoxon, f



Comment

 Generally best capture the unknown
structure of the data.

 Itis ideal when the number of arrays Is
sufficient to offer the desired degree of
confidence.

 May be computationally expensive.



Bootstrap

 The bootstrap method attempts to determine the
probability distribution from the data itself.

One computes a statistic from the current list.

Create an artificial list by randomly drawing
elements from the current list. Some elements will be
picked more than once.

Compute a new statistic.

Repeat 100-1000 times and look at the
distribution of these objects.



Bootstrap

 Example (Hjorth, 1994).

Eleven life lengths of an engine part were measured as

5700 36300 12400 28000 19300 21500
12900 4100 91400 7600 1600

Estimate the population median by the
sample median g = X = 12900



Bootstrap

Bootstrap simulations:

Table 5.1 Data drawn in the first five bootstrap samples.

Original data Bootstrap sample number
ordered 1 2 3 4 53
1600 + + +
4100 +4++ + + +
8700 + + + a3 .
7600 ' + + . 2 o
12400 + + + +
12900 + g ok 2
19300 + + -+ c ol o
21500 ++ + g i o +
28000 L = + 3 +
36300 + + +
91400 + + + + o o

6* 12900 21500 12900 7600 12400




Bootstrap

o After 200 simulations:
average: 14843
standard deviation: 5737
bias = 14843 — 12900 = 1943

A bias adjusted estimate of the population median: 12900 — 1942 =
10957

 This method can be applied to compute p-values:

— P-value = (# of permuted statistics the same as or more extreme
than observed one) / (Total # of simulations).



R: Bootstrap

> |ibrary(boot)

> englife = ¢(5700, 36300, 12400, 28000, 19300,

+ 21500, 12900, 4100, 91400, 7600, 1600)

> poot.out = boot(englife,function(x,id){median(x[id])},1000)

ORDIMNARY NONPARLAMETRIC BOOTSTRALF

call:

bhoot (data = englife, ztatistic = functioni(x, id)] |
median(=x[id])

., BRo=1000)

Bootztrap Statistics o
original bias =td. error
tl* 12900 Z2162.5 oobl. 693



How many bootstraps?

e NO clear answer to this.

* Rule of thumb : try it 100 times, then 1000
times, and see If your answers have
changed by much.

e Totally have NN possible subsamples.



Summary

* Non statistical method: fold change

o Standard statistical methods:
— parametric
— nonparametric

« Computation-intensive methods:
permutation; bootstrap.
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