
Measure of Distance
• We wish to define the distance between two objects

• Distance metric between points:
– Euclidean distance (EUC)
– Manhattan distance (MAN)
– Pearson sample correlation (COR)
– Angle distance (EISEN – considered by Eisen et al., 1998.)
– Spearman sample correlation (SPEAR)
– Kandall’s τ sample correlation (TAU)
– Mahalanobis distance

• Distance metric between distributions:
– Kullback-Leibler information
– Hamming’s mutual information



R: Distance Metric Between Points

“dist” function in stat package: 
– Euclidean
– Manhattan

hopach package:
– disscosangle(X, na.rm = TRUE) **

bioDist package:
– cor.dist
– spearman.dist
– tau.dist



2.07) 1.60,- 1.51,g
0.29) 0.75,- 0.04,g
0.33) 1.45,- (-1.76,g

3

2

1

(
(

=
=
=

Euclidean distance:

2.45

g2

3.70g3

1.93g2

g1

45.2)29.007.2())75.0(60.1()04.051.1(

70.3)07.233.0())60.1(45.1()51.176.1(

93.1)29.033.0())75.0(45.1()04.076.1(

222

222

222

=−+−−−+−

=−+−−−+−−

=−+−−−+−−

 :g3  vs  g2

 :g3  vs  g1

 :g2  vs  g1



2.07) 1.60,- 1.51,g
0.29) 0.75,- 0.04,g
0.33) 1.45,- (-1.76,g

3

2

1

(
(

=
=
=

Manhattan distance:

4.10

g2

5.16g3

2.54g2

g1

10.407.2290)60.1(75.0|51.104.0
16.507.2330)60.1(451|51.1761
542290330)750(451040761

=−+−+−
=−+−+−
=−+−+−

|.||-|-|
|.||-.|-.|-

.| ..||.-.|-|..|-

 :g3  vs  g2
 :g3  vs  g1
 :g2  vs  g1



Cosine Correlation Distance

• Note: disscosangle(hopach)
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Correlation-based distance :



Measure of Distance
• We wish to define the distance between two objects
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Kullback-Leibler Information 

• Kullback-Leibler information (KLI) considers if 
the shape of the distribution of features is similar 
between two genes. 

f1(x)

f2(x)



Kullback-Leibler Information

Note: 
1. KLI (dKLD) = 0 if f1(x) = f2(x).
2. KLI is not symmetric but dKLD is. 
3. dKLD does not satisfy the triangle inequality
4. KLI or dKLD is not defined when f1(x) ≠ 0 but f2(x) = 0 for some x. 

2/)],(),([),(

)(
)(
)(log),(

122121

1
2

1
21

ffKLIffKLIffd

dxxf
xf
xfffKLI

KLD +=

⎥
⎦

⎤
⎢
⎣

⎡
= ∫



Mutual Information

• Mutual information(MI) attempts to measure the 
distance from independence.

Note:
1. If x and y are independent then f(x,y) = f1(x)f2(y) so 

that MI = 0.
2. Does not satisfy the triangle inequality
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Mutual Information

• (Joe, 1989) Transformation:

δ* can be interpreted as a generalization 
of the correlation!
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R: Distance Between Distributions
bioDist package:

– KLD.matrix (kernel density)
– KLdist.matrix (binning)
– mutualInfo



Exercise: Apop.xls
http://homepage.ntu.edu.tw/~lyliu/IntroBioinfo/Apop.xls
Try to compute the distances between the rows (genes).



Distance: Visualization

man = dist(Apop,"manhattan")

heatmap(as.matrix(man))

heatmap(as.matrix(man),Rowv=NA,Colv=NA)
heatmap(as.matrix(man),Rowv=NA,Colv=NA,symm=T)

library(gplots)
heatmap.2(as.matrix(man),dendrogram="none",keysize=1.5,

Rowv=F,Colv=F,
trace="none",density.info="none")
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pairs(cbind(man,MI,KLsmooth,KLbin))



Cluster Analysis

• Clustering is the process of grouping grouping 
togethertogether similar entities. 
– It is appropriate when there is no prior 

knowledge about the data.

– In a machine learning framework, it is known 
as unsupervised learning since there is no 
known desired answer for any particular gene
or experiment. 



Cluster Analysis

• The entities that are similar to each other 
are grouping together and form a cluster. 

– Step 1: Defining the similarity between entities  
distance metric

– Step 2: Forming clusters 
clustering algorithms
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Clustering

• According to distance between two objects, 
the entities that are closer to each other 
are grouping together and form a cluster. 

clustering algorithms

Note: Anything can be clustered. The 
clustering results may not be related to 
any biological meanings between the 
members of a given cluster.



Clustering

• Usually the results of clustering is shown 
in a clustering tree, or a dendrogram.



Clustering Algorithm

• Partitioning: k-means, PAM 
• Hierarchical clustering 
• Model based: SOM



Partitioning Algorithms
• Partitioning method: Construct a partition of n

objects into a set of k clusters

k = 3



Partitioning Algorithms

• Given a k, find a partition of k clusters that 
optimizes the chosen partitioning criterion

– k-means: Each cluster is represented by the 
center of the cluster

– k-medoids or PAM (Partition around medoids):
Each cluster is represented by one of the 
objects in the cluster  



K-means Clustering

Step 1: Determine the number of clusters, k.

Step 2: Randomly choose k point as the centers of 
clusters.

Step 3: Calculate the distance from each pattern to k
centers and associate every object with the closest 
cluster center.

Step 4: Calculate a new center for the updated clusters.

Step 5: Repeat steps 3 and 4 until no objects are 
relocated. 



K-means Clustering Example: k = 2 

Step 3 Step 4



K-means Clustering Example: k = 2

Repeat 
Step 3

Repeat 
Step 4



Example of K-means Clustering Result

Average distance to the center of clusters



k-mean Clustering: Properties

1. It is possible to produce empty clusters. To 
avoid such situation, one can:

(i) let the starting cluster centers be in the 
general area populated by the given data.

(ii) randomly choose k points as initial centers.



k-mean Clustering: Properties

2. The results of the algorithm can change 
between successive runs of the algorithm.



PAM
• PAM (Partitioning Around Medoids): 

– starts from an initial set of medoids (objects)

– iteratively replaces one of the medoids by one of the non-
medoids if it improves the total distance of the resulting 
clustering

– provides a novel graphical display, the silhouette plot, which 
allows the user to select the optimal number of clusters.

– works effectively for small data sets, but does not scale well for 
large data sets



PAM
Step 1: Select k representative objects arbitrarily.

Step 2: For each pair of non-selected object h and selected 
object i, calculate the total swapping cost TCih

– If TCih < 0, i is replaced by h

– Then assign each non-selected object to the most 
similar representative object

Step 3: Repeat Step 2 until there is no change.



PAM
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PAM

• the next plot is called a silhouette plot
• each observation is represented by a 

horizontal bar
• the groups are slightly separated
• the length of a bar is a measure of how 

close the observation is to its assigned 
group (versus the others)
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Partitioning Methods: Comment

• Number of clusters, k:
– If there are features that clearly distinguish

between the classes (e.g. cancer and healthy), 
the algorithm might use them to construct 
meaningful clusters.

– If the analysis has an exploratory character, 
one could repeat the clustering for several 
values of k.



Clustering Algorithm

• Partitioning: k-means, PAM
• Hierarchical clustering 
• Model based: SOM



Hierarchical Clustering

• k-means clustering returns a set of k clusters.

• Hierarchical clustering returns a complete tree
with individual patterns as leaves and the 
convergence points of all branches as the root.
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Hierarchical Clustering

Step 1: Choose one distance measurement

Step 2: Construct the hierarchical tree:

– Bottom-up (agglomerative) method: n → 1; starting 
from the individual patterns and putting smaller 
clusters together to form bigger clusters.

– Top-down (divisive) method: 1 → n; starting at the 
root and splitting clusters into smaller ones by non-
hierarchical algorithms (e.g., k-means with k = 2).



Hierarchical Clustering: Example

• Example: Consider 5 experiments (A, B, C, D, E) 
with the following distance metric: 
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Hierarchical Clustering: Example
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Inter-Cluster Distances
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Hierarchical Clustering: Example
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If we use average linkage: d{A,B},C = (dA,C +dB,C) / 2, etc. 

d{A,B},C = (dA,C +dB,C) / 2 = (400+300)/2



Hierarchical Clustering: Example
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Cutting Tree Diagrams

2 groups 4 groups

A hierarchical clustering diagram can be used to divide the data into a 
pre-determined number of clusters by cutting the tree at a certain depth.



Properties of Hierarchical Clustering

• Different tree-constructing methods:
– The same data and the same process obtain the 

same results by running the same bottom-up 
method.

– The same data and the same process obtain two
different results by running the same top-down 
method.

• Different linkage type produce different results.



Hierarchical Clustering: Comments

• Objective of the research: To obtain a clustering that 
reflects the structure of the data. The dendrogram itself 
is almost never the answer to the research question. 

• Various implementations of hierarchical clustering should 
not be judged simply by their speed; slower algorithms 
may be trying to do a better job pf extracting the data 
features. 

• The order of the objects and clusters in the dendrogram 
may be misleading.



Orders in Dendrogram



Clustering Algorithm

• Partitioning: k-means, PAM
• Hierarchical clustering 
• Model based: SOM



SOM: Motivation
• Misleading dendrograms:

• The SOM clustering is designed to create a plot in which 
similar patterns are plotted next to each other.

K-means Hierarchical



Self-Organizing Feature Maps (SOM)

• SOM: A map consists of many simple elements
(nodes or neurons); it is constructed by training.
– SOMs are believed to resemble processing that can 

occur in the brain
– Useful for visualizing high-dimensional data in 2- or 3-

D space



Self-Organizing Feature Maps (SOM)

• Clustering is performed by having several units 
competing for the current object

• The unit whose weight vector is closest to the 
current object wins

• The winner and its neighbors learn by having 
their weights adjusted



Self-Organizing Feature Maps (SOM)

• This process can be visualized by imagining all SOM 
units being connected to each other by rubber bands.

A 2D SOFM trained on 3-dimensional data.



• paper:
– Eisen 1998
– Algorithmic Approaches to Clustering Gene 

Expression Data 
http://citeseer.nj.nec.com/shamir01algorithmic.html

– Tibshirani, Hastie, Narasimhan and Chu (2002)
http://www.pnas.org/cgi/reprint/99/10/6567

– Rousseeuw, P.J. (1987) Silhouettes: A graphical aid 
to the interpretation and validation of cluster analysis. 
J. Comput. Appl. Math., 20, 53–65


