Part II: Choice and Demand
3. Preferences and Utility
4. Utility Maximization and Choice
5. Income and Substitution Effects
6. Demand Relationships among Goods

Chapter 4

Utility Maximization and Choice

Ming-Ching Luoh
2020.10.23.

An Initial Survey

The Two-Good Case

The n-Good Case

Indirect Utility Function

The Lump Sum Principle

Expenditure Minimization
Properties of Expenditure Functions

- This chapter examines the basic model of choice that economists use to explain individuals' behavior.
- Individuals are assumed to behave as though they maximize utility subject to a budget constraint.
- To maximize utility, individuals will choose bundles of commodities for which the rate of trade-off between any two goods (the $M R S$) is equal to the ratio of the goods' market prices.
- Market prices convey information about opportunity costs to individuals, and this information plays an important role in affecting the choices actually made.

Two complaints non-economists often make about the economic approach.

1. No real person can make the kinds of "lightning calculations" required for utility maximization?

- The pool player also can not make the lightning calculations required to plan a shot according to the laws of physics, but the laws still predict the player's behavior.
- The utility-maximization model predicts many aspects of behavior.
- Economists assume that people behave as if they made such calculations; thus, the complaint that the calculations can not possibly be made is largely irrelevant.

2. The economic model of choice is extremely selfish. No one has such solely self-centered goals.

- Nothing in the utility-maximization model prevents individuals from deriving satisfaction from philanthropy or generally "doing good."
- Economists have used the utility-maximization model to study such issues as donating time and money to charity, leaving bequests to children, or even giving blood.
- One need not take a position on whether such activities are selfish or selfless because economists doubt people would undertake them if they were against their own best interests, broadly conceived.

Outline Initial Survey 2 -Good n-Good Indirect Utility Lump Sum Principle Expenditur

- Utility maximization: To maximize utility, given a fixed amount of income to spend, an individual will buy those quantities of goods that exhaust his or her total income, and for which the psychic rate of trade-off between any two goods (the $M R S$) is equal to the rate at which the goods can be traded one for the other in the marketplace.

$$
\begin{aligned}
M R S_{x y}=\frac{M U_{x}}{M U_{y}} & =\frac{p_{x}}{p_{y}} \\
\text { or } \frac{M U_{x}}{p_{x}} & =\frac{M U_{y}}{p_{y}}
\end{aligned}
$$

The Two-Good Case: A Graphical Analysis

Budget constraint

- Assume that the individual has I dollars to allocate between $\operatorname{good} x$ and good y.
- If p_{x} is the price of x and p_{y} is the price of y, then the individual is constrained by

$$
p_{x} x+p_{y} y \leq I
$$

- The slope of the constraint is $-\frac{p_{x}}{p_{y}}$. This slope shows how y can be traded for x in the market.

Figure 4.1 The Individual's Budget Constraints for Two Goods

First-order conditions for a maximum
Figure 4.2 A Graphical Demonstration of Utility Maximization

- C is a point of tangency between the budget constraint and the indifference curve. Therefore, at C we have

$$
\begin{aligned}
& \text { slope of budget constraint }=-\frac{p_{x}}{p_{y}}= \\
& \text { slope of indifference curve }=\left.\frac{d y}{d x}\right|_{U=\text { constant }}
\end{aligned}
$$

Or

$$
\frac{p_{x}}{p_{y}}=-\left.\frac{d y}{d x}\right|_{U=\mathrm{constant}}=M R S(\text { of } x \text { for } y)
$$

Second-order conditions for a maximum

- The tangency rule is necessary but not sufficient unless we assume that $M R S$ is diminishing.
- If $M R S$ is diminishing, then indifference curves are strictly convex. The condition of tangency is both a necessary and sufficient condition for a maximum.
- If MRS is not diminishing, we must check second-order conditions to ensure that we are at a maximum.

Figure 4.3 Example of an Indifference Curve Map for Which the Tangency Rule Does Not Ensure a Maximum

Corner solutions

- Individuals may maximize utility by choosing to consume only one of the goods.
- At the optimal point, E, in Figure 4.4 , the budget constraint is flatter than the indifference curve.
- The rate at which x can be traded for y in the market is lower than the MRS.

Figure 4.4 Corner Solution for Utility Maximization

The n-Good Case

- The individual's objective is to maximize

$$
\text { utility }=U\left(x_{1}, x_{2}, \cdots, x_{n}\right)
$$

subject to the budget constraint

$$
I=p_{1} x_{1}+p_{2} x_{2}+\cdots+p_{n} x_{n} .
$$

The Lagrangian expression is

$$
\mathcal{L}=U\left(x_{1}, x_{2}, \cdots, x_{n}\right)+\lambda\left(I-p_{1} x_{1}-p_{2} x_{2}-\cdots-p_{n} x_{n}\right)
$$

First-order conditions

- First-order conditions for an interior maximum ($n+1$ equations)

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial x_{1}}=\frac{\partial U}{\partial x_{1}}-\lambda p_{1}=0 \\
& \frac{\partial \mathcal{L}}{\partial x_{2}}=\frac{\partial U}{\partial x_{2}}-\lambda p_{2}=0 \\
& \frac{\partial \mathcal{L}}{\partial x_{n}}=\frac{\partial U}{\partial x_{n}}-\lambda p_{n}=0 \\
& \frac{\partial \mathcal{L}}{\partial \lambda}=I-p_{1} x_{1}-p_{2} x_{2}-\cdots-p_{n} x_{n}=0
\end{aligned}
$$

Implications of first-order conditions

- For any two goods, x_{i} and x_{j}, we have

$$
\frac{\partial U / \partial x_{i}}{\partial U / \partial x_{j}}=\frac{p_{i}}{p_{j}}
$$

- It has been shown that the ratio of the marginal utilities of two goods along an indifference curve is equal to the marginal rate of substitution between them, the conditions for an optimal allocation of income become

$$
\operatorname{MRS}\left(x_{i} \text { for } x_{j}\right)=\frac{p_{i}}{p_{j}}
$$

This is exactly the result derived earlier.

Interpreting the Lagrange multiplier

$$
\lambda=\frac{\partial U / \partial x_{1}}{p_{1}}=\frac{\partial U / \partial x_{2}}{p_{2}}=\cdots=\frac{\partial U / \partial x_{n}}{p_{n}}
$$

λ is the marginal utility of an extra dollar of consumption expenditure. Or, the marginal utility of "income."

- Another way to rewrite the necessary condition

$$
p_{i}=\frac{\partial U / \partial x_{i}}{\lambda}
$$

for every i. At the margin, the price of a good represents the consumer's evaluation of the utility of the last unit consumed.

- The price of a goods also represents how much the consumer is willing to pay for the last unit.

Corner solutions

- When corner solutions arise, the first-order conditions must be modified as

$$
\frac{\partial \mathcal{L}}{\partial x_{i}}=\frac{\partial U}{\partial x_{i}}-\lambda p_{i} \leq 0 \quad(i=1, \cdots, n)
$$

$$
\text { and if } \frac{\partial \mathcal{L}}{\partial x_{i}}=\frac{\partial U}{\partial x_{i}}-\lambda p_{i}<0, \text { then } x_{i}=0
$$

- This means that

$$
p_{i}>\frac{\partial U / \partial x_{i}}{\lambda}
$$

In other words, any goods whose price $\left(p_{i}\right)$ exceeds its marginal value to the consumer will not be purchased ($x_{i}=0$).

Example 4.1 Cobb-Douglas Demand Functions

- The Cobb-Douglas utility function is given by

$$
U(x, y)=x^{\alpha} y^{\beta}
$$

where, for simplicity, we assume $\alpha+\beta=1$.

- The Lagrangian expression

$$
\mathcal{L}=x^{\alpha} y^{\beta}+\lambda\left(I-p_{x} x-p_{y} y\right)
$$

yields the first-order conditios

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial x}=\alpha x^{\alpha-1} y^{\beta}-\lambda p_{x}=0 \\
& \frac{\partial \mathcal{L}}{\partial y}=\beta x^{\alpha} y^{\beta-1}-\lambda p_{y}=0 \\
& \frac{\partial \mathcal{L}}{\partial \lambda}=I-p_{x} x-p_{y} y=0
\end{aligned}
$$

- Taking the ratio of the first two terms shows that

$$
\begin{aligned}
\frac{\alpha y}{\beta x} & =\frac{p_{x}}{p_{y}} \\
\text { or } p_{y} y=\frac{\beta}{\alpha} p_{x} x & =\frac{1-\alpha}{\alpha} p_{x} x
\end{aligned}
$$

- Substituting into the budget constraint gives

$$
\begin{aligned}
I=p_{x} x+p_{y} y & =\frac{p_{x} x}{\alpha} \\
p_{x} x^{*} & =\alpha I \\
p_{y} y^{*} & =(1-\alpha) I=\beta I \\
x^{*} & =\frac{\alpha I}{p_{x}} \\
y^{*} & =\frac{\beta I}{p_{y}}
\end{aligned}
$$

- With Cobb-Douglas utility function, the individual will allocate α proportion of his or her income to $\operatorname{good} x$ and β proportion of his or her income to good y.
- Although this feature of the Cobb-Douglas function often makes it easy to work out simple problems, it does suggest that the function has limits in its ability to explain actual consumption behavior.
- Because the share of income devoted to particular goods often changes significantly in response to changing economic conditions, a more general functional form may provide insights not provided by the Cobb-Douglas function.

Numerical example. Suppose $p_{x}=1, p_{y}=4, I=8$. Suppose also that $\alpha=\beta=0.5$, then

$$
\begin{aligned}
& x^{*}=\frac{\alpha I}{p_{x}}=\frac{0.5 I}{p_{x}}=\frac{0.5(8)}{1}=4 \\
& y^{*}=\frac{\beta I}{p_{y}}=\frac{0.5 I}{p_{y}}=\frac{0.5(8)}{4}=1
\end{aligned}
$$

and at these optimal choices,

$$
\begin{aligned}
U & =x^{0.5} y^{0.5}=(4)^{0.5}(1)^{0.5}=2 \\
\lambda & =\frac{\alpha x^{\alpha-1} y^{\beta}}{p_{x}}=\frac{0.5(4)^{-0.5}(1)^{0.5}}{1}=0.25
\end{aligned}
$$

Example 4.2 CES Demand

- Three specific examples of the CES function to illustrate cases in which budget shares are responsive to relative prices.
Case 1: $\delta=0.5$. In this case, $\sigma=1 /(1-\delta)=2$, utility function is

$$
U(x, y)=x^{0.5}+y^{0.5}
$$

Setting up the Lagrangian expression

$$
\mathcal{L}=x^{0.5}+y^{0.5}+\lambda\left(I-p_{x} x-p_{y} y\right)
$$

yields the following first-order conditions for a maximum:

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial x}=0.5 x^{-0.5}-\lambda p_{x}=0 \\
& \frac{\partial \mathcal{L}}{\partial y}=0.5 y^{-0.5}-\lambda p_{y}=0 \\
& \frac{\partial \mathcal{L}}{\partial \lambda}=I-p_{x} x-p_{y} y=0
\end{aligned}
$$

Division of the first two equations shows that

$$
\begin{aligned}
\left(\frac{y}{x}\right)^{0.5} & =\frac{p_{x}}{p_{y}} \\
p_{y} y & =p_{y} x\left(\frac{p_{x}}{p_{y}}\right)^{2}=p_{x} x\left(\frac{p_{x}}{p_{y}}\right)
\end{aligned}
$$

Substituting this into the budget constraint, we have

$$
\begin{gathered}
p_{x} x+p_{y} y=p_{x} x+p_{x} x\left(\frac{p_{x}}{p_{y}}\right)=I \\
\text { and } x^{*}=\frac{I}{p_{x}\left[1+\left(p_{x} / p_{y}\right)\right]}, y^{*}=\frac{I}{p_{y}\left[1+\left(p_{y} / p_{x}\right)\right]}
\end{gathered}
$$

- The share of income spent on good x depends on the price ratio p_{x} / p_{y}. The higher is the relative price of x, the smaller will be the share of income spent on x.

Case 2: $\delta=-1$. In this case, $\sigma=1 /(1-\delta)=0.5$, the utility function is given by

$$
U(x, y)=-x^{-1}-y^{-1}
$$

It can be show that the first-order conditions require

$$
\frac{y}{x}=\left(\frac{p_{x}}{p_{y}}\right)^{0.5}
$$

Substituting into the budget constraints, we have

$$
\begin{aligned}
p_{x} x & +p_{y}\left(\frac{p_{x}}{p_{y}}\right)^{0.5} x=I \\
x^{*} & =\frac{I}{p_{x}+p_{y}\left(p_{x} / p_{y}\right)^{0.5}} \\
& =\frac{I}{p_{x}\left[1+\left(p_{y} / p_{x}\right)^{0.5}\right]}
\end{aligned}
$$

$$
\begin{aligned}
x^{*} & =\frac{I}{p_{x}\left[1+\left(p_{y} / p_{x}\right)^{0.5}\right]} \\
y^{*} & =\frac{I}{p_{y}\left[1+\left(p_{x} / p_{y}\right)^{0.5}\right]}
\end{aligned}
$$

These demand functions are less price responsive than the Cobb-Douglas function in two ways.

- The share of income spent on good x, $p_{x} x / I=1 /\left[1+\left(p_{y} / p_{x}\right)^{0.5}\right]$, responds positively to increases in p_{x}.
- The demand functions are less price responsive than the Cobb-Douglas is also illustrated by the relatively small implied exponents of each good's own price (-0.5).

Case 3: $\delta=-\infty$. The utility function is, for example,

$$
U(x, y)=\min (x, 4 y)
$$

A utility-maximizing person will choose only combinations of the two goods for which $x=4 y$. Substituting this condition into the budget constraint:

$$
I=p_{x} x+p_{y} y=p_{x} x+p_{y} \frac{y}{4}=\left(p_{x}+0.25 p_{y}\right) x .
$$

Hence

$$
x^{*}=\frac{I}{p_{x}+0.25 p_{y}}
$$

Similarly,

$$
y^{*}=\frac{I}{4 p_{x}+p_{y}}
$$

- In this case, the share of a person's budget devoted to good x rises rapidly as the price of x increases because x and y must be consumed in fixed proportions.

$$
\begin{aligned}
\frac{p_{x} x^{*}}{I} & =\frac{1}{1+0.25\left(p_{y} / p_{x}\right)} \\
\frac{p_{y} y^{*}}{I} & =\frac{1}{1+4\left(p_{x} / p_{y}\right)}
\end{aligned}
$$

- Examples 4.1 and . 2 illustrates that it is often possible to manipulate first-order conditions to solve for optimal values of $x_{1}, x_{2}, \cdots, x_{n}$.
- These optimal values in general will depend on the prices of all the goods and on the individual's income. That is,

$$
\begin{aligned}
x_{1}^{*} & =x_{1}\left(p_{1}, p_{2}, \cdots, p_{n}, I\right) \\
x_{2}^{*} & =x_{2}\left(p_{1}, p_{2}, \cdots, p_{n}, I\right) \\
& \vdots \\
x_{n}^{*} & =x_{n}\left(p_{1}, p_{2}, \cdots, p_{n}, I\right)
\end{aligned}
$$

- We can use the optimal values of the x 's to find the indirect utility function.
maximum utility

$$
\begin{aligned}
& =U\left[x_{1}^{*}\left(p_{1}, \cdots, p_{n}, I\right), x_{2}^{*}\left(p_{1}, \cdots, p_{n}, I\right), \cdots, x_{n}^{*}\left(p_{1}, \cdots, p_{n}, I\right)\right] \\
& =V\left(p_{1}, p_{2}, \cdots, p_{n}, I\right) .
\end{aligned}
$$

- The indirect utility function is an example of a value function.
- The optimal level of utility will depend indirectly on prices and income.

Outline Initial Survey 2 -Good n-Good Indirect Utility Lump Sum Principle Expenditure Minimization

- Many economic insights stem from the recognition that utility ultimately depends on the income of individuals and on the prices they face.
- One of the most important of these insights is the so-called lump sum principles that illustrates the superiority of taxes on an individual's general purchasing power to taxes on specific goods.
- A related insight is that general income grants to low-income people will raise utility more than will a similar amount of money spent subsidizing specific goods.
- The intuition behind these results derives directly from the utility-maximization hypothesis; an income tax or subsidy leaves the individual free to decide how to allocate whatever final income he or she has.
- Taxes or subsidies on specific goods both change a person's purchasing power and distort his or her choices because of the artificial prices incorporated in such schemes.
- General income taxes and subsidies are to be preferred if efficiency is an important criterion in social policy.
- The lump sum principle as it applies to taxation is illustrated in Figure 4.5 .

Figure 4.5 The Lump Sum Principle of Taxation Quantity

- initial choice: $\left(x^{*}, y^{*}\right)$
- choice under a tax on $x:\left(x_{1}, y_{1}\right)$
- choice under income tax $\left(x_{2}, y_{2}\right), U_{2}>U_{1}$

Example 4.3 Indirect Utility and the Lump Sum Principle
Case 1: Cobb-Douglas.
For the Cobb-Douglas utility function $U(x, y)=x^{\alpha} y^{\beta}$ with $\alpha=\beta=0.5$, optimal purchases are

$$
x^{*}=\frac{I}{2 p_{x}}, y^{*}=\frac{I}{2 p_{y}}
$$

Thus the indirect utility function is

$$
V\left(p_{x}, p_{y}, I\right)=U\left(x^{*}, y^{*}\right)=\left(x^{*}\right)^{0.5}\left(y^{*}\right)^{0.5}=\frac{I}{2 p_{x}^{0.5} p_{y}^{0.5}}
$$

With $p_{x}=1, p_{y}=4, I=8, V=\frac{8}{2 \cdot 1 \cdot 2}=2$.

The lump sum principle

- For the case of Cobb-Douglas utility function, $V=\frac{I}{2 p_{x}^{0.5} p_{y}^{0.5}}$, with $p_{x}=1, p_{y}=4, I=8, V=2$.
- Suppose that a tax of $\$ 1$ were imposed on $\operatorname{good} x$, then p_{x} increases from $\$ 1$ to $\$ 2$. Therefore $V\left(p_{x}, p_{y}, I\right)$ becomes

$$
V(2,4,8)=\frac{8}{2 \cdot 2^{0.5 \cdot} \cdot 2}=1.41 .
$$

- Since $x^{*}=\frac{8}{2 p_{x}}=2$, when $p_{x}=2$, total tax collections will be $\$ 2$. Therefore, an equal-revenue income tax would reduce net income to $\$ 8-\$ 2=\$ 6$, and the indirect utility would be

$$
V\left(p_{x}, p_{y}, I\right)=V(1,4,6)=\frac{6}{2 \cdot 1 \cdot 2}=1.5
$$

- Thus, the income tax is a clear improvement in utility.

Case 2: Fixed proportions.

For the fixed proportions utility function $U(x, y)=\min (x, 4 y)$, optimal purchases are

$$
x^{*}=\frac{I}{p_{x}+0.25 p_{y}}, y^{*}=\frac{I}{4 p_{x}+p_{y}}
$$

Thus the indirect utility function is

$$
V\left(p_{x}, p_{y}, I\right)=\min \left(x^{*}, 4 y^{*}\right)=x^{*}=4 y^{*}=\frac{I}{p_{x}+0.25 p_{y}}
$$

With $p_{x}=1, p_{y}=4, I=8, V=\frac{8}{1+0.25 \cdot 4}=4$.

The lump sum principle

- A $\$ 1$ tax on good x would reduce indirect utility from 4 to

$$
V\left(p_{x}, p_{y}, I\right)=V(2,4,8)=\frac{8}{2+0.25 \cdot 4}=\frac{8}{3}
$$

- In this case, $x^{*}=\frac{8}{2+0.25 \cdot 4}=\frac{8}{3}$, and tax collections would be $\frac{8}{3}$.
- An income tax that collected $\$ \frac{8}{3}$ would leave this consumer with $\$ \frac{16}{3}$ and yield an indirect utility of

$$
V\left(1,4, \frac{16}{3}\right)=\frac{16 / 3}{1+0.25 \cdot 4}=\frac{8}{3}
$$

- Hence after-tax utility is the same under both the excise and income taxes. Since preferences are rigid, the tax on x does not distort choices.
- Many constrained maximum problems have associated "dual" constrained minimum problems.
- For the case of utility maximization, the associated dual minimization problem concerns allocating income to achieve a given level of utility with the minimal expenditure.
- The goal and the constraint have been reversed.
- Often the expenditure-minimization approach is more useful because expenditures are directly observable, whereas utility is not.

Figure 4.6 The Dual Expenditure-Minimization Problem

The dual of the utility-maximization problem is to attain a given utility level $\left(U_{2}\right)$ with minimal expenditures. An expenditure level of E_{1} does not permit U_{2} to be reached, whereas E_{3} provides more spending power than is strictly necessary. With expenditure E_{2}, this person can just reach U_{2} by consuming x^{*} and y^{*}.

A mathematical statement

- The individual's dual expenditure-minimization problem is to choose $x_{1}, x_{2}, \cdots, x_{n}$ to minimize

$$
\text { total expemditures }=E=p_{1} x_{1}+p_{2} x_{2}+\cdots+p_{n} x_{n}
$$

subject to the constraint

$$
\text { utility }=\bar{U}=U\left(x_{1}, x_{2}, \cdots, x_{n}\right)
$$

- Expenditure function:

The individual's expenditure function shows the minimal expenditures necessary to achieve a given utility level for a particular set of prices. That is

$$
\text { minimal expenditure }=E\left(p_{1}, p_{2}, \cdots, p_{n}, U\right)
$$

This is a value function.

- The expenditure function and the indirect utility function are inverse functions of one another. Both depend on market prices, but involve different constraints (income or utility)

Example 4.4 Two Expenditure Functions

Case 1: Cobb-Douglas utility.

- The indirect utility function in the two-good, Cobb-Douglas case is

$$
V\left(p_{x}, p_{y}, I\right)=\frac{I}{2 p_{x}^{0.5} p_{y}^{0.5}}
$$

Then we have the expenditure function

$$
E\left(p_{x}, p_{y}, U\right)=2 p_{x}^{0.5} p_{y}^{0.5} U
$$

- For $P_{x}=1, p_{y}=4$, with a utility $\operatorname{target} U=2$, then the required minimal expenditures are $2 \cdot 1^{0.5} \cdot 4^{0.5} \cdot 2=\$ 8$.
- Suppose the price of good y were to increase from $\$ 4$ to $\$ 5$, expenditures would have to be increase to $2 \cdot 1 \cdot 5^{0.5} \cdot \mathbf{2}=\$ 8.94$ to provide enough extra purchasing power to precisely compensate for this price increase.

Case 2: Fixed proportions.

- The indirect utility function is

$$
V\left(p_{x}, p_{y}, I\right)=\frac{I}{p_{x}+0.25 p_{y}}
$$

Then the expenditure function is

$$
E\left(p_{x}, p_{y}, U\right)=\left(p_{x}+0.25 p_{y}\right) U
$$

- For $P_{x}=1, p_{y}=4$, with a utility target $U=4$, the required minimal expenditures are $(1+0.25 \cdot 4) \cdot 4=\$ 8$.
- Suppose p_{y} were to increase from $\$ 4$ to $\$ 5$, expenditures would have to be increase to $(1+0.25 \cdot 5) \cdot 4=\$ 9$ to provide enough extra purchasing power to precisely compensate for this price increase.

Outline Initial Survey 2 -Good n-Good Indirect Utility Lump Sum Principle Expenditure Minimization Expenditure

- Homogeneity. A doubling of all prices will precisely double the value of required expenditures. That is, it is homogeneous of degree one.
- Expenditure functions are nondecreasing in prices.

$$
\frac{\partial E}{\partial p_{i}} \geq 0, \text { for every good } i
$$

- Expenditures functions are concave in prices. Concave functions are Functions that always lie below tangents to them.

Figure 4.7 Expenditure Functions Are Concave in Prices

At p_{1}^{*} this person spends $E\left(p_{1}^{*}, \ldots\right)$. If he or she continues to buy the same set of goods as p_{1} changes, then expenditures would be given by $E^{\text {pseudo }}$. Because his or her consumption patterns will likely change as p_{1} changes, actual expenditures will be less than this.

Extensions: Budget Shares

- Engel's law: Fraction of income spent on food decreases as income increases.

$$
\frac{\partial s_{i}}{\partial I}<0
$$

where $s_{i}=\frac{p_{i} x_{i}}{I}$ is the budget shares.

- Hayashi (1995) shows that the share of income devoted to foods favored by the elderly is much larger in two-generation households than in one-generation households.
- Findings by Behrman (1989) from less-developed countries shows that people's desires for a more varied diet as their incomes increase may result in reducing the fraction of income spent on particular nutrients.

E4.1 The variability of budget shares

Table E4.1 Budget shares of U.S. households, 2008

TABLE E4. 1 BUDGET SHARES OF U.S. HOUSEHOLDS, 2008			
	Annual Income		
	\$10,000-\$14,999	\$40,000 - \$49,999	Over $\$ 70,000$
Expenditure Item			
Food	15.7	13.4	11.8
Shelter	23.1	21.2	19.3
Utilities, fuel, and public services	11.2	8.6	5.8
Transportation	14.1	17.8	16.8
Health insurance	5.3	4.0	2.6
Other health-care expenses	2.6	2.8	2.3
Entertainment (including alcohol)	4.6	5.2	5.8
Education	2.3	1.2	2.6
Insurance and pensions	2.2	8.5	14.6
Other (apparel, personal care, other housing expenses, and misc.)	18.9	17.3	18.4

- Engel's law is clearly visible.
- Cobb-Douglas utility function is not useful for detailed empirical studies of household behavior since budget shares are constant for all observed income levels.

Outline Initial Survey 2 -Good n-Good Indirect Utility Lum E4.2 Linear expenditure system

- A generalization of the Cobb-Douglas function that incorporates the idea that certain minimal amounts of each good must be bought by an individual $\left(x_{0}, y_{0}\right)$ is the utility function

$$
U(x, y)=\left(x-x_{\mathrm{o}}\right)^{\alpha}\left(y-y_{\mathrm{o}}\right)^{\beta}
$$

for $x \geq x_{0}$ and $y \geq y_{0}$, where $\alpha+\beta=1$. This is also called Stone-Geary utility function.

- Let supernumerary income $\left(I^{*}\right)$ be the amount of purchasing power remaining after purchasing the minimum bundle

$$
I^{*}=I-p_{x} x_{0}-p_{y} y_{0}
$$

- The demand functions are

$$
\begin{aligned}
& x=x_{0}+\frac{\alpha I^{*}}{p_{x}}=\frac{p_{x} x_{0}+\alpha I^{*}}{p_{x}} \\
& y=y_{0}+\frac{\beta I^{*}}{p_{y}}=\frac{p_{y} y_{0}+\beta I^{*}}{p_{y}}
\end{aligned}
$$

Then
$s_{x}=\frac{p_{x} x}{I}=\frac{p_{x} x_{\mathrm{o}}+\alpha\left(I-p_{x} x_{0}-p_{y} y_{\mathrm{o}}\right)}{I}=\alpha+\frac{\beta p_{x} x_{\mathrm{o}}-\alpha p_{y} y_{\mathrm{o}}}{I}$
$s_{y}=\frac{p_{y} y}{I}=\frac{p_{y} y_{\mathrm{o}}+\beta\left(I-p_{x} x_{0}-p_{y} y_{\mathrm{o}}\right)}{I}=\beta+\frac{\alpha p_{y} y_{\mathrm{o}}-\beta p_{x} x_{\mathrm{o}}}{I}$

- The budget share is positively related to the minimal amount of that good needed and negatively related to the minimal amount of the other good required.

E4.3 CES utility

- The CES utility function

$$
U(x, y)=\frac{x^{\delta}}{\delta}+\frac{y^{\delta}}{\delta}
$$

for $\delta \leq 1, \delta \neq 0$.

- From the first-order conditions, it can be shown that the share equations are

$$
\begin{aligned}
& s_{x}=\frac{1}{1+\left(p_{y} / p_{x}\right)^{K}}, \\
& s_{y}=\frac{1}{1+\left(p_{x} / p_{y}\right)^{K}}
\end{aligned}
$$

where $K=\delta /(\delta-1)$

- The homothetic nature of the CES function is shown by the fact the budget shares depend only on the price ratio, p_{x} / p_{y}.
- For the Cobb-Douglas case, $\delta=0$ and so $K=0$, and $s_{x}=s_{y}=1 / 2$.
- When $\delta>0$, substitution possibilities are great and $K<0$. If p_{x} / p_{y} increases, the individual substitutes y for x to such an extent that s_{x} decreases.
- When $\delta<0$, substitution possibilities are limited and $K>0$. An increase in p_{x} / p_{y} causes only minor substitution of y for x, and s_{x} actually increases.

E4.4 The almost ideal demand system (AIDS)

- Starts from a specific expenditure function.

$$
\begin{aligned}
\frac{\partial \ln E\left(p_{x}, p_{y}, V\right)}{\partial \ln p_{x}} & =\frac{1}{E\left(p_{x}, p_{y}, V\right)} \cdot \frac{\partial E}{\partial p_{x}} \cdot \frac{\partial p_{x}}{\partial \ln p_{x}} \\
& =\frac{x p_{x}}{E}=s_{x}
\end{aligned}
$$

- The expenditure function of the almost ideal demand system takes the form

$$
\begin{aligned}
\ln E\left(p_{x}, p_{y}, V\right) & =a_{\mathrm{o}}+a_{1} \ln p_{x}+a_{2} \ln p_{y} \\
& +0.5 b_{1}\left(\ln p_{x}\right)^{2}+b_{2} \ln p_{x} \ln p_{y} \\
& +0.5 b_{3}\left(\ln p_{y}\right)^{2}+V c_{\mathrm{o}} p_{x}^{c_{1}} p_{y}^{c_{2}}
\end{aligned}
$$

- For the expenditure function to be homogeneous of degree one in prices, the parameters must obey the constraints

$$
a_{1}+a_{2}=1, b_{1}+b_{2}=0, b_{2}+b_{3}=0, c_{1}+c_{2}=0
$$

- It can be shown that, for this function,

$$
\begin{aligned}
& s_{x}=a_{1}+b_{1} \ln p_{x}+b_{2} \ln p_{y}+c_{1} V c_{\mathrm{o}} p_{x}^{c_{1}} p_{y}^{c_{2}} \\
& s_{y}=a_{2}+b_{2} \ln p_{x}+b_{3} \ln p_{y}+c_{2} V c_{\mathrm{o}} p_{x}^{c_{1}} p_{y}^{c_{2}}
\end{aligned}
$$

and

$$
\begin{aligned}
& s_{x}=a_{1}+b_{1} \ln p_{x}+b_{2} \ln p_{y}+c_{1} \ln (E / p) \\
& s_{y}=a_{2}+b_{2} \ln p_{x}+b_{3} \ln p_{y}+c_{2} \ln (E / p)
\end{aligned}
$$

where p is an index of prices defined by

$$
\begin{aligned}
\ln p & =a_{0}+a_{1} \ln P_{x}+a_{2} \ln p_{y}+0.5 b_{1}\left(\ln p_{x}\right)^{2} \\
& =b_{2} \ln p_{x} p_{y}+0.5 b_{3}\left(\ln p_{y}\right)^{2} .
\end{aligned}
$$

