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Maximization of a Function of One
Variable

● Economic theories assume that an economic agent is seeking
to ûnd the optimal value of some function.

● Consumers seek to maximize utility.
● Firms seek to maximize proût.

● For example, the manager of a ûrm wants to maximize
proûts. Suppose that the proûts (π) received depend only on
the quantity (q) of the good sold.

π = f (q)
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Figure 2.1 Hypothetical Relationship between Quantity
Produced and Proûts

● If a manager wishes to produce the level of output that
maximizes proûts, then q∗ should be produced. Notice that
at q∗, dπ/dq = 0.
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aemanager may try varying q to see where a maximum proût
is obtained.

● An increase from q1 to q2 leads to a rise in π.

π2 − π1
q2 − q1

> 0 or ∆π
∆q
> 0

● If output is increased beyond q∗, proût will decline.

An increase from q∗ to q3 leads to a drop in π.

∆π
∆q
< 0
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Derivatives

● ae derivative of π = f (q) is the limit of ∆π/∆q for very
small changes in q.

● It is the slope of the curve.

● ae value depends on the value of q.

● ae derivative of π = f (q) at the point q1 is

dπ
dq
= d f
dq
= lim

h→0
f (q1 + h) − f (q1)

h
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Value of a derivative at a point (the slope)

● ae evaluation of the derivative at the point q = q1 can be
denoted

dπ
dq
∣
q=q1

● In our previous example,

dπ
dq
∣
q=q1
> 0, dπ

dq
∣
q=q3
< 0, dπ

dq
∣
q=q∗
= 0
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First-order condition for a maximum

● For a function of one variable to attain its maximum value at
some point, the derivative at that point must be zero.

d f
dq
∣
q=q∗
= 0

● ae ûrst order condition (dπ/dq) is a necessary condition
for a maximum. But it is not a suõcient condition.

ae second order condition

● In order for q∗ to be the maximum, dπdq > 0 for q < q∗ and
dπ
dq < 0 for q > q∗.

● At q∗, dπ/dq must be decreasing. ae derivative of dπ/dq
must be negative at q∗.
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Figure 2.2 Two Proût Functions aat Give Misleading Results if
the First Derivative Rule is Applied Uncritically
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Second derivative

● ae derivative of a derivative is called a second derivative and
is denoted by

d2π
dq2

or d2 f
dq2

or f ′′(q)

● ae second order condition for q∗ to represent a (local)
maximum is:

d2π
dq2
∣
q=q∗
= f ′′(q)∣

q=q∗
< 0
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Rules for ûnding derivatives

1. If a is a constant, then da
dx = 0

2. If a is a constant, then d[a f (x)]
dx = a f ′(x)

3. If a is a constant, then dxa
dx = axn−1

4. d ln x
dx =

1
x

5. dax
dx = ax ln a for any constant a

special case: dex
dx = ex
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Suppose that f (x) and g(x) are two functions of x and f ′(x)
and g′(x) exist, then:

6. d[ f (x)+g(x)]
dx = f ′(x) + g′(x)

7. d[ f (x)⋅g(x)]
dx = f (x)g′(x) + f ′(x)g(x)

8.
d( f (x)

g(x))
dx = f ′(x)g(x)− f (x)g′(x)

[g(x)]2 provided that g(x) ≠ 0
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If y = f (x) and x = g(z) and if both f ′(x) and g′(x) exist, then:

9. dy
dz =

dy
dx ⋅

dx
dz =

d f
dx

dg
dz

ais is called the chain rule. ais Allows us to study how one
variable (z) aòects another variable (y) through its in�uence on
some intermediate variable (x). Some examples of the chain rule
include:

10. deax
dx =

deax
d(ax) ⋅

d(ax)
dx = eax ⋅ a = aeax

11. d[ln(ax)]
dx = d[ln(ax)]

d(ax) ⋅
d(ax)
dx =

1
ax ⋅ a =

1
x

12. d[ln(x2)]
dx = d[ln(x2)]

d(x2) ⋅
d(x2)
dx =

1
x2 ⋅ 2x =

2
x
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Example 2.1 Proût Maximization

● Suppose that the relationship between proût and output is

π = 1, 000q − 5q2

● ae ûrst order condition for a maximum is

dπ
dq

= 1, 000 − 10q = 0

q∗ = 100

Since the second derivative is always -10, then q = 100 is a
global maximum.
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Functions of Several Variables

● Most goals of interest to economic agents depend on several
variables, and trade-oòs must be made among these
variables.

● ae dependence of one variable (y) on a series of other
variables (x1, x2,⋯, xn) is denoted by

y = f (x1, x2,⋯, xn)
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Partial derivatives
● ae only directional slopes of interest are those that are

obtained by increasing one of the x′s while holding all the
other variables constant.

● aese directional slopes are called partial derivatives.

● ae partial derivative of y with respect to x1 is dented by
∂y
∂x1

or ∂ f
∂x1

or fx1 or f1

All of the other x’s are held constant.

● A more formal deûnition is

∂ f
∂x1
∣
x̄2 ,⋯,x̄n

= lim
h→0

f (x1 + h, x̄2,⋯, x̄n) − f (x1, x̄2,⋯, x̄n)
h
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Calculating Partial Derivatives
ae calculation of partial derivatives proceeds as for the usual
derivative by treating x2,⋯, xn as constants.
1. If y = f (x1, x2) = ax21 + bx1x2 + cx22 , then

∂ f
∂x1
= f1 = 2ax1 + bx2,

∂ f
∂x2
= f2 = bx1 + 2cx2

2. If y = f (x1, x2) = eax1+bx2 , then

∂ f
∂x1
= f1 = aeax1+bx2 ,

∂ f
∂x2
= f2 = beax1+bx2

3. If y = f (x1, x2) = a ln x1 + b ln x2, then

∂ f
∂x1
= f1 =

a
x1
,

∂ f
∂x2
= f2 =

b
x2
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Partial derivatives and the ceteris paribus assumption
● Partial derivatives are the mathematical expression of the

ceteris paribus assumption.

● For example, the fundamental law of demand is re�ected by
the mathematical statement ∂q/∂p < 0.

Partial derivatives and units of measurement
● ae numerical size of partial derivatives on the chosen units

of measurement poses problems for economists.

● Making comparisons among studies could prove practically
impossible, especially given the wide variety of measuring
systems in use around the world.

● Economists have chosen to adapt a diòerent, unit-free way to
measure quantitative impacts.
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Elasticity— a general deûnition

● Elasticities measures the proportional eòect of a change in
one variable on another. aey are unit-free.

● Elasticity of y with respect to x is

ey,x =
∆y
y
∆x
x
= ∆y
∆x
⋅ x
y
= dy(x)

dx
⋅ x
y

● Elasticity is a pure ûgure with no dimensions.
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Example 2.2 Elasticity and Functional Form

● Suppose y is a linear function of x of the form

y = a + bx + other terms

● aen, the elasticity is:

ey,x =
dy
dx
⋅ x
y
= b ⋅ x

y
= b ⋅ x

a + bx +⋯

● ey,x is not constant.

● It is important to note the point at which the elasticity is to
be computed.
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● If the relationship between y and x is of the exponential form

y = axb ,

then the elasticity is a constant.

ey,x =
dy
dx
⋅ x
y
= abxb−1 ⋅ x

axb
= b

● ae logarithmic transformation of y = axb is

ln y = ln a + b ln x ,

ae elasticity is also a constant because

ey,x = b =
dln y
dln x

Elasticities can be calculated through logarithmic
diòerentiation.
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Second-order partial derivatives
● ae partial derivative of a partial derivative is the

second-order partial derivative.
∂(∂ f /∂xi)

∂x j
= ∂2 f
∂x jxi

= fi j

1. y = f (x1, x2) = ax21 + bx1x2 + cx22 , then

f11 = 2a, f12 = b, f21 = b, f22 = 2c

2. y = f (x1, x2) = eax1+bx2 , then

f11 = a2eax1+bx2 , f12 = abeax1+bx2

f21 = abeax1+bx2 , f22 = b2eax1+bx2

3. y = f (x1, x2) = a ln x1 + b ln x2, then

f11 = −ax−21 , f12 = 0, f21 = 0, f22 = −bx−22
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Young’s theorem

● Under general conditions, the order in which partial
diòerentiation is conducted to evaluate second-order partial
derivatives does not matter. aat is

fi j = f ji
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Uses of second-order partials

● Second-order partials play an important role in many
economic theories.

● A variable’s own second-order partial, fii shows how ∂y/∂xi
changes as the value of xi increases. fii < 0 indicates
diminishing marginal eòectiveness.

● ae cross-partial fi j indicates how the marginal eòectiveness
of xi changes as x j increases.
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ae chain rule with many variables

● y = f (x1, x2, x3)

Each of these x’s is itself a function of a single parameter, a.

● y = f [x1(a), x2(a), x3(a)]

● How a change in a aòects the value of y:

dy
da
= ∂ f
∂x1
⋅ dx1
da
+ ∂ f
∂x2
⋅ dx2
da
+ ∂ f
∂x3
⋅ dx3
da
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Special case: if x3(a) = a, then:

y = f [x1(a), x2(a), a]

ae eòect of a on y:

● A direct eòect, which is given by fa

● An indirect eòect that operates only through the ways in
which a aòects the x′s

dy
da
= ∂ f
∂x1
⋅ dx1
da
+ ∂ f
∂x2
⋅ dx2
da
+ ∂ f
∂a
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Example 2.3 Using the Chain Rule

● Each week, a pizza fanatic consumes three kinds of pizza,
denoted by x1, x2, and x3

● Cost of type 1 pizza is p per pie
● Cost of type 2 pizza is 2p
● Cost of type 3 pizza is 3p

● Allocates $30 each week to each type of pizza.

● How the total number of pizzas purchased is aòected by the
underlying price p?
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● Quantity purchased of each type:
x1 = 30/p; x2 = 30/2p; x3 = 30/3p.

● Total pizza purchases:

y = f [x1(p), x2(p), x3(p)] = x1(p) + x2(p) + x3(p)

● Applying the chain rule:

dy
dp

= f1 ⋅
dx1
dp
+ f2 ⋅

dx2
dp
+ f3 ⋅

dx3
dp

= −30p−2 − 15p−2 − 10p−2 = −55p−2

( f1 = f2 = f3 = 1)
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Implicit functions

● If the value of a function is held constant, an implicit
relationship is created among the independent variables that
enter into the function.

● ae independent variables can no longer take on any values,
but must instead take on only that set of values that result in
the function’s retaining the required value.

● aemost useful result provided by this approach is in the
ability to quantify the trade-oòs inherent in most economic
models.
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● Consider a simple case

y = f (x1, x2)

● Holding y constant allows the creation of an implicit
function of the form x2 = g(x1).

● Set the original function equal to a constant (say, zero) and
write the function as

y = 0 = f (x1, x2) = f (x1, g(x1))

● Diòerentiate with respect to x1 yields:

0 = f1 + f2 ⋅
dg(x1)
dx1

● Rearranging terms gives the ûnal result that
dg(x1)
dx1

= dx2
dx1
= − f1

f2
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Example 2.4 A Production Possibility Frontier— Again

● A production possibility frontier for two goods of the form

x2 + 0.25y2 = 200

● ae implicit function is

dy
dx
= − fx

fy
= −2x
0.5y

= −4x
y

,

which is precisely the result we obtained earlier, with
considerably less work.

31 / 64



Outline One Variable Several Variables Max. Several Variables Envelope Theorem Constrained Maximization Envelope in Constrained Max. Inequality Constraints

A special case— comparative statics analysis

● One important application of the implicit function theorem
is comparative statics analysis.

● From y = 0 = f (x1, x2) = f (x1, g(x1)), with exogenous
variable, a, the implicit form of the function can be written
as

f (a, x(a)) = 0

● Applying the implicit function theorem would yield

dx(a)
da

= − f1
f2
= −

∂ f
∂a
∂ f
∂x

ais shows directly how changes in the exogenous variable a
aòect the endogenous variable x.
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Example 2.5 Comparative Statics of a Price-Taking Firm

● ae ûrst order condition for a proût ûrm that takes market
price as given is

f (q(p), p) = p − C′(q(p)) = 0

● Applying the implicit function theorem to this expression
yields

dq(p)
dp

= −
fp
fq
= − 1

∂(−C′(q))/∂q
= 1
C′′(q)

> 0,

which is precisely the result we obtained earlier.
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2.3 Maximization of Functions of Several
Variables

Suppose an agent wishes to maximize

y = f (x1, x2,⋯, xn)
● ae change in y from a change in x1 (holding all other x’s

constant) is equal to the change in x1 times the slope
measured in the x1 direction.

dy = ∂ f
∂x1

dx1 = f1dx1
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First-order conditions for a maximum

● A necessary condition for a point to be a local maximum of
the function f (x1, x2,⋯, xn) is that dy = 0 for any
combination of small changes in the x’s.

f1 = f2 = ⋯ fn = 0

● ais is called a critical point of the function.
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Second-order conditions

● However, a second-order condition is needed to ensure that
the point found by applying the ûrst-order conditions is a
local maximum.

● If we conûne our attention only to movements in a single
direction, then the condition required for a maximum is
fii < 0, —the second partial derivatives must be negative.

● Unfortunately, the conditions that assure the value of f
decreases for movements in any arbitrary direction involve
all the second partial derivatives. ae general case is best
discussed with matrix algebra (see the Extensions to this
chapter).
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Example 2.6 Finding a Maximum
Suppose that y is a function of x1 and x2

y = −(x1 − 1)2 − (x2 − 2)2 + 10
y = −x21 + 2x1 − x22 + 4x2 + 5

First-order conditions imply that

∂y
∂x1
= −2x1 + 2 = 0

∂y
∂x2
= −2x2 + 4 = 0

or x∗1 = 1, x∗2 = 2 and f11 = f22 = −2
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ae Envelopeaeorem
● ae envelope theorem concerns how an optimized function

changes when a parameter of the function changes.

A speciûc example
Suppose y is a function of a single variable (x) and an exogenous
parameter (a) given by

y = −x2 + ax

● For diòerent values of a, this function represents a family of
inverted parabolas.

● If a is assigned a speciûc value, it is a function of x only. We
can calculate the value of x that maximizes y.

38 / 64



Outline One Variable Several Variables Max. Several Variables Envelope Theorem Constrained Maximization Envelope in Constrained Max. Inequality Constraints

Table 2.1 Optimal values of y and x for alternative values of a in
y = −x2 + ax
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Figure 2.3 Illustration of the Envelopeaeorem

● ae envelope theorem states that the slope of the
relationship between y∗ and the parameter a can be found
by calculating the slope of the auxiliary relationship found
by substituting the respective optimal values for x into the
objective function and calculating ∂y/∂a.

40 / 64



Outline One Variable Several Variables Max. Several Variables Envelope Theorem Constrained Maximization Envelope in Constrained Max. Inequality Constraints

A direct, time-consuming approach
Calculate the slope of y∗ directly

● Solve for the optimal value of x for any value of a:

dy
dx
= −2x + a = 0, x∗ = a

2

● Substituting the value of x∗ gives

y∗ = −(x∗)2 + a(x∗) = −(a
2
)2 + a(a

2
)

= −a
2

4
+ a2

2
= a2

4

aerefore,
dy∗

da
= a
2
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ae envelope shortcut

● For small changes in a, dy∗/da can be computed by holding
x at its optimal value (x∗) and calculating ∂y/∂a from the
objective function directly.

dy∗

da
= ∂y
∂a
∣
x=x∗(a)

= ∂(−x2 + ax)
∂a

∣
x=x∗(a)

= x∗(a)

● Holding x = x∗:

dy∗

da
= x∗(a) = a

2
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ae envelope theorem

● ae change in the value of an optimized function with
respect to a parameter of that function can be found by
partially diòerentiating the objective function while holding
x (or several x’s) at its optimal value.

dy∗

da
= ∂y
∂a
{x = x∗(a)}
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Many-variable case

● Suppose y is a function of a set of x’s and a particular
parameter of interest a:

y = f (x1,⋯, xn , a)

● Finding an optimal value for y would consist of solving n
ûrst-order equations of the form

∂y
∂xi
= 0, (i = 1,⋯, n)

● Optimal values for these x’s would be a function of a

x∗1 = x∗1 (a), x∗2 = x∗2 (a),⋯, x∗n = x∗n(a)
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● Substituting these functions into the original objective yields
an expression in which the optimal value of y (say, y∗)
depend on a both directly or indirectly through the eòect of
a on x∗’s:

y∗ = f [x∗1 (a), x∗2 (a),⋯, x∗n(a), a]

ais function is called a “value function."

● Total diòerentiating y∗ with respect to a yields

dy∗

da
= ∂ f

∂x1
⋅ dx1
da
+ ∂ f
∂x2
⋅ dx2
da
+⋯ ∂ f

∂xn
⋅ dxn
da
+ ∂ f
∂a

= ∂ f
∂a
∣
x i=x∗i (a)

for all xi , because ∂ f
∂xi
= 0 ∀i
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Example 2.7 A Price-Taking Firm’s Supply Function
● Suppose that a price-taking ûrm has a cost function given by

C(q) = 5q2.
● A direct way of ûnding its supply function is to use the ûrst

order condition
p = C′(q) = 10q

to get q∗ = 0.1p.
● An alternative way is to calculate the ûrm’s proût function.

ae optimal value of the ûrm’s proût is

π∗(p) = pq∗ − C(q∗) = p(0.1p) − 5(0.1p)2 = 0.05p2

● ae envelope theorem states that

dπ∗(p)
dp

= 0.1p = ∂π(p, q)
∂p

∣
q=q∗
= q∣

q=q∗
= q∗
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Constrained Maximization

What if not all values for the x’s are feasible?

● ae values of x may all have to be positive.

● A consumer’s choices are limited by the amount of
purchasing power. available
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Lagrange multiplier method

● One method for solving constrained maximization problems
is the Lagrange multiplier method.

● Suppose that we wish to ûnd the values of x1, x2,⋯, xn that
maximize: y = f (x1, x2,⋯, xn)

● Subject to a constraint: g(x1, x2,⋯, xn) = 0

ae Lagrangian expression is

L = f (x1, x2,⋯, xn) + λg(x1, x2,⋯, xn)

● λ is an additional variable called the Lagrange multiplier.

● L = f , because g(x1, x2,⋯, xn) = 0.
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First-order conditions
∂L
∂x1

= f1 + λg1 = 0

∂L
∂x2

= f2 + λg2 = 0
⋯ = ⋯⋯⋯

∂L
∂xn

= f1 + λgn = 0

∂L
∂λ

= g(x1, x2,⋯, xn) = 0

● ae equations can generally be solved for x1, x2,⋯, xn and λ.
● ae solution will have two properties:
● ae x’s will obey the constraint.
● ae x’s will make the value of L (and therefore f ) as

large as possible.
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Interpretation of the Lagrange multiplier

● ae Lagrange multiplier λ has an important economic
interpretation.

● ae ûrst-order conditions imply that

f1
−g1
= f2
−g2
= ⋯ = fn

−gn
= λ

● ae numerators measure the marginal beneût of one
more unit of xi .

● ae denominators re�ect the added burden on the
constraint of using more xi

50 / 64



Outline One Variable Several Variables Max. Several Variables Envelope Theorem Constrained Maximization Envelope in Constrained Max. Inequality Constraints

Lagrange multiplier as a beneût-cost ratio

● At the optimal xi ’s, the ratio of the marginal beneût to the
marginal cost of xi should be the same for every xi .

● λ is the common cost-beneût ratio for all xi

λ = marginal benefit of xi
marginal cost of xi

● A high value of λ indicates that each xi has a high
cost-beneût ratio.

● A low value of λ indicates that each xi has a low cost-beneût
ratio.

● λ = 0 implies that the constraint is not binding.
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Duality

● Any constrained maximization problem has an associated
dual problem in constrainedminimization that focuses
attention on the constraints in the original (primal) problem.

● Individuals maximize utility subject to a budget constraint.

Dual problem: individuals minimize the expenditure needed
to achieve a given level of utility.

● Firms minimize the cost of inputs to produce a given level of
output.

Dual problem: ûrms maximize output for a given cost of
inputs purchased.
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Example 2.8 Optimal Fences and Constrained Maximization

● A farmer had a certain length of fence, P, and wishes to
enclose the largest possible rectangular area, with x and y
the lengths of the sides.

● ais is a problem in constrained maximization.

● ae problem is to choose x and y to maximize the area
(A = x ⋅ y), subject to the constraint that the perimeter is
ûxed at P = 2x + 2y
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ae Lagrangian expression is

L = x ⋅ y + λ(P − 2x − 2y)

ae ûrst-order conditions are

∂L
∂x

= y − 2λ = 0

∂L
∂y

= x − 2λ = 0

∂L
∂λ

= P − 2x − 2y = 0

aerefore,

● y/2 = x/2 = λ, then x = y, the ûeld should be square.

● x = y and y = 2λ, then x = y = P/4 and λ = P/8.
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Interpretation of the Lagrange multiplier

● Lagrange multiplier, λ, suggests that an extra yard of fencing
would add P/8 to the area. It provides information about the
implicit value of the constraint.

● For example, when P = 400, x = y = 100, λ = 50, and
A = 10000. ais implies that Awill increase to 10050 when P
increases to 400 + 1 = 401.

● check: when P = 401, x = y = 401
4 = 100.25, then

A = 100.252 = 10050.0625
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Duality

● Choose x and y to minimize the amount of fence required to
surround the ûeld. ae problem is to minimize

p = 2X + 2Y

subject to
A = x ⋅ y

● Setting up the Lagrangian:

LD = 2x + 2y + λD(A− xy)
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● ae ûrst-order conditions are

∂LD
∂x

= 2 − λD ⋅ y = 0

∂LD
∂y

= 2 − λD ⋅ x = 0

∂LD
∂λD

= A− x ⋅ y = 0

● Solving these equations yields

x = y =
√
A

● ae Lagrangian multiplier is

λD = 2
x
= 2
y
= 2√

A
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Envelopeaeorem in Constrained
Maximization Problems

● Suppose that we want to maximize

y = f (x1,⋯, xn , a)

Subject to the constraint:

g(x1,⋯, xn , a) = 0

● One way to solve this problem is to et up the Lagrangian
expression

L = f (x1,⋯, xn , a) + λg(x1,⋯, xn , a)

and solve the ûrst-order conditions for the optimal,
constrained values x∗1 ,⋯, x∗n .
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● aese optimal values can then be substituted back into the
original function f to yield a value function for the problem.

● For this value function, the envelope theorem states that

dy∗

da
= ∂L
∂a
(x∗1 ,⋯, x∗n , a)

● ae change in the maximal value of y that results when a
changes can be found by partially diòerentiate the Lagrange
expression and evaluating the resultant partial derivative at
the optimal values of the x’s.
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Example 2.9 Optimal Fences and the Envelopeaeorem

● In the fencing problem in Example 2.8, the value function is

A∗ = x∗ ⋅ y∗ = p
4
⋅ p
4
= p2

16

● Since the Lagrangian expression is L = xy + λ(P − 2x − 2y),
applying the envelope theorem yields

dA∗

dP
= P
8
= ∂L
∂P
= λ

● ae Lagrange multiplier in a constrained maximization
problem shows the marginal gain in the objective function
that can be obtained from a slight relaxation of the
constraint.
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Inequality Constraints

● In some economic problems the constraints need not hold
exactly.

● For example, an individual’s budget constraint requires that
that he or she spend no more than a certain amount per
period, but it is at least possible to spend less than his
amount.

● Inequality constraints also arise in the values permitted for
some variables in economic problems. For example,
economic variables usually must be non-negative.
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A two-variable example

Maximize y = f (x1, x2)
subject to g(x1, x2) ≥ 0, x1 ≥ 0, x2 ≥ 0

Slack variables:
● One way to solve this optimization problem.Introduce three

new variables (a, b, and c) that convert the inequalities into
equalities.

● To ensure that the inequalities continue to hold, we square
these new variables.

g(x1, x2) − a2 = 0; x1 − b2 = 0, and x2 − c2 = 0
● Any solution that obeys these three equality constraints will

also obey the inequality constraints.
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Solution using Lagrange multipliers

L = f (x1, x2) + λ1[g(x1, x2) − a2] + λ2[x1 − b2] + λ3[x2 − c2]
F.O.C. ∂L

∂x1
= f1 + λ1g1 + λ2 = 0

∂L
∂x2

= f1 + λ1g2 + λ3 = 0
∂L
∂a

= −2aλ1 = 0
∂L
∂b

= −2bλ2 = 0
∂L
∂c

= −2cλ3 = 0
∂L
∂λ1

= g(x1 , x2) − a2 = 0
∂L
∂λ2

= x1 − b2 = 0
∂L
∂λ3

= x2 − c2 = 0
63 / 64



Outline One Variable Several Variables Max. Several Variables Envelope Theorem Constrained Maximization Envelope in Constrained Max. Inequality Constraints

Complementary slackness
● According to the third condition, either a or λ1 = 0

If a = 0, the constraint g(x1, x2) holds exactly.
If λ1 = 0, the availability of some slackness of the constraint
implies that its marginal value to the objective function is 0.

● Similar complementary slackness relationships also hold for
x1 and x2.

● aese results are sometimes called Kuhn-Tucker conditions,
which show that solutions to problems involving inequality
constraints will diòer from those involving equality
constraints in rather simple ways.

● ais allows us to work primarily with constraints involving
equalities.
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