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Second-Order Conditions and Curvature
Functions of one variable

● Consider the case of
y = f (x)

A necessary condition for amaximum is

dy
dx
= f ′(x) = 0

● For amaximum, y must be decreasing formovements away
from it. Change in y is

dy = f ′(x)dx

To be at amaximum, dy must be decreasing for small
increases in x.
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Change of dy is the second derivative of y

d(dy) = d2y = d[ f ′(x)dx]
dx

⋅ dx = f ′′(x)dx ⋅ dx = f ′′(x)dx2

● d2y < 0 implies f ′′(x)dx2 < 0. Since dx2 (square of dx)
must be positive, f ′′(x) < 0

● aismeans that the function f must have a concave shape at
the critical point. ais is the curvature condition for a
maximum,
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Functions of two variables

● Next, consider y as a function of two independent variables,
y = f (x1, x2).

● First order conditions for amaximum are
∂y
∂x1

= f1 = 0

∂y
∂x2

= f2 = 0

● For a local maximum, f1 and f2 must be diminishing at the
critical point.

● Conditionsmust also be placed on the cross-partial
derivative ( f12 = f21) to ensure that dy is decreasing for
movements through the critical point in any direction.
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● ae total diòerential of y is

dy = f1dx1 + f2dx2

and the change in dy is

d2y = ( f11dx1 + f12dx2) dx1 + ( f21dx1 + f22dx2) dx2
= f11dx21 + f12dx2dx1 + f21dx1dx2 + f22dx22

● By Young’s theorem, f12 = f21, then

d2y = f11dx21 + 2 f12dx1dx2 + f22dx22

● For d2y to be unambiguously negative for any change in the
x’s, it is necessary that f11 < 0, f22 < 0.
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● For example, if dx2 = 0, then d2y = f11dx21 and d2y < 0
implies f11 < 0.

● An identical argument can bemade for dx1 = 0, and f22 < 0.
● If neither dx1 nor dx2 is zero, wemust consider the

cross-partial, f12, in deciding whether d2y is unambiguously
negative.

d2y = f11dx21 + 2 f12dx2dx1 + f22dx22

= f11dx21 + 2 f12dx2dx1 +
( f12dx2)2

f11
− ( f12dx2)

2

f11
+ f22dx22

= 1
f11
( f11dx1 + f12dx2)2 +

1
f11
( f11 f22 − f 212)dx22

d2y to be unambiguously negative only if f11 f22 − f 212 > 0 since
f11 < 0.

● See Extensions to this chapter for the general case.
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Concave functions

● f11 f22 − f 212 > 0 requires that the own second partial
derivatives ( f11 and f22) be suõciently negative so that their
product will outweigh any possible perverse eòects from the
cross-partial derivatives ( f12 = f21).

● Functions that obey such a condition is called concave
functions.

● Concave functions have the property that they always lie
below any plane that is tangent to them.

● ae plane deûned by themaximum value of the function is
simply a special case of this property.
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Example 2.10 Second-Order Conditions:Health Status for the
Last Time
Health status function from Example 2.6, where y is the health
status (0 to 10), x1, x2 are daily dosages of two health-enhancing
drugs.

y = f (x1, x2) = −x21 + 2x1 − x22 + 4x2 + 5
First-order conditions are

f1 = −2x1 + 2 = 0
f2 = −2x2 + 4 = 0

or x∗1 = 1, x∗2 = 2

Second-order partial derivatives

f11 = −2, f22 = −2, f12 = 0, and f11 f22 − f 212 > 0

Both necessary and suõcient conditions for are satisûed.
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Constrainedmaximization
● As another example, consider the problem of choosing x1

and x2 to maximize

y = f (x1, x2)

subject to the linear constraint

c − b1x1 − b2x2 = 0
where c, b1, b2 are constant parameters.

● Lagrangian expression and ûrst-order conditions are

L = f (x1, x2) + λ(c − b1x1 − b2x2)
and f1 − λb1 = 0

f2 − λb2 = 0
c − b1x1 − b2x2 = 0
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● Use the “second” total diòerential to ensure a local
maximum.

d2y = f11dx21 + 2 f12dx1dx2 + f22dx22

Only those values of x1 and x2 that satisfy the constraint can
be considered valid alternatives to the critical point.

● Total diòerential of the constraint c − b1x1 − b2x2 = 0 is

−b1dx1 − b2dx2 = 0,

dx2 = −
b1
b2
dx1

ais shows the allowable relative changes in x1 and x2.
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● ae ûrst-order conditions imply

f1
f2
= b1
b2

,

therefore
dx2 = −

f1
f2
dx1

and thus

d2y = f11dx21 + 2 f12dx1dx2 + f22dx22

= f11dx21 − 2 f12
f1
f2
dx21 + f22

f 21
f 22
dx21

= ( f11 f 22 − 2 f12 f1 f2 + f22 f 21 )
dx21
f 22
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● aerefore, for d2y < 0, itmust be true that

f11 f 22 − 2 f12 f1 f2 + f22 f 21 < 0

● ais equation characterizes a set of functions termed
quasi-concave functions.

Quasi-concave functions

● Quasi-concave functions have the property that the set of all
points for which such a function takes on a value greater
than any speciûc constant is a convex set.

● A set of points is said to be convex if any two points in the set
can be joined by a straight line that is contained completely
within the set.

● Problems 2.9 and 2.10 examine two speciûc quasi-concave
functions that we will frequently encounter in this book.
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Example 2.11 Concave and Quasi-Concave Functions

● ae diòerences between concave and quasi-concave
functions can be illustrated with the function

y = f (x1, x2) = (x1 ⋅ x2)k

where x1 > 0, x2 > 0, and k > 0.

● No matter what value k takes, this function is quasi-concave.
To show this, look at the “level curves" of the function at a
speciûc value c.

y = c = (x1x2)k , or x1x2 = c1/k = c′

● ais is the equation of a standard rectangular hrperbola.
Clearly the set of points for which y takes on values larger
than c is convex because it is bounded by this hyperbola.
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● If every point on the line segment joining any two points lies
on the set, then it is called a convex set.

● To show the quasi-concavity directly

f1 = kxk−11 xk2
f2 = kxk1 xk−12

f11 = k(k − 1)xk−21 xk2
f22 = k(k − 1)xk1 xk−22

f12 = k2xk−11 xk−12

f11 f 22 − 2 f12 f1 f2 + f22 f 21
= k3(k − 1)x3k−21 x3k−22 − 2k4x3k−21 x3k−22 + k3(k − 1)x3k−21 x3k−22

= (−2)k3x3k−21 x3k−22 <0

No matter what value k takes, this function is quasi-concave.
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● For concavity,

f11 f22 − f 212 = k2(k − 1)2x2k−21 x2k−22 − k4x2k−21 x2k−22

= x2k−21 x2k−22 [k2(k − 1)2 − k4]
= x2k−21 x2k−22 [k2(−2k + 1)]

● Whether or not the function is concave depends on the
value of k.

● If k < 0.5, the function is concave since f11 f22 − f 212 > 0.

● If k > 0.5, the function is convex since f11 f22 − f 212 < 0.

● Intuitively, for points where x1 = x2, y = (x21 )k = x2k1 .
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Homogeneous Functions

● A function f (x1, x2,⋯, xn) is said to be homogeneous of
degree k if

f (tx1, tx2,⋯, txn) = tk f (x1, x2,⋯, xn).

● When k = 1, a doubling of all of its arguments doubles the
value of the function itself.

● When k = 0, a doubling of all of its arguments leaves the
value of the function unchanged.
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● If a function is homogeneous of degree k, the partial
derivatives of the function will be homogeneous of degree
k − 1.
From deûnition,

f (tx1, tx2,⋯, txn) = tk f (x1, x2,⋯, xn)
∂ f (tx1,⋯, txn)

∂x1
= tk

∂ f (x1,⋯, xn)
∂x1

and ∂ f (tx1,⋯, txn)
∂x1

= ∂ f (tx1,⋯, txn)
∂tx1

⋅ ∂tx1
∂x1

= f1(tx1,⋯, txn) ⋅ t

aerefore,

f1(tx1,⋯, txn) = tk−1 f1(x1,⋯, xn)
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Euler’s theorem

● Diòerentiate the deûnition for homogeneity with respect to
the proportionality factor t yields

ktk−1 f (x1,⋯, xn) = x1 f1(tx1,⋯, txn) +⋯ + xn fn(tx1,⋯, txn)

● For t = 1:

k f (x1,⋯, xn) = x1 f1(x1,⋯, xn) +⋯ + xn fn(x1,⋯, xn)

ais is termed Euler’s theorem.

● For a homogeneous function, there is a deûnite relationship
between the value of the function and the values of its partial
derivatives.
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Homothetic functions

● A homothetic function is one that is formed by taking a
monotonic transformation of a homogeneous function.

● Monotonic transformations, by deûnition, preserve the
order of the relationship between the arguments of a
function and the value of that function.

● aey generally do not possess the homogeneity properties of
their underlying functions.

● Homothetic functions, however, do preserve the implicit
trade-oòs among the variables in the function, which
depends only on the ratios of those variables, not on their
absolute values.
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● For example, consider a two-variable function of the form
y = f (x1, x2) the implicit trade-oò between x1 and x2 is

dx2
dx1
= − f1

f2

● If we assume that f is homogeneous of degree k then its
partial derivatives will be homogeneous of degree k − 1. ae
implicit trade-oò between x1 and x2 is

dx2
dx1
= − t

k−1 f1(x1, x2)
tk−1 f2(x1, x2)

= − f1(tx1, tx2)
f2(tx1, tx2)

Let t = 1
x2 , then

dx2
dx1
= − f1(x1/x2, 1)

f2(x1/x2, 1)
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● If we apply anymonotonic transformation F(with F′ > 0) to
the original homogeneous function f , the trade-oò implied
by the new homothetic function F([ f (x1, x2)] are
unchanged

dx2
dx1
= − F

′ f1(x1/x2, 1)
F′ f2(x1/x2, 1)

= − f1(x1/x2, 1)
f2(x1/x2, 1)
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Example 2.12 Cardinal (Numerical) and Ordinal Properties
● Consider various values of the parameter k for the function

f (x1, x2) = (x1x2)k

● Quasi-concavity is preserved for all values of k.
● It is concave (a cardinal property) only for a narrow range of

values of k,manymonotonic transformations destroy the
concavity of f .

● A proportional increase in the two arguments would yield

f (tx1, tx2) = t2k(x1x2)k = t2k f (x1, x2)
ae degree of homogeneity depends on k.

● ae function is homothetic because
dx2
dx1
= − f1

f2
= −kx

k−1
1 xk2

kxk1 xk−12
= −x2

x1
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Integration
Antiderivatives

● Integration is the inverse of diòerentiation.
● Let F(x) be the integral of f (x), then f (x) is the derivative

of F(x).
dF(x)
dx

= F′(x) = f (x)

then

F(x) = ∫ f (x)dx
● If f (x) = x then

F(x) = ∫ f (x)dx = ∫ xdx = x2
2
+ C

where C is an arbitrary “constant of integration."
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Calculation of antiderivatives
areemethods.

1. Creative guesswork. What function will yield f (x) as its
derivative? aen use diòerentiation to check your answer.

● F(x) = ∫ x2dx = x3
3 + C

● F(x) = ∫ xndx = xn+1
n+1 + C

● F(x) = ∫ (ax2 + bx + c)dx = ax3
3 + bx2

2 + cx + C
● F(x) = ∫ exdx = ex + C
● F(x) = ∫ axdx = ax

ln a + C
● F(x) = ∫ ( 1x ) dx = ln(∣x∣) + C
● F(x) = ∫ (ln x)dx = x ln x − x + C
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2. Change of variable. Redeûne variables to make the function
easier to integrate.

● Let y = 1 + x2, then dy = 2xdx and

∫
2x

1 + x2dx = ∫
1
y
dy = ln(∣y∣) = ln(∣1 + x2∣)
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3. Integration by parts. duv = udv + vdu

● For any two functions u and v

∫ duv = uv = ∫ udv + ∫ vdu

∫ udv = uv − ∫ vdu

● What the integral of xex is? Let u = x (thus, du = dx) and
dv = exdx (thus, v = ex)

∫ xexdx = ∫ udv = uv − ∫ vdu

= xex − ∫ exdx = (x − 1)ex + C
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Deûnite integrals

● To sum up the area under a graph of a function over some
deûned interval.

● Area under f (x) from x = a to x = b

● area under f (x) ≈ ∑i f (xi)∆xi

● area under f (x) ≈ ∫
b
a f (xi)dxi
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Figure 2.5 Deûnite Integrals Show the Areas Under the Graph of
a Function
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Fundamental theorem of calculus

● ae fundamental theorem of calculus directly ties together
the two principal tools of calculus: derivatives and integrals.

● It can be used to illustrate the distinction between “stocks"
and “�ows."

area under f (x) = ∫
b
a f (x)dx = F(b) − F(a)
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Example 2.13 Stocks and Flows

● Suppose that net population increase for a country can be
approximated by the function

f (t) = 1, 000e0.02t

● Net population is growing (“�ow" concept) at the rate of 2
percent per year.

● Howmuch in total the population (“stock" concept) will
increase over a 50 year period?

∫
t=50

t=0
f (t)dt = ∫

t=50

t=0
1, 000e0.02tdt = F(t)∣

50

0

= 1, 000e0.02t
0.02

∣
50

0
= 1, 000e0.02⋅50

0.02
− 50, 000 = 85, 914
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Another example.

● Suppose that total costs for a particular ûrm are given by

C(q) = 0.1q2 + 500

● q – output during some period

● Variable costs: 0.1q2

● Fixed costs: 500

● Marginal costs MC = dC(q)/dq = 0.2q

● Total costs for q = 100 is Fixed cost (500) + Variable cost
where variable cost is

∫
q=100

q=0
0.2q dq = 0.1q2∣

100

0
= 1, 000 − 0 = 1, 000
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Diòerentiating a deûnite integral

1. Diòerentiation with respect to the variable of integration.

● A deûnite integral has a constant value, hence its
derivative is zero

d ∫
b
a f (x)dx
dx

= 0
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2. Diòerentiation with respect to the upper bound of
integration.

● Changing the upper bound of integration will change
the value of a deûnite integral

d ∫
x
a f (t)dt
dx

= d[F(x) − F(a)]
dx

= f (x) − 0 = f (x)

● If the upper bound of integration is a function of x,

d ∫
g(x)
a f (t)dt

dx
= d[F(g(x)) − F(a)]

dx

= d[F(g(x))]
dx

= f
dg(x)
dx

= f (g(x))g′(x)
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● ● If the lower bound of integration is a function of x,

d ∫
b
g(x) f (t)dt

dx
= d[F(b) − F(g(x))]

dx

= −d[F(g(x))]
dx

= − f (g(x))g′(x)
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3. Diòerentiation with respect to another relevant variable
Suppose we want to integrate f (x , y) with respect to x. How
will this be aòected by changes in y?

d ∫
b
a f (x , y)dx

dy
= ∫

b

a
fy(x , y)dx
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Dynamic Optimization

Some optimization problems involvemultiple periods.

● Need to ûnd the optimal time path for a variable that
succeeds in optimizing some goal.

● Decisionsmade in one period aòect outcomes in later
periods.
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ae optimal control problem

● Find the optimal path for x(t) over a speciûed time interval
[t0, t1].

● Changes in x are governed by

dx(t)
dt
= g [x(t), c(t), t]

where c(t) is used to “control" the change in x(t).
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● In each period, the decision-maker derive value from x and
c according to f [x(t), c(t), t].

● To optimize

∫
t1

t0
f [x(t), c(t), t]dt

● aeremay also be endpoint constraints:

x(t0) = x0, x(t1) = x1

● ais problem is “dynamic" since any decision about how
much to change x this period will aòect not only the future
value of x, but it will also aòect future values of the outcome
function f .
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aemaximum principle

● At a single point in time, the decision makermust be
concerned with both the current value of the objective
function f [x(t), c(t), t] and with the implied change in the
value of x(t).

● ae current value of x(t) is given by λ(t)x(t), the
instantaneous rate of change of this value is given by

d[λ(t)x(t)]
dt

= λ(t)dx(t)
dt
+ x(t)dλ(t)

dt
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● At any time t, a comprehensivemeasure of the value of
concern to the decision maker is:

H = f [x(t), c(t), t] + d[λ(t)x(t)]
dt

= f [x(t), c(t), t] + λ(t)g[x(t), c(t), t] + x(t)dλ(t)
dt

● ae comprehensive value represents both the current
beneûts being received and the instantaneous change in the
value of x.

● What conditionsmuse hold for x(t) and c(t) to optimize
thisHamiltonian expression?
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● ae two optimality conditions, referred to as themaximum
principle.

∂H
∂c

= fc + λgc = 0, or fc = −λgc
∂H
∂x

= fx + λgx +
dλ(t)
dt
= 0, or fx + λgx = −

dλ(t)
dt

● ae ûrst condition suggests that, at themargin, the gain
from increasing c in terms of the function f must be
balanced against future costs.

● ae second condition suggests that the net current gain from
more x must be weighed against the declining future value of
x.
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Example 2.14 Allocating a Fixed Supply

● Assume that someone has inherited 1,000 bottles of wine
from a rich uncle. He or she intends to drink these bottles
over the next 20 years.

● Suppose this person’s utility function for wine is given by

u[c(t)] = ln c(t),

which exhibits diminishing marginal utility: u′ > 0, u′′ < 0

● ais person’s goal is to maximize

∫
20

0
u[c(t)]dt = ∫

20

0
ln c(t)dt
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● Let x(t) be the number of bottles of wine remaining at time
t. ais series is constrained by x(0) = 1, 000 and x(20) = 0.

● ae diòerential equation determining the evolution of x(t)is
dx(t)
dt
= −c(t)

aat is, each instant’s consumption reduces the stock of
bottles by the amount consumed.

● ae current valueHamiltonian expression is

H = ln c(t) + λ[−c(t)] + x(t)dλ
dt

and the ûrst-order conditions are
∂H
∂c

= 1
c
− λ = 0

∂H
∂x

= dλ
dt
= 0
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● With λ being constant over time, c(t) is also constant over
time. If c(t) = k, the number of bottles remaining at any
time will be

x(t) = 1000 − kt

● Since x(0) = 1000 and x(20) = 0, we have k = 50.

● ae optimum plan is to drink the wine at the rate of 50
bottles per year for 20 years.
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● Amore complicated utility function:

u[c(t)] =
⎧⎪⎪⎨⎪⎪⎩

c(t)γ/γ, if γ ≠ 0, γ < 1,
ln c(t) if γ = 0

● Assume that the consumer discounts future consumption at
the rate δ. Hence this person’s goal is to maximize

∫
20

0
u[c(t)]dt = ∫

20

0
e−δt c(t)

γ

γ
dt

subject to the constraints:

dx(t)
dt
= −c(t), x(0) = 1, 000, x(20) = 0

.
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● ae current valueHamiltonian expression is

H = e−δt c(t)
γ

γ
+ λ(−c) + x(t)dλ(t)

dt

● aemaximum principle requires that
∂H
∂c

= e−δt[c(t)]γ−1 − λ = 0
∂H
∂x

= 0 + 0 + dλ
dt
= 0

● ae value of the wine stock should be constant over time
(λ = k, a constant). and that

e−δt[c(t)]γ−1 = k, or , c(t) = k1/(γ−1)eδt/(γ−1)

● Optimal wine consumption should fall over time since
γ − 1 < 0.
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● For example, let δ = 0.1 and γ = −1, then

c(t) = k−0.5e−0.05t

● next, we need to choose k to satisfy the endpoint constraints.

∫
20

0
c(t)dt = ∫

20

0
k−0.5e−0.05tdt = −20k−0.5e−0.05t∣

20

0
= −20k−0.5(e−1 − 1) = 12.64k−0.5 = 1, 000

● Finally, the optimal consumption plan is:

c(t) ≈ 79e−0.05t
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Mathematical Statistics

● For issued raised by uncertainty and imperfect information,
we need a good background in mathematical statistics.

Random variables and probability density functions

● A random variable describes the outcomes from an
experiment that is subject to chance.

e.g., �ipping a coin

x =
⎧⎪⎪⎨⎪⎪⎩

1, if coin is heads
0 if coin is tails

51 / 90



Outline 2nd Order Cond. Homo. Functions Integration Dynamic Optimization Math. Stats Matrix

Discrete and continuous random variables

● For discrete random variables, the outcomes from a random
experiment are a ûnite number of possibilities.

e.g.: recording the number that comes up on a single die
(random variable with six outcomes)

● For continuous random variable, the outcomes from a
random experiment are a continuum of possibilities.

e.g.: outdoors temperature tomorrow
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Probability density function (PDF)

● For any random variable, the probability density function
(PDF) shows the probability that each outcome will occur.

● ae probabilities speciûed by the PDFmust sum to 1.

Discrete case:
n
∑
i=1

f (xi) = 1

Continuous case:

∫
+∞

−∞

f (x)dx = 1
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A few important PDFs

Figure 2.6 Four Common Probability Density Functions
(a) Binomial distribution

54 / 90



Outline 2nd Order Cond. Homo. Functions Integration Dynamic Optimization Math. Stats Matrix

Figure 2.6 Four Common Probability Density Functions
(b) Uniform distribution
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Figure 2.6 Four Common Probability Density Functions
(c) Exponential distribution
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Figure 2.6 Four Common Probability Density Functions
(d) Normal distribution
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Expected value

● ae expected value of a random variable is the numerical
value that the random variablemight be expected to have,
on average.

● It is the “center of gravity" of the PDF.

● Discrete case:
E(x) =

n
∑
i=1

xi f (xi)

● Continuous case:

E(x) = ∫
+∞

−∞

x f (x)dx
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● ae concept of expected value can be generalized to include
the expected value of any function of a random variable [say,
g(x)].

E(g(x)) = ∫
+∞

−∞

g(x) f (x)dx

● As a special case, consider a linear function y = ax + b. aen

E(y) = E(ax + b) = ∫
+∞

−∞

(ax + b) f (x)dx = aE(x) + b
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● Expected value of a random variable can be phrased in terms
of the cumulative distribution function (CDF) F(x),

F(x) = ∫
+∞

−∞

f (t)dt

● F(x) represents the probability that the random variable t is
less than or equal to x. ae expected value of x can be
written as Expected value of x:

E(x) = ∫
+∞

−∞

xdF(x)
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Example 2.15 Expected Values of a Few Random Variables

1. Binomial:

E(x) = 1 ⋅ f (x = 1) + 0 ⋅ f (x = 0) = 1 ⋅ p + 0 ⋅ (1 − p) = p

2. Uniform:
E(x) = ∫

b

a

x
b − adx =

b + a
2

3. Exponential:

E(x) = ∫
∞

0
xλe−λxdx

= −xe−λx ∣
∞

0
− ∫

∞

0
−e−λxdx

= − 1
λ
e−λx ∣

∞

0
= 1
λ

Integration by parts, let u = x, dv = λe−λxdx, v = −e−λx .
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4. Normal:

E(x) = ∫
+∞

−∞

1√
2π

xe−x
2
/2dx

= 1√
2π
[−e−x2/2]∣

+∞

−∞

= 1√
2π
[0 − 0] = 0
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Variance and standard deviation

● ae variance of a random variable is Ameasure of
dispersion.

● ae variance is deûned as the “expected squared deviation’ of
a random variable from its expected value.

Var(x) = σ2x = E [(x − E(x))2]

= ∫
+∞

−∞

(x − E(x))2 f (x)dx

● ae square root of the variance is called the standard
deviation and is denoted as σx .

σx =
√
Var(x) =

√
σ2x
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Example 2.16 Variances and Standard Deviations for
Simple Random Variables

1. Binomial:

σ2x =
n
∑
i=1
(x − E(x))2 f (xi)

σ2x = (1 − p)2 ⋅ p + (0 − p)2 ⋅ (1 − p) = p ⋅ (1 − p)
σx =

√
p ⋅ (1 − p)

2. Uniform: σ2x = ∫
b
a (x − a+b

2 )
2 1
b−adx =

(b−a)2
12

3. Exponential: σ2x = 1
λ2 and σx = 1

λ

4. Normal: σ2x = σx = 1
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Standardizing the Normal

● If the random variable x has a standard Normal PDF, it will
have an expected value of 0, a standard deviation of 1.

● Linear transformation y = σx + µ can be used to give this
random variable any desired expected value (µ) and
standard deviation (σ)

E(y) = σE(x) + µ
Var(y) = σ2y = σ2Var(x) = σ2
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Covariance

● ae covariance between x and y seeks to measure the
direction of association between the variables. It is deûned as

Cov(x , y) = ∫
+∞

−∞
∫
+∞

−∞

[x −E(x)] [y − E(y)] f (x , y)dxdy
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● Two random variables are independent if the probability of
any particular value of one is not aòected by the particular
value of the other than may occur’

● aismeans that the PDFmust have the property that
f (x , y) = g(x) ⋅ h(y).

● If x and y are independent, their covariance will be zero.

Cov(x , y) = ∫
+∞

−∞
∫
+∞

−∞

[x −E(x)] [y − E(y)] f (x , y)dxdy = 0

● However, a zero covariance does not necessarily imply
statistical independent.
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Extension: Second-Order Conditions and
Matrix Algebra

Matrix Algebra background

● An n × k matrix, A, is a rectangular array of terms with
i = 1,⋯, n and j = 1,⋯, k

A = [ai j] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 ⋯ a1k
a21 a22 ⋯ a2k
⋮ ⋮ ⋮ ⋮
an1 an2 ⋯ ank

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
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● If n = k, then A is a squarematrix, A squarematrix is
symmetric if ai j = a ji .

● ae identitymatrix, In, is a n × n squarematrix where ai j = 1
if i = j and ai j = 0 if i ≠ j

● ae determinant of a squarematrix, (denoted by ∣A∣) is a
scalar found by suitablymultiplying together all the terms in
thematrix. If A is 2 × 2,

∣A∣ = a11a22 − a21a12.

● ae inverse of an n × n matrix, A, is another n × n matrix,
A−1, such that A× A−1 = In
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● A necessary and suõcient condition for the existence of A−1
is ∣A∣ ≠ 0

● ae leading principal minors of an n × n squarematrix A are
the series of determinants of the ûrst p rows and columns of
A, where p = 1,⋯, n.
If A is 2 × 2, then the ûrst leading principal minor is a11 and
the second is a11a22 − a21a12.

● An n × n squarematrix, A, is positive deûnite if all its
leading principal minors are positive.

aematrix is negative deûnite if its principal minors
alternate in sign starting with aminus.
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● aeHessian matrix is formed by all the second-order partial
derivatives of a function.

If f is a continuous and twice diòerentiable function of n
variables, then itsHessian is given by

H( f ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

f11 f12 ⋯ f1n
f21 f22 ⋯ f2n
⋮ ⋮ ⋮ ⋮
fn1 fn2 ⋯ fnn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
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E2.1 Concave and Convex Functions
● A concave function is one that is always below (or on) any

tangent to it. A convex function is one that is always above
(or on) any tangent to it.

● ae concavity or convexity of any function is determined by
its second derivative(s).

● For a function of a single variable f (x), the Taylor
approximation at any point (x0)

f (x0 + dx) = f (x0) + f ′(x0)dx + f ′′(x0)
dx2
2

+ higher − order terms.

Assuming that the higher-order terms are 0, we have
f (x0 + dx) ≤ f (x0) + f ′(x0)dx if f ′′(x0) ≤ 0
f (x0 + dx) ≥ f (x0) + f ′(x0)dx if f ′′(x0) ≥ 0

where f (x0) + f ′(x0)dx is the equation tangent to the
function at x0. 72 / 90
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● For functions with many variables, concavity requires that
theHessian matrix be negative deûnite, whereas convexity
requires that thismatrix be positive deûnite.

● If f (x1, x2) is a function of two variables, theHessian is
given by

H = [ f11 f12
f21 f22

]

ais is negative deûnite if

f11 < 0 and f11 f22 − f21 f12 > 0.
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Example 1
From Example 2.6: Suppose that y is a function of x1 and x2

y = −x21 + 2x1 − x22 + 4x2 + 5

First-order conditions
∂y
∂x1
= −2x1 + 2 = 0,

∂y
∂x2
= −2x2 + 4 = 0

aeHessian is given by
H = [ −2 0

0 −2 ]

and the ûrst and second leading principal monors are

H1 = −2 < 0
H2 = (−2)(−2) − 0 = 4 > 0

aeHessian matrix is negative deûnite, hence the function is
concave.
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Example 2
ae Cobb-Douglas production or utility function xa yb, where
a, b ∈ (0, 1). ae ûrst- and second-order derivatives of the
function are

fx = axa−1yb ,
fy = bxa yb−1,
fxx = a(a − 1)xa−2yb ,
fyy = b(b − 1)xa yb−2.

fxy = fyx = abxa−1yb−1

Hence theHessian for this function is

H = [ a(a − 1)xa−2yb abxa−1yb−1
abxa−1yb−1 b(b − 1)xa yb−2 ]
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ae ûrst leading principal minor of thisHessian is

H1 = a(a − 1)xa−2yb < 0,

the second leading principal minor is

H2 = a(a − 1)b(b − 1)x2a−2y2b−2 − a2b2x2a−2y2b−2

= ab(1 − a − b)x2a−2y2b−2

Hence H2 > 0 and thus this function is concave if a + b < 1.
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E2.2Maximization

● ae ûrst-order conditions for an unconstrainedmaximum of
a function ofmany variables requires ûnding a point at
which the partial derivatives are zero.

● If the function is concave it will be below its tangent plane at
this point; therefore, the point will be a truemaximum.
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E2.3 Constrainedmaxima
We wish to maximize

f (x1,⋯, xn)

subject to the constraint

g(x1,⋯, xn) = 0

● First-order conditions for amaximum:

fi + λgi = 0

where λ is the Lagrangemultiplier.
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● Second-order conditions for amaximum:

Augmented (“bordered") Hessian, Hb

Hb =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 g1 g2 ⋯ gn
g1 f11 f12 ⋯ f1n
g2 f21 f22 ⋯ f2n
⋮ ⋮ ⋮ ⋮ ⋮
gn fn1 fn2 ⋯ fnn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

● For amaximum, (−1)Hb must be negative deûnite. aat is,
the leading principal minor of Hb must follow the pattern
− + − + − and so forth, starting with the second such minor.
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Example: In the optimal fence problem (Example 2.8), the ûrst
order conditions are

∂L
∂λ

= P − 2x − 2y = 0
∂L
∂x

= y − 2λ = 0
∂L
∂y

= x − 2λ = 0,

the borderedHessian is

H =
⎡⎢⎢⎢⎢⎢⎢⎣

0 −2 −2
−2 0 1
−2 1 0

⎤⎥⎥⎥⎥⎥⎥⎦
and Hb2 = −4, Hb3 = 8, this the leading principal minors have
the sign pattern required for amaximum.
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E2.4 Quasi-concavity

● If the constraint, g, is linear, then the second-order
conditions can be related solely to the shape of the function
to be optimized.

● ae constraint can be written as

g(x1,⋯, xn) = c − b1x1 − b2x2 −⋯ − bnxn = 0

and the ûrst-order conditions for amaximum are

fi = λbi , i = 1,⋯, n.
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● It is clear that ae borderedHessian Hb and thematrix H′
have the same leading principal minors except for a
(positive) constant of proportionality.

H′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 f1 f2 ⋯ fn
f1 f11 f12 ⋯ f1n
f2 f21 f22 ⋯ f2n
⋮ ⋮ ⋮ ⋮ ⋮
fn fn1 fn2 ⋯ fnn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
● ae conditions for amaximum of f subject to a linear

constraint will be satisûed provided H′ follows the same sign
conventions as Hb. aat is, (−1)H′ must be negative deûnite.

● A function f for which H′ does follow this pattern is called
quasi-concave.
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Example
For the fences problem, f (x , y) = xy and H′ is given by

H′ =
⎡⎢⎢⎢⎢⎢⎢⎣

0 y x
y 0 1
x 1 0

⎤⎥⎥⎥⎥⎥⎥⎦
aus,

H′2 = −y2 < 0
H′3 = 2xy > 0

and the function is quasi-concave.
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Example
More generally, if f is a function of only two variable,

H′ =
⎡⎢⎢⎢⎢⎢⎢⎣

0 f1 f2
f1 f11 f12
f2 f21 f22

⎤⎥⎥⎥⎥⎥⎥⎦
then quasi-concavity requires that

H′2 = −( f1)2 < 0 and
H′3 = 2 f1 f2 f12 − f11 f 22 − f22 f 21 > 0
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E2.5 Comparative Statics with two endogenous variables

● Two endogenous variables (x1 and x2) and a single
exogenous parameter, a.

● It takes two equations (e.g. demand and supply) to
determine the equilibrium values of these two endogenous
variables, and the values taken by these variables will depend
on a. In implicit form as

f 1[x1(a), x2(a), a] = 0
f 2[x1(a), x2(a), a] = 0
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● Diòerentiation of these equilibrium equations with respect
to a

f 11
dx∗1
da
+ f 12

dx∗2
da
+ f 1a = 0

f 21
dx∗1
da
+ f 22

dx∗2
da
+ f 2a = 0

● Solve these simultaneous equations for the comparative
static values of the derivatives ( ∂x

∗

1
∂a and ∂x∗2

∂a ) that show how
the equilibrium values change when a changes.
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● We can write simultaneous equations in matrix notation:

[ f 11 f 12
f 21 f 22

] ⋅
⎡⎢⎢⎢⎢⎣

∂x∗1
∂a
∂x∗2
∂a

⎤⎥⎥⎥⎥⎦
= [ − f

1
a

− f 2a
]

● ais can be solved as

⎡⎢⎢⎢⎢⎣

∂x∗1
∂a
∂x∗2
∂a

⎤⎥⎥⎥⎥⎦
= [ f 11 f 12

f 21 f 22
]
−1

⋅ [ − f
1
a

− f 2a
]
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Cramer’s rule

● Cramer’srule shows that each of the comparative static
derivatives can be solved as the ratio of two determinants.

dx∗1
da
=
∣ − f

1
a f 12

− f 2a f 22
∣

∣ f 11 f 12
f 21 f 22

∣
,
dx∗2
da
=
∣ f 11 − f 1a
f 21 − f 2a

∣

∣ f 11 f 12
f 21 f 22

∣
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● Suppose that the demand and supply functions for a product
are given by:

q = cp + a or q − cp − a = 0 (demand, c < 0)
q = dp or q − dp = 0 (supply, d > 0)

● Diòerentiate these two equations with respect to a yields:

dq∗

da
− c dp

∗

da
− 1 = 0

dq∗

da
− d dp

∗

da
= 0

In matrix form:

[ 1 −c
1 −d ] ⋅

⎡⎢⎢⎢⎢⎣

dq∗
da
dp∗
da

⎤⎥⎥⎥⎥⎦
= [ 1

0
]
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[ 1 −c
1 −d ] ⋅

⎡⎢⎢⎢⎢⎣

dq∗
da
dp∗
da

⎤⎥⎥⎥⎥⎦
= [ 1

0
]

aerefore,

dq∗

da
=
∣ 1 −c
0 −d ∣

∣ 1 −c
1 −d ∣

= −d
c − d =

d
d − c > 0

dp∗

da
=
∣ 1 1
1 0

∣

∣ 1 −c
1 −d ∣

= −1
c − d =

1
d − c > 0
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