Suggested Answers for Problem Set 5 Dec. 27, 2002

1a If there is perfect collinearity, the X'X matrix can not be inverted because the determinant of X'X is zero. The vector of coefficients is unidentified.

1b A test would be to examine the determinant of X'X, if it is zero, perfect collinearity exists.

2a If there is perfect multicollinearity, the X'X matrix can not be inverted because the determinant of X'X is zero. The covariance matrix is undefined.

2b If the collinearity is high, the covariance matrix is defined, but the variances will tend to be very large as the determinant of X'X approaches zero as the collinearity gets stronger.

3a Given the relatively high R^2 , 0.97, the significant F, and the improperly signed, insignificant coefficient on $\ln K$, it appears there may be multicollinearity in the model.

3b One would expect the sign on $\ln K$ to be positive. It is not, probably due to the collinearity.

4a If X and Z are uncorrelated, adding Z does not change the estimate of β . Hence, the statement is true if X and Z are uncorrelated.

4b Adding an extra explanatory variable always decreases the residual sum of squares. Hence, the statement is always true.

4c This can happen if the variable Z that has been added is highly correlated with x.