Suggested Answers for Problem Set 4
Dec. 6, 2002

1a

$$
\begin{aligned}
A B C & =\left[\begin{array}{lll}
1 & 0 & 1 \\
2 & 1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
2 & 0 \\
3 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right] \\
& =\left[\begin{array}{ll}
4 & 2 \\
7 & 4
\end{array}\right] \\
C A B & =\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 1 \\
2 & 1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{lll}
4 & 1 & 3 \\
3 & 1 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right] \\
& =\left[\begin{array}{ll}
7 & 1 \\
5 & 1
\end{array}\right] \\
C^{\prime} B^{\prime} A^{\prime} & =\left[\begin{array}{ll}
4 & 7 \\
2 & 4
\end{array}\right]
\end{aligned}
$$

1b From $(a),(A B C)^{\prime}=\left[\begin{array}{ll}4 & 7 \\ 2 & 4\end{array}\right]=C^{\prime} B^{\prime} A^{\prime}$
1c

$$
\begin{aligned}
(A B C)^{-1} & =\frac{1}{|A B C|}\left[\begin{array}{cc}
4 & -2 \\
-7 & 4
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}
4 & -2 \\
-7 & 4
\end{array}\right]=\left[\begin{array}{cc}
2 & -1 \\
-3.5 & 2
\end{array}\right] \\
C^{-1} & =\left[\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right] \\
(A B)^{-1} & =\left[\begin{array}{ll}
2 & 0 \\
3 & 1
\end{array}\right]^{-1}=\frac{1}{2}\left[\begin{array}{cc}
1 & 0 \\
-3 & 2
\end{array}\right]=\left[\begin{array}{cc}
0.5 & 0 \\
-1.5 & 1
\end{array}\right]
\end{aligned}
$$

1 d From (c), $C^{-1}(A B)^{-1}=\left[\begin{array}{cc}1 & -1 \\ -1 & 2\end{array}\right]\left[\begin{array}{cc}0.5 & 0 \\ -1.5 & 1\end{array}\right]=\left[\begin{array}{cc}2 & -1 \\ -3.5 & 2\end{array}\right]=$ $(A B C)^{-1}$

2 Let $A: n \times K, B: K \times T, C: K \times T$ and $D=A(B+C), E=A B, F=A C$.

$$
\begin{aligned}
& d_{i j}=\sum_{k=1}^{K} a_{i k}\left(b_{k j}+c_{k j}\right)=\sum_{k=1}^{K} a_{i k} b_{k j}+a_{i k} c_{k j} \\
& =e_{i j}+f_{i j} \\
& \text { therefore } A(B+C)=A B+A C
\end{aligned}
$$

3a The test statistics are

$$
\begin{aligned}
& t_{2}=\frac{\hat{\beta}_{2}-1}{\hat{\sigma}_{\hat{\beta}_{2}}}=\frac{0.9576-1}{0.3022}=-0.1403 \\
& t_{3}=\frac{\hat{\beta}_{3}-1}{\hat{\sigma}_{\hat{\beta}_{3}}}=\frac{0.8242-1}{0.3571}=-0.4923
\end{aligned}
$$

The critical value is 2.179 . Therefore, we do not reject the null that both elasticities are statistically equal to one.

3b The test statistic, assuming zero covariancem, is

$$
t=\frac{0.9576-0.8242}{\sqrt{0.0913+0.1275}}=0.2852
$$

The test statistic, assuming a -0.0972 covariance, is

$$
t=\frac{0.9576-0.8242}{\sqrt{0.0913+0.1275-2(-0.0972)}}=0.2075
$$

The critical value is 2.179 . Therefore, in either case, we do not reject the null that the elasticities are statistically equal.

4 One can see model B as

$$
\begin{aligned}
Y_{t} & =\beta_{1}+X_{2 t}+\beta_{2} X_{2 t}+\beta_{3} X_{3 t}+u_{2 t} \\
& =\beta_{1}+\left(1+\beta_{2}\right) X_{2 t}+\beta_{3} X_{3 t}+u_{2 t} \\
& =\beta_{1}+\beta_{2}^{*} X_{2 t}+\beta_{3} X_{3 t}+u_{2 t}
\end{aligned}
$$

where $\beta_{2}^{*}=1+\beta_{2}$. Thus, Models A and B are very similar, they both explain $Y_{t}$ with the same explanatory variables.

4a Yes, the estimates for $\alpha_{1}$ and $\beta_{1}$ will be the same.
4 b Yes, the estimates for $\alpha_{3}$ and $\beta_{3}$ are the same.
4c $\beta_{2}^{*}=1+\beta_{2}=\alpha_{2}$.
4 d No, since the dependent variables are not the same.
5a Let the coefficient for $\ln K$ be $\beta^{*}=\beta_{2}+\beta_{3}-1$. Setting up the null hypothesis that $\beta^{*}=0$ can test whether $\beta_{2}+\beta_{3}=1$.

5 b No，the analysis is symmetric．We can test whether the coefficient of $\ln L$ is zero．

$6 \mathrm{c} \beta_{2}$ 表示男性就讀大學比例與女性就讀大學比例的差距，其估計係數分別爲 $1.58 \%,-0.96 \%$ 和－ $3.46 \%$ ，男女差距縮小， 2000 年時女性已超越男性。

6 d 詳細迴歸係數請見附檔。除了各年的「台北縣」和1990年的「性別」不顯著之外，其他係數在各年都是正向且顯著的，尤其「父親教育年數」與「母親教育年數」在1990－2000年間的重要性是增加的。

