Econometrics I

Problem Set 4
Nov. 29, 2002
Due: Dec. 6, 2002

1. Consider $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 2 & 1 & 1\end{array}\right], B=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 1 & 0\end{array}\right]$ and $C=\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$
(a) Compute $A B C, C A B$ and $C^{\prime} B^{\prime} A^{\prime}$.
(b) Verifty that $(A B C)^{\prime}=C^{\prime} B^{\prime} A^{\prime}$.
(c) Find the inverse of $A B C$ and C and $A B$.
(d) Verify that $(A B C)^{-1}=C^{-1}(A B)^{-1}$
2. Show that $A(B+C)=A B+A C$, where A is a $n \times K$ matrix, B and C are both $K \times T$ matrices.
3. In an application of the Cobb-Douglas production function the following results were obtained:

$$
\begin{gather*}
\left.\hat{\ln Y_{i}=} \begin{array}{c}
2.3542+0.9576 \ln X_{2 i}+ \\
(0.3022) \\
R^{2}=0.8432, d f=12
\end{array}\right) .(0.3571)
\end{gather*}
$$

where $Y=$ output, $X_{2}=$ labor input, and $X_{3}=$ capital input, and where the figures in parentheses are the estimated standard errors.
(a) The coefficients of the labor and capital inputs give the elasticities of output with respect to labor and capita. Test the hypotheis that these elasticities are individually equal to unity.
(b) Test the hypotheis that the labor and capital elasticities are equal, assuming (i) the covariance between the estimated labor and capital coefficients is zero, and (ii) it is -0.0972 .
4. Consider the following models.

$$
\begin{aligned}
\text { Model A : } Y_{t} & =\alpha_{1}+\alpha_{2} X_{2 t}+\alpha_{3} X_{3 t}+u_{1 t} \\
\text { Model B : } Y_{t}-X_{2 t} & =\beta_{1}+\beta_{2} X_{2 t}+\beta_{3} X_{3 t}+u_{2 t}
\end{aligned}
$$

(a) Will OLS estimates of α_{1} and β_{1} be the same? Why?
(b) Will OLS estimates of α_{3} and β_{3} be the same? Why?
（c）What is the relationship between α_{2} and β_{2} ？
（d）Can we compare the R^{2} of the two models？Why or why not？
5．Consider the Cobb－Douglas production function

$$
\begin{equation*}
Y=\beta_{1} L^{\beta_{2}} K^{\beta_{3}} \tag{1}
\end{equation*}
$$

where $Y=$ output，$L=$ labor input，and $K=$ capital input．Dividing（1） through by K ，we get

$$
\frac{Y}{K}=\beta_{1}\left(\frac{L}{K}\right)^{\beta_{2}} K^{\beta_{2}+\beta_{3}-1}
$$

Takeing the natural log，we obtain

$$
\begin{equation*}
\ln \left(\frac{Y}{K}\right)=\beta_{0}+\beta_{2} \ln \left(\frac{L}{K}\right)+\left(\beta_{2}+\beta_{3}-1\right) \ln K \tag{2}
\end{equation*}
$$

where $\beta_{0}=\ln \beta_{1}$ ．
（a）Suppose you had data to run regression（2）．How would you test the hyoth－ esis that there are constant returns to scale，i．e．，$\beta_{2}+\beta_{3}=1$ ．
（b）Does it make any difference whether we divide（1）by L rahter than by K ？
6．ps4．dta 取自 1980，1990和2000年的「人力資源調查」中 19－22歲人口及其父母的資訊，其中七個變數，變數內容如 label 所示。使用 ps4．dta 回答以下問題。
（a）1980，1990和2000年時，各有多少比例的 19－22歲人口就讀於大學？有何長期趨勢？
（b）1980，1990和2000年時，男女性就讀大學的比例各爲多少？男女性就讀大學比例的差異各爲多少？有何長期趨勢？
（c）對 1980，1990和2000年，分別估計下列迴歸模型：

$$
\mathrm{c}=\beta_{1}+\beta_{2} \operatorname{sex}+u
$$

此時 sex 的係數 β_{2} 代表的是什麼？（提示：與（b）作一比較。）
（d）對 1980，1990和2000年，分別估計下列迴歸模型：
$\mathrm{c}=\beta_{1}+\beta_{2}$ sex $+\beta_{3} \mathrm{fschyr}+\beta_{4}$ mschyr $+\beta_{5}$ taipei $+\beta_{6} \mathrm{tpc}+u$
說明當就讀大學比例持續增加時，各個解釋繳數對是否就讀大學影響的長期趨勢。

