Suggested Answers for Problem Set 3

Nov. 22, 2002
1 In this case, $\hat{\beta}_{1}=\bar{y}-\hat{\beta}_{2} \bar{x}=0$ since $\bar{y}=\frac{\sum y_{i}}{n}=0$ and $\bar{x}=0$. Thus, the regression line passes through the origin.

2 Note that the mean of X^{*} and Y^{*} are both zero.

$$
\begin{aligned}
\hat{\alpha}_{1} & =\bar{Y}^{*}-\hat{\alpha}_{2} \bar{X}^{*}=0 \\
\hat{\alpha}_{2} & =\frac{\sum X_{i}^{*} Y_{i}^{*}}{\sum X_{i}^{* 2}}=\frac{\sum \frac{x_{i}}{S_{x}} \frac{y_{i}}{S_{y}}}{\sum\left(\frac{x_{i}}{S_{x}}\right)^{2}}=\frac{S_{x}}{S_{y}} \frac{\sum x_{i} y_{i}}{\sum x_{i}^{2}}=\frac{S_{x}}{S_{y}} \hat{\beta}_{2}=\frac{\sqrt{\sum x_{i}^{2} /(n-1)}}{\sqrt{\sum y_{i}^{2} /(n-1)}} \hat{\beta}_{2} \\
& =\sqrt{\frac{\sum \hat{\beta}_{2}^{2} x_{i}^{2}}{\sum y_{i}^{2}}}=r
\end{aligned}
$$

3 By definition, we have $\ln Y_{i}^{*}=\ln w_{1}+\ln Y_{i}$ and $\ln X_{i}^{*}=\ln w_{2}+\ln X_{i}$. Since $\ln w_{1}$ and $\ln w_{2}$ are constants, let them be c_{1} and c_{2}. Now the first model becomes $\left(\ln Y_{i}+c_{1}\right)=\alpha_{1}+\alpha_{2}\left(\ln X_{i}+c_{2}\right)+u_{i}^{*}$. Therefore,

$$
\begin{aligned}
& \hat{\beta}_{2}=\frac{\sum\left(\ln X_{i}-\ln X_{i}\right)\left(\ln Y_{i}-\ln Y_{i}\right)}{\sum\left(\ln X_{i}-\ln \bar{X}_{i}\right)^{2}} \\
& \hat{\alpha}_{2}=\frac{\sum\left[\ln X_{i}+c_{2}-\left(\ln ^{-} X_{i}+c_{2}\right)\right]\left[\ln Y_{i}+c_{1}-\left(\ln ^{-} Y_{i}+c_{1}\right]\right.}{\sum\left[\ln X_{i}+c_{2}-\left(\ln \bar{X}_{i}+c_{2}\right)\right]^{2}}=\hat{\beta}_{2} \\
& \hat{\beta}_{1}=\ln ^{-} Y-\hat{\beta}_{2} \ln ^{-} X \\
& \hat{\alpha}_{1}=\ln ^{-} Y+c_{1}-\hat{\alpha}_{2}\left(\ln ^{-} X+c_{2}\right)=\hat{\beta}_{1}+c_{1}-\hat{\beta}_{2} c_{2}
\end{aligned}
$$

4a 15,238 observations, 10,161 men and 5,077 women. Proportions of females in the three years are $25.94 \%, 32.86 \%$ and 38.26%.

4b men: 9.36%, significant at 1%.
women: 14.14%, significant at 1%.
4c For men, being married increases Y by 3.88% significantly. For women, being married decreases Y by 5.90%.

4d 40.86% and 61.36% for men and women respectively.
4e The coefficients of $G E$ are $1.50 \%, 9.66 \%$ and 14.92% for 1980,1990 and 2000 respectively. Only the coefficient in 1980 is not significant. It is increasing overtime.

