Suggested Answers for Problem Set 2

Oct. 18, 2002
1a $\hat{\beta}_{1}=\bar{Y}-\hat{\beta}_{2} \bar{X}$, $\hat{\alpha}_{1}=\bar{Y}-\hat{\alpha}_{2} \bar{x}=\bar{Y}$, where $x_{i}=X_{i}-\bar{X}, \bar{x}=\frac{1}{n} \sum X_{i}-\bar{X}=0$.
$\operatorname{Var}\left(\hat{\beta}_{1}\right)=\frac{\sum X_{i}^{2}}{n \sum x_{i}^{2}} \sigma^{2}$,
$\operatorname{Var}\left(\hat{\alpha}_{1}\right)=\frac{\sum x_{i}^{2}}{n \sum\left(x_{i}-\bar{x}\right)^{2}} \sigma^{2}=\frac{\sigma^{2}}{n}$.
Therefore, neither the estimates nor the variances for $\hat{\beta}_{1}$ and $\hat{\alpha}_{1}$ are equal.
1b $\hat{\beta}_{2}=\frac{\sum x_{i} y_{i}}{\sum x_{i}^{2}}$,
$\hat{\alpha}_{2}=\frac{\sum\left(x_{i}-\bar{x}\right) y_{i}}{\sum\left(x_{i}-\bar{x}\right)^{2}}=\frac{\sum x_{i} y_{i}}{\sum x_{i}^{2}}$,
$\operatorname{Var}\left(\hat{\beta}_{1}\right)=\frac{\sigma^{2}}{\sum x_{i}^{2}}$,
$\operatorname{Var}\left(\hat{\alpha}_{2}\right)=\frac{\sigma^{2}}{\sum x_{i}^{2}}$.
Therefore, the estimates and variance for $\hat{\beta}_{2}$ and $\hat{\alpha}_{2}$ are identical.
2 If we multiply each X by 2 , the residuals and fitted values for Y will not change. Initially, let $Y_{i}=\beta_{1}+\beta_{2} X_{i}=u_{i}$, then $\hat{\beta}_{2}=\frac{\sum\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum\left(X_{i}-\bar{X}\right)^{2}}, \hat{\beta}_{1}=\bar{Y}-\hat{\beta}_{2} \bar{X}$, $\hat{Y}_{i}=\hat{\beta}_{1}+\hat{\beta}_{2} X_{i}$.

Now let $Z_{i}=2 X_{i}$ and let $Y_{i}=\alpha_{1}+\alpha_{2} Z_{i}+u_{i}$, then

$$
\begin{aligned}
\hat{\alpha}_{2} & =\frac{\sum\left(Z_{i}-\bar{Z}\right)\left(Y_{i}-\bar{Y}\right)}{\sum\left(X_{i}-\bar{X}\right)^{2}}=\frac{\sum\left(2 X_{i}-2 \bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sum\left(2 X_{i}-2 \bar{X}\right)^{2}}=\frac{1}{2} \hat{\beta}_{2} \\
\hat{\alpha}_{1} & =\bar{Y}-\hat{\alpha}_{2} \bar{Z}=\bar{Y}-\frac{1}{2} \hat{\beta}_{2} 2 \bar{X}=\hat{\beta}_{1} \\
\hat{Y} & =\hat{\alpha}_{1}+\hat{\alpha}_{2} Z_{i}=\hat{\beta}_{1}+\frac{1}{2} \hat{\beta}_{2} 2 X_{i}=\hat{\beta}_{1}+\hat{\beta}_{2} X_{i}
\end{aligned}
$$

The analysis is analogous if a constant is added to X_{i}.
3a All of these estimators are unbiased.
3b $\operatorname{Var}\left[\hat{\mu}_{1}\right]=\frac{\sigma^{2}}{n}, \operatorname{Var}\left[\hat{\mu}_{2}\right]=\sigma^{2}, \operatorname{Var}\left[\hat{\mu}_{3}\right]=\frac{n \sigma^{2}}{4(n-1)}$. Therefore, $\hat{\mu}_{1}$ is the most efficient.

3c Only $\operatorname{Var}\left[\hat{\mu}_{1}\right]$ converges to 0 , it converges in mean square which implies plim $\hat{\mu}_{1}=$ μ. Therefore, $\hat{\mu}_{1}$ is consistent.

4 The log-likelihood function is

$$
\ln L=-n \ln \theta-\frac{\sum X_{i}}{\theta}
$$

The first order condition is

$$
\frac{\partial \ln L}{\partial \theta}=-\frac{n}{\theta}+\frac{\sum X_{i}}{\theta^{2}}=0
$$

Therefore, the ML estimator of $\hat{\theta}=\frac{\sum X_{i}}{n}=\bar{X}$.
5a True. Unbiasedness of the estimators does not require a normally distributed population error term. It does require that the error term has an expected value of zero.

5b True. Since $\hat{\beta}_{1}=\bar{Y}-\hat{\beta}_{2} \bar{X}$, if the slope coefficient is zero, then the intercept is estimated by the sample mean of Y, \bar{Y}.

6 If $r^{2}=1$, all the points lie on a straight line. So, whether we minimize sum of squares of vertical distances (regression of Y on X) or horizontal distances (regression of X on Y) does not matter. Both are zero in this case.

On the other hand, if the simple regression line of Y against X coincides with the simple regression line of X againist Y, then $\hat{\beta}_{2}^{Y X}=\frac{1}{\hat{\beta}_{2}^{X Y}}$ where $\hat{\beta}_{2}^{Y X}$ is the slope coefficient of regressing Y on X and $\hat{\beta}_{2}^{X Y}$ is the slope coefficient of regressing X on Y. Therefore,

$$
\hat{\beta}_{2}^{Y X} \hat{\beta}_{2}^{X Y}=\frac{\sum x_{i} y_{i}}{\sum x_{i}^{2}} \frac{\sum x_{i} y_{i}}{\sum y_{i}^{2}}=r^{2}=1
$$

7a For $\left(Y_{i}, X_{i}\right)$, we have $u_{i} \sim I N(0,1)$. For $\left(\bar{Y}_{i}, \bar{X}_{i}\right)$, the erros are $I N(0,2)$ since the errors are $u_{1}+u_{2}, u_{3}+u_{4}, \cdots$. For $\left(Y_{i}^{*}, X_{i}^{*}\right)$, the errors are correlated but normally distributed with variance $\frac{1}{2}$. Note that the erros are $\frac{u_{1}+u_{2}}{2}, \frac{u_{2}+u_{3}}{2}, \frac{u_{3}+u_{4}}{2}$ etc. The consecutive erros are correlated. There covariance is $\frac{1}{4}$.

7b Yes, since the classical assumptions are statisfied with annual data.

